ПОИСК Статьи Чертежи Таблицы Твердость как характеристика свойств материалов из "Материаловедение " Твердость металлов. Определения твердости являются широко применяемыми в лабораторных и в заводских условиях способами испытаний для характеристики механических свойств металлов. Это объясняется указываемыми ниже преимуществами измерений твердости по сравнению с другими способами определения механических свойств, рассмотренными в гл. VI. [c.167] Твердость металлов измеряют при помощи воздействия на поверхность металла наконечника, изготовленного из малодеформирующе-гося материала (твердая закаленная сталь, алмаз, сапфир или твердый сплав) и имеющего форму шарика, конуса, пирамиды или иглы. [c.167] Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника. Твердость можно измерять вдавливанием наконечника (способ вдавливания), царапанием поверхности (способ царапания), ударом или же по отскоку наконечника-шарика. Твердость, определенная царапанием, характеризует сопротивление разрушению (для большинства металлов путем среза) твердость, определенная по отскоку, характеризует упругие свойства твердость, определенная вдавливанием, — сопротивление пластической деформации. [c.167] Таким образом, твердость характеризует сопротивление пластической деформации и представляет собой механическое свойство металла, отличающееся от других его механических свойств способом измерения. Я. Б. Фридман предложил рассматривать измерения твердости как местные механические испытания поверхностных слоев материала . [c.168] Величина твердости характеризует предел прочности металлов, получающих в испытаниях на растяжение сосредоточенную пластическую деформацию (шейку), а именно сталей (кроме сталей с аустенитной и мартенситной структурой) и многих цветных сплавов. Это связано с тем, что при испытаниях на растяжение наибольшей нагрузке, предшествующей разрушению и отнесенной к его первоначальной площади (предел прочности), отвечает сосредоточенная пластическая деформация (образование шейки), а не разрушение образца. Такая пластическая деформация аналогична деформации, создаваемой в поверхностных слоях металла при измерении твердости вдавливанием наконечника. [c.168] Подобная количественная зависимость не наблюдается для хрупких материалов, которые при испытаниях на растяжение (или сжатие, изгиб, кручение) разрушаются без заметной пластической деформации, а при измерении твердости получают пластическую деформацию. Однако в ряде случаев и для этих металлов (например, серых чугунов) наблюдается качественная зависимость между пределом прочности и твердостью возрастанию твердости обычно соответствует увеличение предела прочности на сжатие. [c.168] По значениям твердости можно определять также и некоторые пластические свойства металлов. [c.168] Твердость, определенная вдавливанием, характеризует также предел выносливости некоторых металлов, в частности меди, дуралюмина и сталей в отожженном состоянии. [c.168] Измерения твердости выполняются быстро, например при вдавливании конуса за 30—60 с, а при вдавливании шарика за 1— 3 мин. [c.168] Для полной характеристики свойств металла необходимо наряду с измерением твердости проводить остальные механические испытания (см. гл. VI). Поскольку при измерении твердости в большинстве случаев детали не разрушаются, то эти измерения можно применять для сплошного контроля деталей, в то время как определения характеристик прочности и пластичности проводят в качестве выборочного контроля. [c.169] Следует различать два способа определения твердости вдавливанием измерение твердости (макротвердости) и измерение микротвердости. [c.169] Измерение твердости (макротвердости) характерно тем, что в испытуемый материал вдавливается тело, проникающее на сравнительно большую глубину, зависящую прежде всего от величины прилагаемой нагрузки и свойств металла. Кроме того во многих испытаниях вдавливается тело значительных размеров например стальной шарик диаметром до 10 мм, в результате чего в де формируемом объеме оказываются представленными все фазы и струк турные составляющие сплава в количествах и с расположением, ха рактерными для измеряемого материала. Измеренная твердость должна в этом случае характеризовать твердость всего испытуемого материала. [c.169] Выбор формы, размеров наконечника и величины нагрузки зависит от целей испытания, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца. [c.169] Если металл имеет гетерогенную структуру с крупными выделениями отдельных структурных составляющих, различных по свойствам (например, серый чугун, цветные подшипниковые сплавы), то для испытания твердости следует выбирать шарик большого диаметра. Если же металл имеет сравнительно мелкую и однородную структуру, то малые по объему участки испытуемого металла могут быть достаточно характерными для оценки свойств материала в целом и, в частности, его твердости. В этих случаях испытания можно проводить вдавливанием тела меньшего размера, например алмазного конуса или пирамиды, и на меньшую глубину, и, следовательно, при небольшой нагрузке. [c.169] Однако значительное снижение нагрузки нежелательно, так как это приведет к резкому уменьшению деформируемого объема и может дать значения, не характерные для основной массы металла. Поэтому величины нагрузок и размеры получаемых в материалах отпечатков не должны быть меньше некоторых определенных пределов. [c.170] Измерение микротвердости имеет целью определить твердость отдельных зерен, фаз и структурных составляющих сплава (а не усредненную твердость, как при измерении макротвердости). В данном случае объем, деформируемый вдавливанием, должен быть меньше объема (площади) измеряемого зерна. Поэтому прилагаемая нагрузка выбирается небольшой. Кроме того, микротвердость измеряют для характеристики свойств очень малых по размерам деталей. [c.170] У полимерных материалов измерение твердости дает меньше информации о их свойствах, так как между твердостью и прочностью этих материалов нет определенной зависимости. Результаты измерений являются лишь дополнительной характеристикой свойств полимерных материалов. [c.170] Значительное влияние на результаты испытаний твердости оказывает состояние поверхности измеряемого материала. Если поверхность неровная — криволинейная или с выступами, то отдельные участки в различной степени участвуют в сопротивлении вдавливанию и деформации, что приводит к ошибкам в измерении Чем меньше нагрузка для вдавливания, тем более тщательно должна быть подготовлена поверхность. Она должна представлять шлифованную горизонтальную площадку, а для измерения микротвердости — полированную (в этом случае при изготовлении шлифа нельзя допускать наклепа в поверхностном слое). [c.170] Измеряемая поверхность должна быть установлена горизонтально, т. е. перпендикулярно действию вдавливаемого тела. Противоположная сторона образца также должна быть зачищена и не иметь окалины, так как последняя при нагружении образца сминается, что искажает результаты измерения. [c.170] Вернуться к основной статье