Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КОНТАКТНЫЕ ЗАДАЧИ ДЛЯ СЛОЖНЫХ СРЕД

Книга содержит обзор основных достижений по методам решения и результатам решения задач механики контактных взаимодействий деформируемых тел, полученных российскими исследователями за последние 25 лет. По мере необходимости в книге также нашли отражение исследования зарубежных авторов. Книга состоит из семи глав. Первая глава посвящена изложению методов решения контактных задач. Во второй главе рассмотрены статические контактные задачи в неклассической постановке. Третья и четвертая главы соответственно посвящены рассмотрению стационарных и нестационарных динамических контактных задач. В пятой, шестой и седьмой главах соответственно нашли отражение контактные задачи в трибологии, контактные задачи для сложных сред и вопросы разрушения при контактном взаимодействии.  [c.1]


Контактные задачи для сложных сред  [c.523]

ГЛАВА 6. КОНТАКТНЫЕ ЗАДАЧИ ДЛЯ СЛОЖНЫХ СРЕД  [c.526]

Исследование динамических контактных задач для многослойных сред с расположенными в них дефектами (полостями или упругими включениями) связано с многочисленными трудностями как чисто теоретического, так и практического характера. Это обусловлено тем, что исследуемая область характеризуется большим количеством параметров, которые определяют соотношения упругих и геометрических характеристик слоев, положение полости по отношению к границам раздела сред и поверхности, форму границы неоднородности (полости или включения). Кроме того различные части границ области (границы слоев и неоднородности) описываются в различных системах координат, даже в случае полости (включения) канонической (крз -овой или эллиптический цилиндр, сфера, эллипсоид) формы. Еш,е сложнее комплекс проблем в случае неоднородности сложной формы. Указанные факты, по-видимому, определяют весьма ограниченное количество публикаций, посвяш,енных данной проблематике как в отечественной, так и в зарубежной литературе.  [c.311]

В первой части книги приведены материалы по определению величины сил контактного трения при ковке и штамповке, прокатке, волочении и прессовании. Эти данные необходимы для разработки режимов деформации, расчетов оборудования на прочность и потребной мощности. Чаще всего величину сил трения определяют через коэффициент трения. Поэтому для решения технологических и конструкторских задач требуется с достаточной степенью достоверности выбрать среднюю величину коэффициента внешнего трения в зоне деформации. При этом надо правильно учитывать влияние основных факторов трения, выделяя их среди многих второстепенных. Теоретический анализ процессов обработки металлов давлением во многих случаях требует знания не только средних значений сил трения, но и распределения их по контактной поверхности. Этому сложному вопросу также уделено значительное внимание.  [c.6]

В связи с внедрением в практику (строительство, машиностроение, микроэлектронику) конструктивных элементов, для адекватного описания поведения которых недостаточно модели изотропной упругой среды, в последние годы возрос интерес к изучению класса задач о колебаниях анизотропных упругих тел, среди которых контактные задачи занимают центральное место. Особенно важны задачи такого плана в геофизике, при сооружении фундаментов и в расчетах на прочность конструкций из композиционных материалов в рамках концепции эффективных модулей. Отметим, что получение решений задач в анизотропной теории упругости значительно сложнее, чем в соответствуюш их изотропных задачах из-за отсутствия обш их представлений полей смеш ений и напряжений, невозможности разделения в общем случае волновых полей на продольные и поперечные.  [c.303]


В заключение данного параграфа отметим, что наиболее сложные из рассмотренных типов задач — контактные задачи В для упругих и вязкоупругих сред — остаются на настоящее время и наименее изученными.  [c.345]

К механическим силам относят также силы упругости, трения и сопротивления среды, действующие на макроскопические тела. По своей природе это электромагнитные силы, обусловленные взаимодействиями между заряженными микрочастицами, входящими в состав макроскопических тел. Они возникают при соприкосновении тел. Поэтому силы упругости, трения, сопротивления среды называют контактными. Задача о подробном рассмотрении взаимодействия в сложнейшей системе микрочастиц в механике не ставится. Вместо этого рассматривается и эмпирически определяется суммарный макроскопический эффект — упругая сила, сила трения, сила сопротивления вязкой среды движению тела. Последняя сила оказывается зависящей от скорости. Подчеркнем, что для двух тел, взаимодействующих посредством контактных сил, третий закон Ньютона справедлив.  [c.78]

Учитывая все изложенные выше многообразные обстоятельства, оказывающие влияние на работу осветлителя, следует признать, что выявление и поддержание у этого аппарата оптимального режима является для эксплуатационного персонала достаточно сложной и трудной задачей, требующей относительно длительного времени для наблюдения и контроля за изменениями показателей работы как самого аппарата, так и особенно за соотношениями характеристики исходной воды, контактной среды и осветленной воды. В отдельных случаях для устранения нарушений в работе осветлителя может возникнуть необходимость некоторых изменений и дополнений в запроектированной схеме осветления воды, что выполняется обычно специальными исследовательскими и наладочными организациями.  [c.64]

Уравнения газовой динамики нелинейные и допускают существование разрывных решений. В природе, действительно, существуют поверхности на границе двух различных сред, так называемые контактные разрывы и ударные волны, возникшие как следствие накопления малых возмущений. На самом деле толщина разрывов конечна и для обычных условий движения газа составляет 1-2 свободных пробега молекул, где происходит сложный неравновесный процесс. Однако, часто эта толщина ничтожно мала но отношению к характерному размеру задачи и может разрыв быть моделирован линией. Существующую связь между параметрами потока но разные стороны разрыва удобно пояснить на примере одномерного течения в прямоугольном канале, но которому равномерно движется разрыв. Для удобства рассмотрим течение в системе координат, связанной с движущимся разрывом. Течение считаем установившимся и невязким. Пусть но одну сторону раз-  [c.42]

Среди приближенных методов решения задач математической физики особую роль играет теория возмуш,ений, позволяющая построить асимптотические разложения при малых и больших значениях тех или иных характерных параметров. Применению такого подхода к контактным задачам теории упругости для изотропной полосы и изотропного слоя был посвящен специальный параграф в монографии [7]. При этом в качестве малых и больших параметров принимались, как правило, относительные геометрические размеры штампа (отношение ширины штампа к ширине полосы (слоя) или обратная величина). Между тем, в случае анизотропного и, в частности, ортотропного материала появляется еще одна возможность. Обычно некоторые жесткости композитов, моделируемых анизотропными однородными средами, отличаются по порядку величины, и, следовательно, их отношения могут рассматриваться как малые параметры. В последние десятилетия был развит асимптотический метод, основанный на построении разложения по таким параметрам. Этот метод отражен, помимо статей [1, 3, 5], в монографиях [4] и [6]. Первое его применение к контактным задачам содержится в статье Л. И. Маневича и А. В. Павленко [5], где рассмотрено вдавливание в упругую ортотропную полосу жестких штампов при наличии сил трения. В этой работе было показано, что использование малого параметра, характеризующего отношение жесткостей ортотропной среды, позволяет свести смешанную краевую задачу плоской теории упругости к последовательно решаемым задачам теории потенциала. Статья С. Г. Коблика и Л. И. Маневича [3] посвящена контактной задаче для ортотропной полосы при наличии области контакта зон сцепления и скольжения. В этой сложной задаче предложенный метод оказался особенно эффективным бьши получены явные аналитические выражения для нормальных и касательных напряжений в обеих областях, а также для заранее неизвестной границы между этими областями. В работе Н. И. Воробьевой,  [c.55]


Ряд смешанных задач о колебаниях анизотропной полуплоскости был исследован в работах В. А. Свекло [21, 22] на основе обобщения метода функционально-инвариантных решений. Изучению свойств решения для ортотропной полуплоскости посвящены работы В. С. Будаева [6, 7]. Значительный вклад в развитие методов решения динамических задач для анизотропных сред внесли Р.Барридж и Дж.Виллис [25, 26], причем метод Виллиса решения автомодельных задач анизотропной теории упругости позволил получить решение ряда важных контактных задач, например, задачи о внедрении клиновидного штампа в анизотропную полуплоскость. В то же время отметим, что в случае установившихся колебаний исследования подобных задач оказывается значительно более сложным.  [c.303]

Оба осложняюш,их фактора нередко выступают во взаимодействии, и тогда задачи становятся особенно трудными. Среди них следует прежде всего выделить контактные задачи о системах блоков при сложных, нетрадиционных условиях на границах взаимодействия, учитывающ,их необратимые контактные подвижки, разупрочнение и уплотнение либо разуплотнение на контактах. Подобные проблемы практически недоступны для других методов, тогда как с помощью МГЭ их можно пытаться решать, поскольку МГЭ в прямом варианте разрывных смеш,ений по самой своей структуре подходит для их решения — в ГИУ входят именно те величины, которые связываются контактными условиями. Поэтому можно ожидать прогресса в численном решении этих проблем и задач смежного класса — так называемых задач приведения , состоящих в нахождении эффективных макроскопических характеристик неоднородных сред по свойствам составляющих их элементов (блоков) и контактов. Вероятно также продвижение в задачах о плоских и пространственных системах блоков, лишь частично разделенных трещинами, в задачах о потере устойчивости при разупрочнении материала внутри блоков и при срывах сцепления на контактах — эти проблемы очень важны для горной геомеханнки и геотектоники. Вполне возможным будет развитие МГЭ и в приложениях к задачам нелинейной ползучести, распространения волн в нелинейных и неоднородных средах, при исследовании разрушения с учетом микроструктуры материала и в других областях. Для решения большинства этих проблем окажется полезным упоминавшееся объединение МГЭ и МКЭ.  [c.276]

Многие современные конструкционные материалы, используемые в машиностроении, проявляют при ползучести такие малоизученные эффекты, как анизотропию в исходном сост оянии и связанную с упрочнением, неодинаковость сопротивления при растяжении и сжатии, накопление повреждаемости и др. [69, 79, 139—141, 177, 195]. Теория ползучести таких материалов развита недостаточно. В связи с этим в литературе предлагаются различные новые модели сред, в той или иной степени учитывающие реальные свойства ползучести [37, 56, 57, 71, 117, 130, 178, 193—196, 214, 215]. Ниже рассматриваются возможные варианты уравнений состояния инкрементального типа для анизотропных материалов. Использование теории ползучести деформационного типа при исследовании НДС элементов машиностроительных конструкций оправдано только в тех случаях, когда в теле реализуется нагружение, близкое к простому. В процессе контактных взаимодействий элементов машин даже при неизменяющихся внешних воздействиях часть конструкции, а иногда и вся конструкция могут подвергаться сложному нагружению. Поэтому при решении контактных задач теории ползучести необходимо применение физически более обоснованных теорий инкрементального типа [91, 116, 131, 162, 221].  [c.104]

К. Е. Егоров (1960) применил сходную методику к случаю неосевого вдавливания штампа. В статье В. А. Пупырева и Я. С. Уфлянда (1960) и в монографии последнего (1967) дано решение общей смешанной задачи для упругого слоя, а также рассмотрен случай сцепления слоя и основания. Существенно указать, что метод парных интегральных уравнений позволил эффективно рассмотреть и более сложную осесимметричную задачу о сжатии слоя двумя штампами различных радиусов (Ю. Н. Кузьмин и Я. С. Уфлянд, 1967). И. И. Ворович и Ю. А. Устинов (1959) получили сингулярное интегральное уравнение непосредственно для функции Ф (А,) и разработали приближенный метод его решения путем разложения в ряд по степеням а к. Аналогичный метод был применен Д. В. Грилицким к задаче о кручении многослойной среды при помощи сцепленного с ней штампа, а также к ряду сходных контактных задач. Метод парных интегральных уравнений позволил ряду авторов (см., например, Г. М. Валов, 1964  [c.37]

Вопрос о судьбе гофрировочно-неустойчивых ударных волн тесно связан со следующим замечательным обстоятельством при выполнении условий (90,12) или (90,13) решение п дродинами-ческих уравнений оказывается неоднозначным (С. 5. Gardner, 1963). Для двух состояний среды, I w 2, связа иых друг с другом соотношениями (85,1—3), ударная волна является обычно единственным решением задачи (одномерной) о течении, переводящем среду из состояния I ъ 2. Оказывается, что если в состоянии 2 выполнены условия (90,12) или (90,13), то решение указанной гидродинамической задачи не однозначно переход из состояния 1 в 2 может быть осуществлен не только в ударной волне, но и через более сложную систему волн. Это второе решение (его можно назвать распадным) состоит из ударной волны меньшей интенсивности, следующего за ней контактного разрыва и из изэнтропической нестационарной волны разрежения (см. ниже 99), распространяющейся (относительно газа позади ударной волны) в противоположном направлении в ударной волне энтропия увеличивается от si до некоторого значения S3 < S2, а дальнейшее увеличение от ss до заданного S2 происходит скачком в контактном разрыве (эта картина относится к типу, изображенному ниже на рис. 78, б предполагается выполненным неравенство (86,2)) ).  [c.478]


Постановка и решение нелинейных задач механики деформируемого твердого тела (МДТТ) быстро развиваются в последние годы. К таким задачам относятся, например, задачи математического моделирования процессов формования металлических изделий, об ударном воздействии на корпус автомобиля, о потере устойчивости тонкостенных конструкций и др. Актуальность решения нелинейньЕх задач МДТТ вызвана, в первую очередь, запросами практики. С другой стороны, быстрое развитие вычислительной техники сделало возможным решение сложных нелинейных задач, важных для практического приложения. Среди таковых особенно трудны в теоретическом плане задачи о потере устойчивости и контактных взаимодействиях деформируемых тел. Основная цель книги состоит в представлении современных основ нелинейной механики деформируемого твердого тела и процедур численного решения нелинейных задач.  [c.5]

Появление качественно новой — электронной—вычислительной техники устранило характерный для предыдущей эпохи дисбаланс между трудоемкостью расчетов на основе ГИУ и практической нуждой в них. Однако, как отмечено, использование ЭВМ для решения задач на основе теории упругости с помощью ГИУ началось лишь в 60-х годах, а полный перевод метода граничных элементов на поток пришелся на конец 60-х — начало 70-х годов. Этот процесс был отмечен появлением замечательных по ясности и глубине изложения работ М. Джесуона с соавторами, Ф. Риццо, Т. Круза и Д. Шиппи [21—25], за которыми последовали обильные публикации. Дать их краткий обзор затруднительно, поскольку число работ велико и стремительно возрастает, а исследования ведутся по многим направлениям. Среди них — переход к вариантам повышенной точности и надежности, введение специальных элементов и приемов для особых точек (углов, ребер, вершин, точек возврата, точек смены граничных условий), овладение сложными контактными, вязкоупругими, динамическими и нелинейными задачами, распространение М1Э на все новые и смежные области приложений, комбинирование МГЭ с другими методами  [c.269]


Смотреть страницы где упоминается термин КОНТАКТНЫЕ ЗАДАЧИ ДЛЯ СЛОЖНЫХ СРЕД : [c.594]   
Смотреть главы в:

Механика контактных взаимодействий  -> КОНТАКТНЫЕ ЗАДАЧИ ДЛЯ СЛОЖНЫХ СРЕД



ПОИСК



Контактная задача

Среда контактная

Среда сложная



© 2025 Mash-xxl.info Реклама на сайте