Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

РАССЕЯНИЕ В СПЕКТРАЛЬНОЙ ЛИНИИ

Такая функция перераспределения является хорошим приближением для описания рассеяния в спектральных линиях атомов. Здесь не принимается во внимание отдача, т. е. изменение энергии фотона из-за того, что часть ее уходит на изменение скорости атома. Это изменение вследствие большой массы атомов очень мало.  [c.20]

Глава 4. Рассеяние в спектральной линии  [c.136]

За исключением спектров белых карликов в большинстве звёздных спектральных линий преобладает многократное рассеяние света радиац. переходы намного более вероятны, чем ударные. Это приводит к тому, что при количеств, анализе спектров прибегают в общем случае к весьма громоздким расчётам переноса излучения в спектральных линиях с перераспределением энергии по частоте.  [c.62]


Таким образом, вся теория резольвентного метода применима к рассеянию излучения в спектральной линии при ППЧ в линейном приближении. К монохроматическому рассеянию мы ее уже применили в главе 3. Применения к общему случаю рассеяния при ППЧ сделаем в следующем параграфе, а здесь перечислим основные задачи, возникающие в теории.  [c.165]

В аморфных твердых телах звуковые волны могут быть продольными и поперечными. Они распространяются с различными скоростями. Поэтому в рассеянном свете спектральная линия должна расщепляться на пять компонент, одну несмещенную и две пары смещенных компонент, из которых одна пара получается от рассеяния на продольных акустических волнах, а другая — на поперечных.  [c.613]

Действительно, временные изменения оптических неоднородностей, вызванных флуктуациями энтропии или температуры (см. (160.2)), подчиняются уравнению температуропроводности, решение которого в данном случае дает экспоненциальную зависимость от времени. Следовательно, в этом случае функция, модулирующая амплитуду световой волны, экспоненциально зависит от времени, и в рассеянном свете возникнет спектральная линия с максимумом на частоте первоначального света — центральная компонента — с полушириной  [c.595]

Результаты исследования рассеяния монохроматических рентгеновских лучей (/Са-линия молибдена >, % = =0,7126 А) приведены на рис. 27.2. Кривая на рис. 27.2, а характеризует распределение интенсивности в первичной линии, остальные кривые — спектральный состав излучения при различных углах рассеяния 0. По оси ординат отложена интенсивность излучения, а по оси абсцисс — величина, пропорциональная длине волны.  [c.179]

Между тепловым фильтром Oi и кюветой с исследуемым веществом В помещается оптический фильтр Фг для того, чтобы выделить из спектра ртутной лампы нужную монохроматическую линию. Рассеянный исследуемым вещество М свет конденсорной линзой L направляется в спектрограф ИСП-51. Пройдя его входную щель S , расположенную в фокусе коллиматорного объектива 2, и коллиматорный объектив 2, свет параллельным пучком попадает в диспергирующую часть спектрографа, состоящую из трех стеклянных призм Л, 2 и Рз- Призменная система пространственно разделяет пучки света с разными длинами волн 1. Эти пучки направляются на фотопластинку под разными углами. С помощью камерного объектива О каждый из них фокусируется на фотопластинке в виде узкой спектральной линии. В результате  [c.118]


МОЛЕКУЛЯРНЫЕ СПЕКТРЫ — спектры поглощения, испускания или рассеяния, возникающие при квантовых переходах молекул из одного энергетич, состояния в другое. М. с. определяются составом молекулы, её структурой, характером хим. связи и взаимодействием с внеш. полями (и, следовательно, с окружающими её атомами и молекулами). Наиб, характерными получаются М. с. разреженных молекулярных газов, когда отсутствует уширение спектральных линий давлением такой спектр состоит из узких линий с доплеровской шириной.  [c.201]

В др. группе методов П. о. темп-ра определяется по форме или ширине спектральных линий, к-рые зависят от темп-ры либо непосредственно (доплеровское уши-рение спектральных линий), либо косвенно (в соответствии со Штарка эффектом и зависимостью плотности плазмы от темп-ры). В нек-рых методах Т определяют по абс. или относит, интенсивности сплошного спектра ( континуума ). Особое значение имеют методы изменения Т по спектру рассеянного плазмой излучения лазера, позволяющие исследовать неоднородную плазму. К недостаткам П. следует отнести трудоёмкость измерений, сложность интерпретации результатов, невысокую точность (например, погрешности измерений температуры плазмы в лучшем случае составляют 3—10%).  [c.589]

Для каждой Ji. на входе рассматривается контур АФ, записанный во всём рабочем диапазоне сканирования от начальной до конечной Кц. В этом контуре, кроме осп. части спектральной линии шириной эф в окрестности Я. , учитываются и протяжённые крылья от фона рассеянного излучения и дополнит, пики от др. порядков дифракции на делениях шкалы X — тЯ. , m = 1, 2, 3... Совокупность таких АФ для всех элементарных компонент Я,(, исследуемого сплошного спектра даст полную картину свойств прибора в его рабочем диапазоне Я. Графически эта картина пред-  [c.623]

Поглощение (или испускание) излучения газами обусловлено изменениями электронных, колебательных и вращательных энергетических уровней молекул. При переходе между электронными уровнями возникают спектральные линии в видимой части спектра и в области более коротких волн (т. е. в ультрафиолетовой части спектра) при переходе между колебательными уровнями — в инфракрасной области при переходе между вращательными уровнями — в дальней инфракрасной области. При соответствующих значениях частоты изменения колебательных и вращательных уровней оказываются взаимосвязанными и переход происходит одновременно. Поскольку энергия колебательных уровней больше, чем вращательных, результирующий спектр состоит из близко расположенных спектральных линий внутри узкого интервала длин волн этот спектр называется колебательно-вращательной полосой. Поэтому описание характеристик поглощения газа в зависимости от длины волны весьма сложно. Рассмотрим, например, пучок монохроматического излучения интенсивностью /у, проходящий в слое газа в направлении Q. Если рассеяние излучения молекулами газа пренебрежимо мало  [c.104]

Наличие в пламени взвешенных твердых частиц приводит к ослаблению яркости источника также вследствие рассеяния света частицами. Следовательно, наличие в пламени значительного количества взвешенных твердых частиц занижает результаты измерения температур методом обращения спектральных линий. Этот метод используется не только для измерения средней температуры факела в данном его сечении, но иногда и для исследования поля температур. Выбираются спектральные линии такого щелочного металла, который либо совсем отсутствует, либо находится в очень небольшом количестве в горючем. Раствор солей щелочного металла последовательно вводят в отдельные места факела, осуществляя тем самым местное окрашивание пламени и наблюдая каждый раз обращение выбранных спектральных линий. Очевидно, что введение красителя в отдельные зоны факела в той или иной степени нарушает его температурное поле.  [c.416]

Один из важных факторов, определяющих качество изображения,— шум голограммы, обусловленный рассеянием света в фотослое по разным причинам. Шум в виде вуали снижает контраст изображения и воспринимается как неприятная дымка в объеме изображаемого пространства. Правильно выбранный спектральный состав света может несколько уменьшить этот эффект, так как изображение строится только узкой полосой спектра восстанавливающего источника, а шум не имеет свойств спектральной селективности. С этой точки зрения также более удобен линейчатый спектр и полезно применить оранжевый светофильтр, устраняющий зеленую и синюю части спектра. При изготовлении цветных голограмм предъявляются гораздо более жесткие требования к допустимому уровню шума, потому что для восстановления цветного изображения используют источник света с широким спектром. Можно ставить узкополосные фильтры, формирующие линейчатый спектр, соответствующий спектральным линиям записи.  [c.106]


Для получения узких спектральных линий весьма важно устранить остаточные газы, приводящие к рассеянию пучка и расширению излучаемых линий. Необходимая величина давления составляет 10" —Ю тор в камере возбуждения и 10" —10 тор в камере испарения. При давлении в печи, большем некоторой критической величины, происходит нарушение режима пучка. Длина свободного пробега атомов внутри пучка становится меньше линейного размера входного отверстия, происходит соударение атомов внутри струи пара. Для кадмиевых пуЧков при ширине щели 0,3 мм практическая величина плотности атомов 5 см Такая плотность соответствует давлению паров = 0,3 тор, которое для кадмия достигается при температуре -- 360 С.  [c.64]

В разреженном газе контур линии Р. и. определяется доплеровским уширенцел спектральных линий и его ширина зависит от угла рассеяния. Если спектральная линия атома испытывает дополнит, уширение Г и сдвиг А за счёт соударений, а Р. и. возбуждается монохроматич. излучением, то спектр Р. и. состоит из излучения той же частоты (Oj и лоренцевского контура с максимумом на частоте ш А и с шириной Г уе- В том случае, когда столкновения приводят лишь к сдвигу фазы волновой ф-ции атомного состояния, отношение интенсивностей этих компонент Р. и. равно Уе/Г. При наличии неупругих столкновений отношение интенсивностей будет другим и в спектре Р. и, возможно появление дополнит, линий.  [c.313]

Осн. механизмами непрозрачности Ф. для эл.-магн. излучения являются фотоионизания и свободно-свободные переходы (тормозное поглощение), а также рассеяние фотонов в спектральных линиях и континууме. В Ф, наиб, холодных звёзд (спектрального класса М) преобладает рассеяние света в молекулярных полосах (гл. обр. окислов металлов TiO, ZrO и др.). В звёздах спектрального класса К доминирует поглощение излучения. металлами, в Q- и F-звёздах — отрицательными ионами водорода, в звёздах спектрального класса А — атомами водорода. В Ф. наиб, горячих звёзд, классов В и О, преобладают рассеяние на свободных электронах и по глощение атомами и ионами гелия, а в УФ-области спектра— ионами элементов С—Fe.  [c.360]

В книге излагается теория переноса монохроматического излучения, изотропного и анизотропного (глава 2), и излз ения в спектральной линии с полным или частичным перераспределением по частоте (глава 4). Геометрия рассеивающих сред предполагается плоской. Рассматриваются бесконечная и полубесконечная среды, а также плоский конечный слой. Подробно излагается аналитическая теория, в том числе точные, асимптотические и приближенные методы решения модельных задач. В отдельную главу 3 выделен резольвентный метод, позволяющий найти точные выражения для основных функций, характеризующих поля излучения, и асимптотики этих функций. Дается представление о некоторых распространенных численных методах, В последней главе 5 рассматриваются задачи об определении интегральных характеристик полей излучения, таких как среднее число рассеяний, о рассеянии в молекулярных полосах, с частичным перераспределением по частоте, а также с учетом поляризации и движения рассеивающей среды.  [c.9]

Применялись различные вариационные методы, основанные на разных функционалах [70], и итерационно-вариадионные методы, при которых итерации чередуются с применением какого-либо функционаша [12]. В качестве пробных можно использовать как некоторые фиксированные функции, так и получающиеся в ходе итераций. Обычно каждая ступень в итерационно-вариационной схеме дает уменьшение погрешности на порядок. Следует упомянуть также методы типа Монте-Карло [42]. Рад методов, разработанных для решения задач о переносе излучения в спектральных линиях, о которых мы скажем далее, могут быть применены и к задачам монохроматического рассеяния.  [c.100]

Теория рассеяния излучения в спектральной линии — одна из важных глав теоретической астрофизики [77]. Она развивалась, начиная с двадцатых годов нашего столетия. Сначала рассматривалось образование фраунгоферовых линий поглощения без рассеяния. Согласно модели атмосферы Шварцшильда—Шустера над фотосферой, где формируется непрерьшный спектр, располагается слой, содержащий поглощающие в линиях атомы. При этом в центре пинии поглощение наибольшее и убывает согласно профилю поглощения. Это давало возможность качественно объяснить величины эквивалентных ширин линий. Однако профили линий этой теорией воспроизводились неадекватно. Необходимо было учесть рассеяние.  [c.136]

В случае стоксова комбинационного рассеяния начальным состоянием т служит невозбужденное колебательное состояние, конечным п — возбужденное. Если /ш)/ > кТ, то N 1 "К 1 и член NJNm можно опустить. Принимая во внимание поляризованность и анизотропию комбинационного рассеяния (линейно-поляризованное возбуждающее излучение) и предполагая лорентцову форму контура спектральной линии, можно прийти к соотношению  [c.912]

При спектральных исследованиях рассеяния света в кварце и исландском шпате (1928) Мандельштам и Ландсберг обнаружили, что каждая спектральная линия падающего света сопровождается появлением системы линий измененной частоты, называемых сателлитами (спутниками). Практически одновременно то же явление было открыто Раманом и Кришнаиом при исследовании рассеяния света в жидкостях. Изменение длины волны оказалось значительно больше, чем при рассеянии Мандельштама — Бриллюэна >. Это явление называется комбинационным рассеянием света (в зарубежной литературе часто называется эффектом Рамана). Комбинационное рассеяние света в настоящее время имеет настолько важное значение для физики и химии, что это открытие считается крупнейшим открытием XX в. в области оптики.  [c.125]

Для съемок спектра комбинационного рассеяния щель спектрографа 51 следует несколько расширить. Однако при слишком широкой щели спектральные линии уширяются, а форма их контуров искажается. Вследствие этого точность измерения частот линий понижается. Кроме того, изменяется наблюдаемое соотношение интенсивностей в максимуме линий. При съемке спектра комбинационного рассеяния на приборе типа ИСП-51 с камерой Е = 270 мм ширину щели удобно брать равной 0,040 мм. Длительность экспозиции при - фотографировании на пластинках ИЗООРТО средней чувствительности достигает 60—90 мин.  [c.129]


В К. с. к. р. регистрируют рассеянный сигнал в специально выбранном спектральном диапазоне, свободном от засветок возбуждающего излучения и паразитных некогерентных эффектов типа люминесценции (обычно используется антистоксова спектральная область). Высокая коллимировапность пучка когерентно рассеянного излучения позволяет эффективно выделять полезный сигнал на фоне некогерентных засветок и помех при использовании в качестве источников зондирующего излучения узкополосных стабилизироваи-ных лазеров достигается высокое спектральное разрешение полос КР, определяемое свёрткой спектров источников. Благодаря интерференц. характеру формы спектральной линии с помощью К. с. к. р. удаётся наблюдать интерференцию нелинейных резонансов разной природы (в частности, электронных и колебат. резонансов в молекулярных средах). Исключительно высокая разрешающая способность отд. модификаций К. с. к. р. путём подбора условий интерференции даёт возможность выявлять скрытую внутр. структуру неоднородно уширенных полос рассеяния, образованных наложившимися друг па друга линиями разной симметрии. Многомерность спектров К. с. к. р. обеспечивает значительно более полное, чем в спектроскопия спонтанного КР, изучение оптич. резонансов вещества. В К. с. к. р. разработаны методы получения полных комбинац. снектров за время от 10 с до 10 с.  [c.391]

МЁССБАУЭРА ЭФФЕКТ (ядерный у-резонанс) — испускание или поглощение у-квантов атомными ядрами в твёрдом теле (обусловленное ядерными переходами), не сопровождающееся изменением колебат. энергии тела, т. е. испусканием или поглощением фононов (без отдачи). Открыт Р. Мёссбауэром (К. МоееЬаиег) в 1958. Таким переходам соответствуют линии испускания и поглощения у-лучей, обладающие естеств. шириной Г = й/т, где т — ср. время жизни возбуждённого состояния ядра, участвующего в у-переходе (см. Ширина спектральной линии), и энергией "р, равной энергии перехода. Благодаря М. э. стали возможными измерения спектров испускания, поглощения и резонансного рассеяния у-квантов низколежащих ( < 200 кэВ) и долгоживущих возбуждённых ядерных уровней (т = 10 — 10" с) с разрешением порядка естеств, ширины уровня Г.  [c.100]

Особенности элементарного акта излучения, а также множество физ. процессов, нарушающих осевую симметрию светового пучка, приводят к тому, что свет всегда частично поляризовав. П, с. может возникать при отражении и преломлении света на границе раздела двух изотропных сред с разл. показателями преломления в результате различия оптич, характеристик границы для компонент, поляризованных параллельно и перпендикулярно плоскости падения (см. Френеля формулы). Свет может поляризоваться либо при прохождении через анизотропную среду (с естеств, или индуцированной оптич, анизотропией), либо вследствие разных коаф. поглощения для разл. поляризаций (см. Дихроизм), либо вследствие двойного лучепреломления. П. с. возникает при рассеянии света, при оптич. возбуждении резонансного свечения в парах, жидкостях и твёрдых телах. Обычно полностью поляризовано излучение лазеров. В сильных электрич. и магн. полях наблюдается полная поляризация компонент расщепления спектральных линий поглощения и люминесценции газообразных и ковдеасиров. сред (см. Электрооптика, Магнитооптика),  [c.67]

Резонансное Р. с. в газах обычно сопровождается пленением излучения. При этом происходят пространственные и спектральные преобразования излучения, приводящие, в частности, к явлению самообращения спектральных линий в рассеянном свете.  [c.281]

Проявление фононной подсистемы рассматривалось выше только как фактор, определяющий уширение спектральных полос электронных переходов, или как источник линий фононных повторений электронных переходов, сопровождаемых поглощением или рождением оптич. фононов. Если при возбуждении фононов наводится дипольный момент, то эти колебания проявляются в спектрах ИК-поглощеняя (оптич. ветви). Колебания, меняющие поляризуемость, проявляются в спектрах комбинац. рассеяния. В кристаллах, обладающих центром инверсии, существует т. н. альтернативный запрет — одно и то же колебание может проявиться либо в ИК-спектре, либо в спектре комбинац. рассеяния света. По законам сохранения энергии и импульса в спектре поглощения проявляется не вся ветвь оптич. колебаний решётки, а узкий интервал вблизи критич. частоты. Если при поглощении света рождается один оптич. фонон, то частоты ИК-полос лежат в далёкой ИК-области. В молекулярных кристаллах частоты колебаний соответствуют внутримолекулярным колебаниям и имеют частоты от - 3500 см и ниже, т. е. полосы поглощения расположены в области от 2,7 мкм я ниже. Кроме того, имеются более слабые полосы, соответствующие возбуждению двух или более фононов или возбуждению неск. фононов одной частоты, полосы поглощения к-рых лежат в ближней ИК-области.  [c.628]

На высотах 20—70 км земная атмосфера содержит небольшую примесь озона (Oj), макс. относит, концентрация К -рого достигает всего 7 10 Однако большое сечение поглощения (3 10 см ) в спектральной области 2000—3000 А Приводит к полному поглощению излучения с Х<3000 А., в более коротковолновом диапазоне (Х< 1000 А) поглощение определяется диссоциацией молекулярного кислорода и ионизацией атомов кислорода и азота. Для исключения атм. поглощения требуется подъём наблюдат. аппаратуры на высоту 150—200 км. Однако в резонансных линиях кислорода, гелия и водорода атм. поглощение заметно и на больших высотах. Рассеяние солнечного УФ-излучения в резонансных линиях водорода и гелия приводит к появлению фона, следы к-рого прослеживаются на расстояниях вплоть до 120 тыс. км от Земли. Рассеяние на атомах межзвёздной среды, проникающих в Солнечную систему, вызывает появление почти- изотропного фона в линиях водорода и гелия, интенсивность которого равна соответственно 500Л и 10Л (1Я=10 фотонов/см с 4и).  [c.219]

Здесь а и скорость движения частиц угл. скобки означают усреднение по скоростям. В нек-рых случаях ударное У, с. л, практически полностью обусловлено неупругой релаксацией верх, и ниж. уровней а и h. При этом сдвиг линии почти отсутствует, а а = (ст + СТь)/2, где —эфф. сечения неупругого рассеяния. Как правило, хорошее количеств. описание У. с. л. даёт полуклассич. подход, в к-ром излучающий атом рассматривается как квантовая система, а of Носит, движение возмущающей частицы — как движение по классич. траектории в его поле. У. с. л. нейтральными частицами определяется ударным механизмом вплоть до давлений в неск. десятков атм. Ущирение электронами в плазме практически всегда имеет ударный характер. В большинстве случаев в ударном приближении хорошо описывается центр, часть контура спектральной линии.  [c.262]

X. 3. и Солнца излучают гл. обр. в резонансных спектральных линиях (в осв. в УФ-области спектра) ионов магния, кальция, углерода и др. элементов. В таких линиях звёздные атмосферы обладают очень большой оптич. толщиной X, и фотоны, прежде чем выйти из X. з., многократно рассеиваются, диффундируют в пространстве и по частоте. Последнее рассеяние происходит в том слое, где на излучаемой длине волны X в пределах профиля линии т < 1. В результате разные части профиля линии несут информацию о разных слоях X. з., чем широко пользуются при изучении солнечной хромосферы. В звёздах с абсорбционным характером спектра X. з. проявляют себя лишь в наиб, сильных линиях поглощения, вблизи центра к-рых видны раздвоенные эмиссионные пики, означающие, что в звёздной атмосфере имеется инверсия темп-ры. Ширина эмиссионного пика несёт информацию об ускорении силы тяжести в X. 3. (т. и. эффект Вилсона—Баппу), отношение интенсивностей в эмиссионных пиках А 2 и /tj, (рис.) — о градиенте скорости в X. з., в частности о наличии звёздного ветра, интенсивность эмиссии и её профиль — о темп-ре, плотности и протяжённости X. 3.  [c.416]


Частота (о, соответствующая вершине спектральной линии, является опорной точкой (репером) на шкале частот, а соответствующий ей период колебаний принят равным 1/9 192631 777,0 с. Точность определения 0)о порядка неск. % (в лучшем случае — доли %) от ширины линии Дм. Точность тем выше, чем уже спектральная линия. Отсюда стремление устранить или ослабить все причины, приводящие к уширению используемых спектральных линий. В Ц, э. ч. уширение линии обусловлено временем взаимодействия атомов с эл.-магн. полем резонатора чем меньше время, тем шире линия (см. Неопределёпностей соотношения. Ширина спектральной линии). Время взаимодействия совпадает со временем пролёта атома через резонатор оно пропорц. длине резонатора и обратно пропорц. скорости атомов. Уменьшать скорость атомов, понижая темп-ру, невозможно, т.к. при этом падает интенсивность пучка. Длина резонатора также не может быть сделана очень большой из-за рассеяния  [c.423]

Возможно, что наиболее ранний пример использования комплексных собственных частот в электродинамике относится к 1884 г., когда Томсон рассмотрел свободные колебания поля во внешности идеально проводящей сферы [152]. Типы колебаний, удовлетворяющие условию неприходящего излучения, экспоненциально нарастали в пространстве, что дало повод для критики со стороны Ламба, считавшего задачу физически неправильно поставленной. Явление экспоненциальной катастрофы до сих пор многих отпугивает от решения несамосопряженных спектральных краевых задач, хотя вопрос полностью исчерпывается при переходе на нестационарную точку зрения — с каждым нарастающим колебанием связан экспоненциальный множитель, зависящий от времени, который перекрывает зависимость от координат в любой точке пространства. Иными словами, каждая функция, описывающая свободные колебания, финитна в пространстве и ее носитель растет со временем. Постановка спектральных задач для линий передачи и открытых резонаторов вполне естественна даже без связи с проблемами теории рассеяния. В случае с дифракционными решетками необходимость в построении спектральной теории не столь  [c.10]


Смотреть страницы где упоминается термин РАССЕЯНИЕ В СПЕКТРАЛЬНОЙ ЛИНИИ : [c.176]    [c.66]    [c.609]    [c.143]    [c.301]    [c.404]    [c.61]    [c.223]    [c.419]    [c.299]    [c.309]    [c.580]    [c.262]    [c.431]    [c.375]    [c.148]   
Смотреть главы в:

Лекции по теории переноса излучения  -> РАССЕЯНИЕ В СПЕКТРАЛЬНОЙ ЛИНИИ



ПОИСК



Исследование спектрального состава деполяризованного рассеяния света (крыло линии Релея) в жидкостях при различной вязкости

Линия спектральная

Расщепление спектральных линий при рассеянии



© 2025 Mash-xxl.info Реклама на сайте