Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб анизотропных пластин

ОСНОВНЫЕ УРАВНЕНИЯ ИЗГИБА АНИЗОТРОПНЫХ ПЛАСТИН  [c.108]

Изгиб анизотропных пластин  [c.245]

А г а л о в я н Л. А., Об уравнениях изгиба анизотропных пластин. Труды 7 ОЙ Всесоюзной конференции по теории оболочек и пластин. Изд-во Наука , 1970.  [c.222]

Компоненты матрицы жесткости на изгиб и кручение анизотропной пластины  [c.43]

Они позволяют на основе расчетных формул (6.5), (6.15), (6.22) исследовать начальное разрушение анизотропных пластин при изгибе.  [c.111]


В работе [394] рассматриваются задачи о собственных колебаниях слоистых анизотропных пластин. Используется вариант уточненной теории изгиба с учетом деформаций поперечного сдвига. Предполагается линейный закон изменения поперечных сдвиговых деформаций вдоль толщины каждого слоя. Вариационным путем получена система уравнений двенадцатого порядка в частных производных. Решение разрешающей системы уравнений получено для случая свободно-опертой прямоугольной пластины. Проведено сопоставление с результатами, найденными на основе уравнений трехмерной теории упругости.  [c.18]

Вывод дифференциального уравнения изгиба анизотропной дла-стины основан на общих гипотезах теории изгиба пластин (гл. 5, 1).  [c.247]

В настоящей книге излагается приближенный метод учета влияния межслоевых сдвигов на напряженное и деформированное состояния слоистых анизотропных пластин и оболочек. При выборе упрощающих гипотез для изучения тонких слоистых оболочек имелось в виду, что упругие характеристики существующих клеев и связующих заметно ниже соответствующих упругих характеристик армирующих наполнителей, и, следовательно, при изгибе слоистых оболочек возникающие межслоевые сдвиги могут существенно исказить картину деформированного состояния, описываемую широко используемыми в теории оболочек гипотезами недеформируемых нормалей, особенно когда оболочка работает в условиях нагрева.  [c.4]

Общие соотношения и дифференциальные уравнения несимметричного изгиба круглых анизотропных пластин  [c.42]

Дифференциальное уравнение изгиба анизотропных прямоугольных пластин  [c.45]

Будем рассматривать малые изгибные колебания однородных анизотропных пластин постоянной толщины, ограниченных простым контуром. Изгибные деформации, возникающие при колебаниях, будем предполагать малыми упругими подчиняющимися обобщенному закону Гука. Такие колебания описываются дифференциальными уравнениями, аналогичными дифференциальным уравнениям изгиба. Принципиальным отличием их является зависимость внепшей нагрузки, а следовательно, функций деформаций tp, я з и прогиба пластинки ы от времени, а также наличие дополнительных членов, которые определяют инерционную нагрузку.  [c.88]

Браутман и др. [37 ] рассмотрели двухслойную анизотропную прямоугольную пластину, нагруженную произвольно распределенным нормальным давлением. Граничные условия при изгибе соответствовали шарнирному опиранию, а при деформировании в плоскости —. свободным и закрепленным кромкам. Численные  [c.181]


Следует отметить, что (4.1.6) является формой представления достаточно общего физического закона, например, для анизотропного или нелинейно-упругого материала. В уравнениях (4.1.6) выделены члены, относящиеся к некоторой изотропной пластине постоянной толщины. В случае оболочки переменной толщины параметры Kq.Do выбираются так, чтобы обеспечить сходимость процесса (4.1.2), Для оболочки постоянной толщины эти величины являются соответственно жесткостями на растяжение и изгиб.  [c.108]

Экспериментальная оценка методов перекашивания в шарнирном четырехзвеннике, перекашивания полосы, растяжения анизотропной полосы и кручения квадратной пластины показывает, что при определении модуля сдвига в плоскости все эти методы дают сопоставимые результаты (см. кривые деформирования на рнс. 7.7). При определении прочности количественно сопоставимыми являются методы перекашивания пластины и растяжения полосы, но резко выделяются прочности, полученные при перекашивании полосы и при трехточечном изгибе.  [c.214]

Так как потенциальная энергия изгиба пластинки определяется выражениями (155), (156), имеем следующие вариационные уравнения устойчивости анизотропных прямоугольных пластин.  [c.78]

Влияние эллиптического отверстия на напряженное состояние анизотропной пластины было, по-видимому, впервые исследовано Лехницким [32]. Его подход предусматривал представление решения в виде рядов вдоль контура и был изложен выше. В ряде последующих работ рассматривались частные примеры, которые обсуждались Савиным [52] и Лехницким [35]. Несмотря на то, что Лехницким было получено общее решение, в его ранних работах не были приведены окончательные результаты, установленные позднее Другими исследователями. Так, например, Дорогобед [13] получил окончательный результат для случая круглого отверстия (предельный случай эллиптического отверстия) при одноосном растяжении. Липкин [37 ] построил решение для случая изгиба в плоскости нeoFpaничeннoй пластины с круглым отверстием. Лехницкий и Солдатов [36] рассмотрели пластину с эллиптическим отверстием, растягиваемую под произвольным углом к оси эллипса. Солдатов [57 ] получил решение для случаев чистого сдвига и изгиба в плоскости пластины.  [c.58]

Температурному изгибу анизотропных однородных по толщине (или слоистых, с симметричным расположением слоев) пластин посвящен ряд работ, в частности работа Пелла [112]. Первое исследование слоистых пластин с несимметричным расположением слоев, принадлежит, по-видимому, Винсону [1731, который рассмотрел двухслойную круглую пластину.  [c.187]

Обзор, посвященный задачам об изгибных волнах, вызванных поперечным ударом по изотропным пластинам, представлен в работе Микловица [109]. Одномерная задача об ударе по анизотропной пластине была рассмотрена на основании теории Миндпина [уравнения (12) ] и классической теории пластин [уравнение (15) ] в работе Муна [117 ]. Поперечная сила считалась распределенной по линии, составляющей некоторый угол с осью симметрии материала. Согласно теории Миндлина при этом возникают не только волны изгиба, но и волны растяжения, а учет деформации поперечного сдвига и инерции вращения необходим, когда ширина полосы, по которой распределена сила, соизмерима с толщиной пластины.  [c.323]

Теория деформаций анизотропного тела. Теория деформаций изотропного тела потребовала только двух констант (коэфициента Лямэ). Анизотропное тело, упругие свойства которого по всем направлениям различны, ие м. б. охарактеризовано только двумя постоянными. Пуассон и Кошп одновременно указали для анизотропного тела 36 постоянных, из к-рых кансдое указывает на то или другое качество тела. Вследствие существования упругого потенциала (53), доказанного В. Томсоном, количество постоянных сокращено до 21. Для нек-рых кристаллич. систем это число м. б. еще уменьшено, но не ниже 3. Закон Гука для анизотропного тела и.чи постулируется или м. б. выведен из теории кристаллич. решетки (Борн). Рассмотрено состояние анизотропных тел под всесторонним давлением, при простых растяжении и сжатии, также изгибе и кручении. В технич. вопросах теория анизотропных тел занимает еще малое место, несмотря на то что металлы, железобетон и другие материалы больщей частью анизотропны. Губер вывел уравнение состояния ортогонально-анизотропной пластины, Штейерман распространил теорию изгиба симметрично расположенных и нагру-л енных оболочек (Лове-Мейснер) на случай анизотропных стенок.  [c.222]


Два метода расчета слоистых анизотропных балок подробно изложены в работе Цапкота [121. Методы основаны на упрощении теории пластин согласно Донгу и др. [25 ] (цилиндрический изгиб) и Хаскину [30] (плоское напряженное состояние). В случае цилиндрического изгиба рассмотрено деформирование в одной плоскости, причем сечения в процессе изгиба считаются плоскими. Появляющиеся в результате несимметрии материала деформации растяжения и кручения исключаются. При плоском напряженном состоянии материал считается однородным по толщине. При такой формулировке задачи анизотропия не учитывается и вводятся упрощения, соответствующие изотропным балкам.  [c.135]

Через этот образовавшийся при обжиге промежуточный слой передаются возникающие при нагрузках на-пр.яження. Слоистые композиционные материалы обладают ярко выраженной анизотропией свойств. Прочность таких композиционных материалов велика (достигает 500 МПа при испытании на изгиб). Поскольку такие композиционные материалы в большой степени анизотропны, прочность в направлении силы, приложенной перпендикулярно, значительно меньше, чем в параллельном иаправлепии. Эта же закономерность наблюдается и в отношении теплопроводности таких композиционных материалов. Их изготовляют путем поочередного складывания стопкой металлической (толщиной 0,1—0,9 мм) и керамической пластин. Пленка готовится пленочным литьем пластифицированных керамических масс. Далее стопки уплотняют прессованием, затем удаляют времен-  [c.248]

Задачи об изгибе суживающихся анизотропных трехслойных пластин переменной толщины при действии поперечных нагрузок рассмотрены в [406]. Пластина, симметричная относительно срединной плоскости, составлена из ортотропного заполнителя линейно изменяющейся толщины и двух анизотропных несущих слоев постоянной толщины. Для несущих слоев используется теория изгиба пластин Кирхгофа, заполнитель рассматривается как упругое трехмерное тело с учетом поперечных сдвигающих напряжений и без учета напряжений поперечного обжатия. Основу расчета составляет метод Рэлея-Ритца. Приведены примеры расчетов.  [c.14]

При определении прочности на сдвнг резко выделяются методы растяжения анизотропной полосы и трехточечного изгиба. Это вызвано несколькими причинами. В случае растяжения анизотропной полосы непригодным для определения прочности при сдвиге из-за скалывания по слою может оказаться сам метод или неправильным может быть выбран угол 0 = 10°. При испытаниях на трехточечный изгиб могут сказаться как недостатки самого метода, так и особенности испытываемого материала (поведение органопластиков при сжатии часто не является линейно-упругим в таком случае формулы технической теории изгиба неприемлемы). Наиболее стабильные показания по сравнению с методом кручения квадратной пластины дают методы растяжения анизотропной полосы, кручения квадратной пластины и кручения стержня прямоугольного поперечного сечения, наименее стабильные — трехточечный изгнб.  [c.217]

В главах VII и XXXI книги I] приведены способы расчета на прочность круглых пластин, усиленных радиальными ребрами, расположенными симметрично относительно срединной плоскости пластинки, при осесимметричном изгибе и растяжении пластинки. Последняя рассматривается как конструктивно анизотропная пластинка.  [c.98]

Задача о контактном взаимодействии берегов трещины конечной длины в плоскости при статическом действии нагрузки впepвыeJpa -смотрена в [262, 263]. В дальнейшем контактные задачи для тел с"трещинами при статическсш нагружении рассматривались многими авторами [32, 35, 55, 75—82, 90—94, 118, 227, 228, 281, 282, 301, 385, 395, 446, 447, 476, 564]. Задача об изгибе полосы с трещиной при учете контакта берегов решалась в (221—225, 287]. Трещины с контактирующими берегами в анизотропных средах рассматривались в [120, 361, 362]. Контакт тела, содержащего трещины, со штампом изучался в [199, 200]. В работах [75, 77, 80, 433, 434, 457, 458, 573] кроме плотного контакта учитывается возможность образования областей сцепления и скольжения. Контакт берегов трещин в температурных полях рассматривался в [91, 168, 170, 171, 193], а задача о контакте берегов сквозной трещины в изгибаемой пластине и пологой оболочке — в [411] и [412]. Этот подход распространен в [135] на случай произвольного динамического нагружения изгибаемой пластины со сквозной трещиной. Некоторые модельные динамические контактные задачи для тел с трещинами в идеализированной постановке рассмотрены в [336, 342, 344]. В работах [34, 75, 86, 365, 486 и др.] дана вариационная формулировка контактных задач для тел с трещинами. Обзор работ по статическим контактным задачам для тел, содержащих трещины, представлен в [168, 171].  [c.62]

Z. Ka zkowski [2.108 (1960) изучил малые колебания анизотропной тонкой упругой пластины. Учитывались инерция вращения и поперечный сдвиг, силы в плоскости пластины и реакция аплошного упруго,го винклеровского основания. Система двух дифференциальных уравнений относительно прогиба вследствие изгиба шт и прогиба Wm вследствие сдвига  [c.161]


Смотреть страницы где упоминается термин Изгиб анизотропных пластин : [c.220]    [c.514]    [c.46]    [c.399]    [c.200]    [c.83]    [c.276]    [c.2]   
Смотреть главы в:

Основы строительной механики машин  -> Изгиб анизотропных пластин



ПОИСК



Анизотропность

Дифференциальное уравнение изгиба анизотропных прямоугольных пластин

Изгиб круглых пластин с кольцевой волокнистой армировИзгиб круглых пластин с радиальной волокнистой армировОбщие соотношения и дифференциальные уравнения несимметричного изгиба круглых анизотропных пластин

Пластины изгиб

Предельное состояние армированных пластин при изгибе Основные уравнения изгиба анизотропных пластин



© 2025 Mash-xxl.info Реклама на сайте