Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытие металлами магния и его сплавов

ПОКРЫТИЕ МЕТАЛЛАМИ МАГНИЯ И ЕГО СПЛАВОВ 203  [c.203]

Покрытие металлами магния и его сплавов  [c.203]

Для повышения коррозионной устойчивости магния и его сплавов применяются различные средства. Ингибиторами коррозии служат хроматы, ванадаты, сульфиды и фториды щелочных металлов. Применяются также анодная обработка, лаковые и металлические покрытия. Металлические покрытия наносят несколькими слоями сначала слой цинка, затем слой меди и наконец внешние слои (защитные и декоративные).  [c.137]


Ингибитор коррозии магния и его сплавов в контакте с более благородными металлами в солевых растворах и тумане [798]. Вводится в коррозионную среду или в покрытие, наносимое на металл, в концентрации 2—15% от веса покрытия или 0,2—1% от веса среды.  [c.105]

Почти во всех водных растворах кислот и солей (исключая растворы фтористоводородной кислоты) магний и его сплавы нестойки, лишь в щелочной среде (pH = 11,5) потенциал магния облагораживается, так как образующаяся на поверхности металла гидроокись магния устойчива в щелочной среде. Наиболее распространенным способом защиты магния и его сплавов является изолирование сопрягаемых деталей прокладками из электроизоляционного материала, нанесение лакокрасочных покрытий и образование на поверхности окисных или хроматных пленок химическим или электрохимическим путем.  [c.221]

Магний и его сплавы легко подвергаются коррозии. Примеси других металлов в магнии или контакт магния с другими металлами также увеличивают скорость коррозионного разрушения. Поэтому защита магния и его сплавов имеет большое практическое значение. Она осуществляется при помощи оксидных пленок и лакокрасочных покрытий.  [c.51]

Магний и его сплавы легко подвергаются коррозии, которая усиливается, если магний находится в контакте с другими металлами. Одним из эффективных методов защиты магния и его сплавов от коррозии является оксидирование. Часто оно используется в сочетании с последующим лакокрасочным покрытием.  [c.71]

В табл. 3.1 приведены составы растворов для химического обезжиривания черных (1—4) и цветных (5—8) металлов. Сильно загрязненные изделия целесообразно обрабатывать в растворах 1,6, полированные — 2,7. Следы полировочной пасты хорощо удаляются в растворе 3. Раствор 5 используют для очистки поверхности меди, алюминия и их сплавов, 6 — серебряных покрытий и деталей из медных сплавов, паянных свинцово-оловянными припоями, 7 — алюминия и его сплавов, 8 — магния и его сплавов.  [c.52]

Кадмий и цинк подвергаются усиленной коррозии в контакте с большинством металлов (за исключением, возможно, магния и его сплавов), но они очень полезны для покрытия других металлов, которые должны работать в биметаллическом контакте, как это будет показано ниже. Магний и его сплавы не должны нормально применяться в незащищенном виде, за исключением условий очень сухой атмосферы контакт практически со всеми другими металлами увеличивает скорость коррозионного разрушения магния. Кадмий и цинк являются по отношению к нему наименее опасным контактами.  [c.187]


В настоящее время практически невозможно паять без предварительного лужения или нанесения промежуточных покрытий алюминий и его сплавы с такими металлами как магний, цирконий, ниобий, тантал, молибден, вольфрам. Пайка алюминия с медью, ее сплавами, железом и сталью, никелем, титаном и его сплавами затруднена вследствие 1) сложности выбора подходящего флюса или газовой среды 2) интенсивного химического взаимодействия алюминия с некоторыми из этих металлов — медью, железом, никелем, приводящего к образованию в швах хрупких прослоев интерметаллидов и сильной эрозии паяемых металлов 3) значительной разницы в коэффициентах термического расширения алюминия и этих металлов, приводящей к образованию значительных внутренних напряжений в швах и отслоению швов по хрупким интерметаллидным прослойкам.  [c.297]

Фосфатированию поддаются также и легкие металлы — алюминий, магний и их сплавы. Однако образование высококачественной фосфатной пленки особенно на алюминии осложняется его способностью к окислению. Поверхность этих металлов всегда покрыта окисной пленкой, которая препятствует активному взаимодействию их с фосфатирующим раствором, что отрицательно сказывается на свойствах фосфатной нленки.  [c.261]

На рис. 28 показана растворимость элементов в железе и его сплавах при комнатной температуре, а также граница, характеризующая возможность образования диффузионного покрытия тем или иным элементом. Элементы, расположенные справа от этой границы (щелочные и щелочноземельные металлы, а также кадмий, олово, сурьма, ртуть, цирконий, магний, свинец и др,), диффузионных покрытий не образуют образовывать диффузионные покрытия могут лишь элементы, расположенные слева от  [c.70]

Наиболее сложными являются вопросы адгезии для цветных металлов алюминия и сплавов магния, меди и ее сплавов, цинка и цинковых отливок, а также гальванических покрытий железа. Адгезионные свойства ухудшаются, еслн поверхность очень гладкая, напрнмер на отливках илн нагартованных листовых изделиях. Для легких металлов наиболее целесообразно применять грунтовки на основе эфиров поливинилбутираля удовлетворительные результаты дают также грунтовки на основе масляно-алкидных смол и хроматов цинка. Травящие грунтовки и алкидно-масляные покрытия хорошо применять для цинка и его сплавов, а также для медн и ее сплавов. Если прн выборе материала для первого покрытия целью является достижение высокой адгезии, то конечное покрытие можно выбирать из большего числа лакокрасочных материалов, для того чтобы удовлетворить требованиям, предъявляемым к конечному виду изделия.  [c.486]

Применение керамических покрытий из окиси алюминия, двуокиси циркония, стабилизированной окисью кальция, цирконатов кальция и магния создаст воз-.можность существенного улучшения условий плавки урана и его сплавов в графитовых тиглях с исключением загрязнения металла углеродом. Очень перспективно  [c.56]

Нитевидная коррозия — специфическая форма щелевой коррозии, распространяющаяся на поверхности металла под защитным покрытием в атмосферных условиях. Этот вид разрушения наблюдается на стали, сплавах магния и алюминия, на которых нанесены металлические (олово, серебро, золото), а также фосфатные и лакокрасочные покрытия. Как правило, нитевидная коррозия не ведет к разрушению металла, а лишь ухудшает его внешний вид. Нитевидная коррозия на стали проявляется в виде сетки красно-коричневых продуктов коррозии, состоящей из нитей , шириной Не более 2 мкм, которые оканчиваются активными точками роста, содержащими зе-лено голубые продукты коррозии с двухвалентными ионами железа. Кислород, поступая к точкам роста, переводит продукты коррозии в гидроокись трехвалентного железа. Таким образом пути миграции кислорода к центрам коррозии и формируют нити .  [c.612]

Вследствие аномального соосаждения металлов группы железа концентрация солей никеля обычно в 10—30 раз превышает концентрацию солей железа. Борная кислота играет роль буфера кроме того, она способствует уменьшению коэрцитивной силы покрытий. Соли калия, натрия, магния добавляют для увеличения проводимости раствора. Сахарин вводят для снижения внутренних напряжений в сплаве и получения равномерных покрытий. При введении сахарина наблюдается уменьшение коэрцитивной силы, что вызвано уменьшением размеров кристаллов осадка (с 65 до 30 нм) и его шероховатости [7.7]. Сегнетову соль вводят для по-  [c.334]


По сравнению с черными металлами, фосфатирование цветных и легких металлов значительно реже применяют в промышленности. Однако в некоторых случаях этот процесс может оказаться весьма полезным. Целесообразно использовать его для обработки таких сплавов, как АМг, АЛ4, поскольку получаемая фосфатная пленка по своим защитным свойствам не уступает пленкам, формированным более трудоемким способом анодирования металла. Можно применить этот процесс для повышения надежности лакокрасочных покрытий на деталях из медных сплавов за счет лучшей адгезии их к фосфатированной поверхности. Защитная способность фосфатных пленок на магнии и сплаве электрон выше, чем пленок, полученных химическим оксидированием в растворах, содержащих селенистую и плавиковую кислоты. Фосфатирование цинка и кадмия, при котором исключаются операции осветления и пассивирования покрытий, значительно улучшает их антикоррозионные свойства в жестких климатических условиях. Однако, учитывая, что трудоемкость процесса 278  [c.278]

Эвтектическая диффузионная пайка боралюминия. Для соединения деталей из боралюминия между собой или с элементами конструкций из алюминиевых сплавов возможно использование способа эвтектической диффузионной пайки, заключающегося в нанесении тонкого слоя второго металла, образующего в результате взаимной диффузии эвтектику с металлом матрицы. В зависимости от состава матричного алюминиевого сплава могут быть использованы следующие металлы, образующие эвтектику серебро, медь, магний, германий, цинк, имеющие температуры образования эвтектик с алюминием 566, 547, 438, 424 и 382° С соответственно. В результате дальнейшей диффузии металла покрытия в основной металл концентрация его снижается, и температура плавления в зоне соединения постепенно повышается, приближаясь к температуре плавления матрицы. Таким образом, паяные соединения способны работать при температурах, превышающих температуру пайки. Однако необходимость строгого регламентирования толщины покрытия, а также чистоты покрытия и покрываемой поверхности, использование для получения таких покрытий метода вакуумного напыления делают этот процесс экономически нецелесообразным.  [c.192]

Ручную дуговую сварку покрытыми электродами применяют при толщине металла свыше 4 мм. Сварку осуществляют на постоянном токе обратной полярности, как правило, без поперечных колебаний. При сварке технически чистого алюминия и сплавов типа АМц металлический стержень электрода изготавливают из проволок, близких по составу к основному металлу. Для сплавов типа АМг следует применять проволоку с повышенным содержанием магния (1,5... 2 %) с целью компенсации его угара при сварке. Основу покрытия электродов составляют криолит, хлористые и фтористые соли натрия и калия.  [c.261]

Это свойство дуги обратной полярности используют для сварки на переменном токе неплавящимся электродом сплавов на основе алюминия и магния. Поверхность этих металлов покрыта тугоплавкой пленкой окислов и нитридов, которые не расплавляются в процессе сварки и препятствуют оплавлению кромок свариваемых элементов. В те полупериоды, когда изделие является катодом, происходит очистка его поверхности. В следующем полупериоде усиливается расплавление основного металла и уменьшается нагрев вольфрамового электрода.  [c.456]

Химическое никелирование магниевых сплавов. Магний и его сплавы относятся к наиболее легким и прочным металлам, поэтому химическое никелирование этих металлов находит большое приме ненне в промышленности Однако вследствие высокой химиче скои активности магния и его сплавов при подготовке поверхностей изделий к нанесению покрытия возникают определенные трудности  [c.30]

Магний и его сплавы имеют низкую коррозионную стойкость, поэтому изделия из них должны иметь защитное покрытие. Нежелателен прямой контакт магния и его сплавов с любым другим металлом так как в электрохимическом ряду напряжений магний занимает одно из последних мест. Однако магний устойчив в растворе фтороводородной кислоты, едких щелочей, бензине,  [c.20]

Лужение магниевых сплавов припоем, состоящим из 60% d 30% Zn 10% Sn, при 170—210°С может быть произведено твердой частью куска припоя. Припой во всем интервале температур обладает низкой жидкотекучестью и хорошо растекается по поверхности формирование галтельных участков швов производится шпателем. Получаемое паяное соединение отличается весьма низкой пластичностью. Разрушение происходит по хрупкой прослойке между швом и основным металлом из-за образования в шве интерметаллидов магния с цинком. Поэтому пайка легкоплавкими припоями магниевых деталей, подвергаемых статическим или вибрационным нагружениям, не нашла применения. Пайку магния и его сплавов легкоплавкими припоями иногда производят по слою меди, никеля или серебра, нанесенному (после химического цинкования) электролитическим методом. Пайка по таким покрытиям производится с обычными флюсами (например, ЛТИ120), легкоплавкими припоями ПЗООА, П200А, П170А нагрев осуществляется паяльником.  [c.306]

После такой обработки следует электроосаждение медного покрытия толщиной 5—6 мк в цианистом электролите с сегкето-вой солью и, если необходимо, наращивают слой меди — в обычном сернокислом электролите. При медном подслое осаждение на магний и его сплавы других металлов не представляет особых затруднений. До контактного осаждения цинка изделия подвергают травлению и активированию поверхности в растворе, содержащем 200—250 мл л 85%-ной фосфорной кислоты и 100 г/л фторида калия или аммония при комнаткой температуре в течение 1—2 мин.  [c.203]

Оксидирование Черные металлы (щелочное оксидирование, бесщелочное оксидирование — фосфатнооксидные покрытия), алюминий и его сплавы (анодное, химическое), магний и его сплавы (химическое, электрохимическое), цинк и его сплавы (бесщелочное оксидирование)  [c.807]


Рассматривая коррозию магния и его сплавов, важно проанализировать и методы, используемые для оценки коррозионных свойств, а особенно так называемые ускоренные испытания. Испытания путем полного погружения в соленую воду или путем периодического обрызгивания образцов морской водой пригодны для определения коррозионной стойкости магниевых сплавов только в этих конкретных условиях и ие позволяют оценить стойкость в каких-либо других средах. Экстраполяция результатов таких испытаний на менее агрессивные условия неправомерна, более того, таким способом вряд ли можно оценивать даже эффективность защитных мероприятий. Причина заключается в том, что коррозионное поведение непосредственно связано с формированием на металле нерастворимых пленок. В самом хлоридном растворе стабильные нерастворимые пленки не образуются, более того, никакие ранее сформировавшиеся в результате химических реакций пленки не являются непроницаемыми для хлор-иона. Ионы хлора сравнительно легко проникают даже через имеющиеся защитные покрытия, а пленки органических красок ш лаков подвергаются осмосу и разбухают, что может быть очень далеко от условий обычной эксплуатации. За исключением спе-цального определения поведения материалов в разбавленных растворах хлоридов, ускоренные испытания такого типа недопустимы, и их результаты могут ввести в заблуждение.  [c.129]

Сплавы, наиболее склонные к обрастанию алюминий и его сплавы, сталь нелегированная, сталь медистая, марганцовистая, нержавеющие стали, высоконикелевые стали, сплавы железа с кремнием, стеллиты, сплавы на никелевой основе, легированные медью (монель-металл), хромом (инконель), различные сплавы типа гастеллой, магний и его сплавы, свинец, олово и сплавы РЬ—5п, алюминиевая бронза с никелем (4% А1, 4% N1, 92% Си), покрытия кадмиевые, хромовые, азотированная сталь, кобальт.  [c.458]

Цирконий в компактном состоянии — металл серебристо-белого цвета, похожий на сталь. Порошок в зависимости от чистоты и дисперсности имеет цвет от черного до серого. Применяют в электровакуумной технике, в атомных реакторах и т. д., а также в качестве основы припоя для пайки титана и его сплавов, защитных покрытий, для повышения теплостойкости магниевых сплавов и т. д. По условиям производства различают магниетермический (восстановлением циркония магнием из четыреххлористого циркония), йодидный (термической диссоциацией тетрайодида в вакууме) и др. Состав магниетермического и йодидного циркония приведен в табл. 62,  [c.106]

При повышенных температурах или применении в качестве охлаждающей среды жидкого натрия и других металлов, реагирующих с магнием и алюминием, для покрытия тепловыделяющих элементов и труб применяются более коррозивнностойкие и теплоустойчивые цирконий и его сплавы.  [c.471]

Сталь различных марок сталь с металлическими и неметаллическими покрытиями алюминий и его сплавы медь и ее сплавы магний оксидированный цинк и кадмий хроматизи-рованные олово свинец серебро молибден ковар цирконий сочетания этих металлов  [c.330]

Сталь всех марок сталь с никелевыми и хромовыми покрытиями алюминий и его сплавы медь и ее сплавы, оловянные покрытия. Сталь и чугун всех марок с металлическими и неметаллическими неорганическими покрытиями алюминий и его сплавы магний (в том числе неоксидиро-ванный) и его сплавы цинк и его сплавы кадмий и его сплавы медь и ее сплавы олово серебро Молибден цирконий сочетания этих металлов  [c.330]

Как показали испытания, нитробензоаты защищают от атмосферной коррозии стали различных марок и стали, имеющие оксидные и фосфатные пленки, медь и медные сплавы, алюминии и его сплавы, серебро, олово, свинец, оксидированный магний, молибден, индий, вороненый чугун, сталь с никелевым и хромовым покрытиями, а также цинковые и кадмиевые покрытия и другие металлы . Эти ингибиторы не оказывают отрицательного влияния на неметаллические материалы и лакокрасочные покрытия, что позволяет применять их для защиты сложшх изделий.  [c.11]

Эксплуатация магниевых сплавов в незаш,иш,енном виде (так же как и стали) обычно не рекомендуется даже тогда, когда магний не находится в контакте с другими металлами. Хроматная обработка (стр. 538) увеличивает коррозионную стойкость, однако, даже в хроматированном состоянии, магниевый сплав будет разрушаться в контакте с другим металлом, если некоторый объем воды (а не адсорбционная пленка влаги) будет образовываться в месте контакта, поэтому во всех таких случаях рекомендуется изоляция этих двух металлов. В некоторых случаях гайки, болты, шайбы, винты и гвозди, изготовленные из стали, меди или латуни, могут быть покрыты цинком или кадмием однако эти покрытия не освобождают конструктора от необходимости избегать условий, при которых в местах контакта может накапливаться влага в присутствии морской воды магний разрушается и в контакте с кадмированной сталью. С другой стороны, применяя мастику (ДТД369А), можно в некоторых случаях обойтись без изоляции, если конструкция такова, что накопление влаги в месте контакта исключается. Это иногда позволяет применять электрохимически опасный контакт. Однако, прежде чем применять опасный контакт, необходимо оценить целесообразность его применения. Мастики или замазки должны быть выдавлены с обеих сторон соединяемых изделий таким образом, чтобы создать вокруг места контакта валик, по крайней мере, 6 мм шириной и высотой и заполнить торцы соединяемых поверхностей необходимо принимать все возможные меры для предотвращения образования пленки влаги, соединяющей два разнородных металла.  [c.189]


Смотреть страницы где упоминается термин Покрытие металлами магния и его сплавов : [c.53]    [c.50]    [c.269]    [c.220]    [c.1235]    [c.583]    [c.166]    [c.416]    [c.273]   
Смотреть главы в:

Защита металлов от коррозии  -> Покрытие металлами магния и его сплавов



ПОИСК



Магний

Магний и сплавы магния

Металлы и сплавы Металлы

Покрытие сплавами

Покрытия металлами

Сплавы металлов



© 2025 Mash-xxl.info Реклама на сайте