Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокниты Свойства физические

В наш век с усложнением форм строительных конструкций, появлением авиастроения, разнообразными запросами машиностроения роль методов теории упругости резко изменилась. Теперь они составляют основу для построения практических методов расчета деформируемых тел и систем тел разнообразной формы. При этом в современных расчетах учитываются не только сложность формы тела и разнообразие воздействий (силовое, температурное и т. п.), но и специфика физических свойств материалов, из которых изготовлены тела. Дело в том, что в современных конструкциях наряду с традиционными материалами (сталь, дерево, бетон и т. д.) широкое применение получают новые материалы, в частности композиты, обладающие рядом специфических свойств. Так, армирование полимеров волокнами из высокопрочных материалов позволяет получить новый легкий конструкционный материал, имеющий высокие прочностные свойства, превосходящие даже прочность современных сталей. Но наличие полимерной основы наделяет такой композитный материал помимо упругих вязкими свойствами, что обязательно должно учитываться в расчетах. Даже в традиционных материалах в связи с высоким уровнем нагружения, повышенными температурами возникает необходимость в учете пластических свойств. Все эти вопросы теперь составляют предмет механики деформируемого твердого тела.  [c.7]


Поскольку в волокнистых композитах поверхность раздела является границей физически, химически и механически не совместимых фаз, необходимо знать, какой вклад она вносит в прочность композита. Аналитические модели в предположении совершенной поверхности раздела позволяют просто рассчитать механические свойства. В действительности же может происходить (и часто происходит) потеря стабильности [58, гл. 3]. Поэтому в следующих разделах основное внимание будет уделено анализу свойств хорошо изученных волокнистых композитов. Наиболее детально изучена система алюминий—нержавеющая сталь кроме того, будут рассмотрены системы, армированные волокнами бора и вольфрамовой проволокой. Там, где это возможно, применимость идеализированных моделей к реальным системам будет оцениваться с помощью микроструктурного анализа.  [c.238]

Характеристики поверхности волокон бора и графита были приведены в разд. I. Ниже рассматриваются некоторые химические и физические характеристики поверхности раздела волокно — смола, а также их связь с механическими свойствами композитов.  [c.256]

Разумное объяснение, лежащее в основании создания композитов, заключается в объединении нескольких твердых тел в гетерогенную структуру с тем, чтобы их физические свойства могли дополнять друг друга, причем физические свойства составляющих фаз могут различаться очень сильно. Типичным примером являются высокомодульные, упругие, хрупкие волокна в качестве упрочняющего материала, в то время как связующая матрица эластична и вязкоупруга. В этом случае идеализированный анализ редко ведет к реалистическому компромиссу для всех составляющих фаз.  [c.207]

Появление композиционных материалов было вызвано в основном стремлением повысить механические свойства конструкционных материалов. Однако очевидно, что направленное армирование волокнами открывает возможности создания новых материалов с особыми теплофизическими, электрофизическими, гальвано-магнитными, оптическими и другими свойствами. Методы получения композиций с особыми физическими свойствами в основном те же, что и для получения высокопрочных композиций направленная кристаллизация эвтектических сплавов, ориентированная перекристаллизация эвтектоидных систем, пропитка каркасных систем расплавом, совместная деформация волокон и матрицы и др.  [c.219]

Характерное отличие практически всех веществ, используемых в качестве сырья для производства стеклоуглерода, заключается в отсутствии четкой зависимости физических и химических свойств от условий их синтеза (температуры, давления и молекулярных соотношений исходных компонентов) [40 . В связи с этим выбор исходного сырья связан с подобранными опытным путем условиями процесса получения стеклоуглерода. К характерным свойствам стеклоуглерода следует отнести высокую прочность (о . = 200—300 МПа) при малой плотности (1,45—1,55 г/см ), низкую проницаемость для жидкостей и газов, химическую инертность к большинству агрессивных сред, высокую термостойкость н высокую чистоту поверхности. Кроме изделий различной конфигурации, из стеклоуглерода изготавливают волокно диаметром 6—30 мкм, отличающееся повышенной прочностью при растяжении.  [c.32]


Процесс нагревания толстой металлической стенки связан с появлением в металле термических напряжений. Действительно, внутренние слои металла, нагревшись быстрее других, стремятся расшириться, но вся остальная, непрогретая масса металла сдерживает их. Поэтому волокна внутреннего слоя металла в своем стремлении к расширению как бы взаимно сжимают друг друга, испытывая напряжения сжатия. Величина возникающих напряжений зависит от физических свойств металла и от имеющейся разности температур.  [c.134]

Наполнитель для лакокрасочных материалов — порошкообразное вещество, обычно белое или слабоокрашенное, практически нерастворимое в лакокрасочной среде, имеющее показатель преломления менее 1,7, которое используется благодаря своим физическим или химическим свойствам. Наполнители, как правило, неорганические природные или синтетические вещества, применяемые для улучшения технологических и потребительских свойств покрытий и экономии пигментов. Наполнители придают лакокрасочным материалам прочность, атмосферо- и огнестойкость и др. В качестве наполнителей используют каолин, молотый тальк, диабаз, асбестовую пыль, волокно и др.  [c.389]

Первым толчком к крупносерийному производству было создание высоконаполненных композитов на основе лубяного волокна сизаля и освоение производства корпусов для радиаторов автомобилей, самых крупных (по площади) изделий, когда-либо выпускавшихся в промышленном масштабе из формовочных композиций вплоть до настоящего времени. Несмотря на то, что эти композиции не обладали выдающимися физическими свойствами, уникальные особенности лубяного волокна позволили проводить интенсивное смешение, не вызывая повреждения волокон, и способствовали получению изделий большого размера, чего не удавалось достичь в дальнейшем при использовании стекловолокна.  [c.116]

Под ударными воздействиями подразумевается появление повреждений на поверхности композиционного материала под ударами посторонних объектов, вызывающее развитие локальных дефектов или значительное его расслоение. Это определение распространяется на баллистические разрушения, повреждения от воздействия песка, пыли и камней, а также от неправильного физического обращения с конструкциями. Ударная прочность композиционных материалов зависит от выбора армирующих элементов и матриц. Свойства матрицы можно варьировать введением пластификаторов, которые увеличивают ее деформацию до разрушения. Этот показатель зависит также от температуры. Матрицы из термопластов с увеличением температуры становятся все более мягкими вплоть до начала текучести. Реактопласты при нагревании тоже становятся менее хрупкими, причем при переходе через температуру стеклования их свойства резко меняются. Хрупкие армирующие материалы, такие как борное и углеродное волокна, имеют очень низкую предельную деформацию (<1 %), Их замена на менее хрупкое волокно, например стеклянное или высокопрочное органическое волокно, может привести к значительному увеличению ударной прочности материалов. Зависимость этого показателя от различных сочетаний компонентов композиционных материалов исследована многими авторами [8, 9 ]. Необходимо отметить, что при варьировании ударной прочности композитов добавлением наполнителей или более пластичных волокон особое внимание должно быть уделено изменению прочности и жесткости готового изделия. Как правило, с ростом ударной прочности жесткость снижается.  [c.284]

В настоящей главе приведен обзор современных достижений в области создания композиционных материалов системы алюминий — борное волокно. Представлены основные сведения по разработке данной системы, обоснованию выбора материалов и наиболее важных технологических методов их изготовления, физическим и механическим свойствам материалов алюминий — бор и перспективам их применения в технике. Авторы стремились построить эту главу таким образом, чтобы она представляла интерес в первую очередь для инженеров-материаловедов и в меньшей степени освещала вопросы механики композиционных материалов, их конструирования и применения.  [c.420]

В промышленности. Каждый сплав, благодаря своим физическим и химическим свойствам, способствует изменению характеристик композиционного материала. Ряд сплавов и некоторые их свойства представлены в табл. 3. Каждый из перечисленных сплавов применялся в качестве матрицы в сочетании с борными волокнами. Металлургия этих сплавов детально разработана, поэтому свойства любого из них, введенного в композиционный материал, могут быть заранее предсказаны на основании их металлургической предыстории.  [c.456]


Свойства волокнистых КМ в большой степени зависят от схемы армирования (рис. 14.24). Ввиду значительного различия в свойствах волокон и матрицы при одноосном армировании физическим и механическим свойствам КМ присуща анизотропия. При растяжении временное сопротивление и модуль упругости КМ достигают наибольших значений в направлении расположения волокон, наименьших — в поперечном направлении. Например, КМ с матрицей из технического алюминия АД1, упрочненный волокнами бора, в направлении волокон имеет ггв = 1000... 1200 МПа, а в поперечном направлении — всего 60 - 90 МПа. Анизотропия свойств не наблюдается при двухосном армировании с взаимно перпендикулярным расположением упрочняющих волокон (см. рис. 14.24). Однако по сравнению с одноосным армированием прочность вдоль оси волокон уменьшается почти в 3 раза — с 1000 до 350 МПа (рис. 14.25). Остаются низкими характеристики при сжатии и сдвиге. При растяжении материала вдоль волокон нагрузку в основном воспринимают высокопрочные волокна, а матрица служит средой для передачи усилий. Нагрузки, воспринимаемые волокнами (Рв) и матрицей Pm)i выражаются через возникающие в них напряжения а в и (Тм следующим образом  [c.444]

Общепринятая модель трещины в механике разрушения — математический разрез в теле из неповрежденного материала. Трещину считают заданной, а ее размер достаточно большим по сравнению с максимальным размером структуры материала — размером зерна, кристаллита, волокна и т. п. Такие трещины называют макроскопическими (в отличие от микроскопических трещин, размер которых имеет порядок характерного размера структуры материала или менее). Задача состоит в том, чтобы найти закономерности роста трещины при различных свойствах материала и различных процессах нагружения, а также установить условия, при которых этот рост устойчив, т. е. малые приращения нагрузок или малые изменения размеров трещин не приводят к ее интенсивному росту. В действительности физический процесс разрушения состоит из двух стадий. Первая стадия — накопление рассеянных повреждений — может составлять значительную часть общего ресурса (по различным данным от 50 до 90 %). Если в детали или элементе не было начальных технологических трещин, то зарождение первой макроскопической тре-  [c.15]

Механические свойства. Стеклянное волокно значительно превосходит по механической прочности исходное (массивное) стекло и не- значительно отличается от него по некоторым физическим параметрам.  [c.252]

В работе [21] приводится точное аналитическое решение для эффективных упругих свойств и полей напряжений в композитах, когда модули сдвига матрицы и волокон совпадают, волокна имеют круговые поперечные сечения и расположены произвольно при любых физически допустимых значениях наполнения Уо- Например, напряжения в произвольной точке матрицы такого композита можно найти по формулам  [c.149]

Асбестом называется ряд минералов, представляющих собой водные-силикаты, содержащие окись магния, кремнезема и воду, имеющих волокнистое строение, обладающих способностью расщепляться на волокна и отличающихся по химическому составу и физическим свойствам.  [c.34]

Наполнитель определяет механические свойства пластмассы и влияет на физические, диэлектрические и некоторые другие свойства. В качестве наполнителей применяют молотую слюду, кварц, стекловолокно (минеральные наполнители), а также древесную муку, хлопчатобумажное волокно (органические наполнители).  [c.290]

Из физических соображений следует, что значение Ау зависит от величины и микроструктуры внутрипоровой поверхности, скорости и теплофизических свойств теплоносителя и не должно зависеть от длины проницаемого каркаса, поскольку микроструктура однофазного потока стабилизируется на расстоянии нескольких диаметров пор от входа в него. В свою очередь, микроструктура порового пространства зависит от пористости и характера исходного дисперсного материала - порошка, волокна, сетки и т. д.  [c.37]

Перекрестная укладка одинакового числа слоев в двух направлениях образует композиционные материалы с ортотропией в осях, направленных вдоль биссектрис угла между волокнами в соседних слоях. Материалы с переменным углом укладки по толщине одинакового числа слоев в направлениях О, 60 и 120° условно называют материалами звездной укладки (1 1 I). Они являются изотропными в плоскостях, параллельных плоскостям укладки слоев. Трансверсальноизотропными являются и многонаправленные материалы, в которых одинаковое число слоев укладывается в направлениях, я/ц, 2я/л,. .., л, п 3), а также хаотически армированные в одной плоскости короткими волокнами. При использовании в качестве арматуры обычных однослойных тканей получаются композиционные материалы со слоистой структурой (тек-столиты). Возможны различные комбинации структур ткань может быть уложена так, что направления основы во всех слоях совпадают или между направлениями смежных слоев образуется некоторый заданный угол. Кроме того, угол укладки и число слоев по толщине материала могут изменяться. В зависимости от этого можно выделить три основных вида слоистых структур симметричные, антисимметричные и несимметричные. К первому виду относятся материалы, обладающие симметрией физических и геометрических свойств относительно их срединной плоскости, ко второму виду — материалы, обладающие симметрией распределения одинаковых толщин слоев, но угол укладки волокон (слоя) меняется на противоположный на равных расстояниях от срединной плоскости. К несимметричным структурам относятся материалы, не обладающие указанными выше свойствами.  [c.5]

Имея разложения (38) — (39), вычисляем энергию деформации и кинетическую энергию для каждой отдельной ячейки. Последующее осреднение по ячейке дает среднюю энергию, полностью определяемую своим значением в центре волокна. После этого осуществляется завершающий этап перехода от системы дискретных ячеек к однородной континуальной модели, который состоит во введении полей кинематических и динамических переменных, непрерывных по всем координатам. Значения этих переменных на средних линиях волокон совпадают со значениями соответствующих параметров, вычисленными для системы дискретных ячеек. Следовательно, кинетическую энергию и энергию деформации, подсчитываемые так, как это описано выше, можно интерпретировать как плотности энергий для вновь введенной непрерывной и однородной среды. Плотность энергии деформации содержит не только члены, зависящие от эффективных модулей, но и члены, зависящие от некоторых констант, включающих характеристики как физических, так и геометрических свойств компонентов композита (т. е. от эффективных жесткостей ). Этим и объясняется название теории — теория эффективных жесткостей . Определяющие уравнения этой теории были получены при помощи принципа Гамильтона в совокупности с условиями непрерывности и с использованием множителей Лагранжа. Аналогичная теория для композитов, армированных упорядоченной системой прямоугольных волокон, была разработана Бартоломью и Торвиком [11].  [c.377]


Почти все известные термопласты в сочетании с упрочняющими волокнами применяются в деталях, изготовляемых различными методами. При этом назначение детали, требования к ее внешнему виду, условия эксплуатации, а также экономичность и механические свойства оказывают решающее влияние на выбор материалов матриц. Например, термореактивные смолы используют в основном для тех деталей кузова, которые требуют окраски в готовом виде. Термопласты в большей степени склонны к пигментации, поэтому их применяют в формованных деталях, внешнему виду которых придается важное значение. Улучшение физических характеристик деталей из термопластов, изготовляемых методом иижекционного прессования, обычно достигается путем добавления в матрицу умеренного количества волокна-упрочнителя. В случае применения формования прессованием для упрочненных полиэфирных смол показана возможность производства крупных партий деталей больших размеров при сравнительно невысоких затратах. Например, отдельные детали кузова из композиционного материала автомобиля Шевроле Корвет имели размеры 1,8 X 3,0 м при массе около 24 кг.  [c.13]

Важной областью использования свойств углеродных волокон являются протезы. Легкость, жесткость и возможность изготовления тонкостенных элементов — положительные качества, обеспечивающие удобство и подвижность людям, страдающим физическими недостатками. На рис. 12 показаны протезы ног, разрабатываемые в Японии. Для этих протезов используются углеродные волокна Торейка фирмы Тогау Industries. Существующие цены на углеродные волокна вполне приемлемы для этого вида продукции.  [c.481]

Некоторые из перечисленных в табл. 10.1 материалов используются в современных конструкциях так называемых супермаховиков. Особый интерес представляют материалы из волокон — углеволокно, стекловолокно или силикатное волокно, поскольку они обладают анизотропными физическими свойствами. Для таких материалов допустимые растягивающие напряжения, направленные вдоль волокна, на несколько порядков больше, чем допустимые напряжения в поперечном направлении.  [c.248]

Предварительные замечания. Древесина как конструкционный материал, пожалуй, в большей мере, чем какой-либо другой, имеет свойства, присущие только ему. Первым долгом отметим огромное разнообразие пород дерева, порождающее исключительную по широте гамму физических и механических свойств древесины. Свойства древесины каждой породы при прочих равных условиях существенно зависят от влажности ее. Говоря о механических свойствах древесины, нельзя не принимать во внимание большое количество всевозможных дефектов и отклонений от нормальных условий роста дерева, снижающих прочность древесины. К числу таких относятся сучки, неправильное расположение волокон, крень (эксцентричное расположение сердцевины), тяювость (связанность волокон в определенной области лишь между собой), Смятия (от чрезмерного искривления растущего дерева), плесень и деревоокрашивающие грибы, гниль, повреждение насекомыми, смоляные кармашки, минеральные пятна (образуются после продалбливания древесины птицами, вследствие окисления и других химических процессов). Причиной дефектов может явиться и неправильно-выполняемая сушка древесины. Наконец, весьма большое значение для свойств древесины имеет направление прикладываемой силы (по отношению к волокнам и годичным кольцам) при определении этих свойств — древесина существенно анизотропна. Вот почему изменчивость физико-механических свойств древесины очень велика — показатели свойств имеют разброс гораздо больший, чем у любых других материалов.  [c.370]

В историческом аспекте человек сначала на> чился хозяйственному применению некоторых природных материалов, таких как камень, дерево, глина, растительные волокна и животные ткани. На следующей, более высокой стадии своего развития он наз чился плавить метал и делать стеюто Однако только в последнее время, благодаря более rji) -бокомл пониманию физических, химических и биологических свойств различных веществ, а также достижениям в технологии появилась возможность получать материалы и изделия с заданными свойствами, т. е. удовлетворяющие конкретным требованиям. Такими свойствами обладают композиты, новые материалы, конструируемые гением человеческой мысли.  [c.4]

Углеродные волокна можно получать из многих полимерных волокон [1]. В этой главе мы рассмотрим вопросы получения и свойства выпускаемых в промышленном масштабе волокон, в частности высококачественных углеродных волокон. В зависимости от режима термообработки углеродные волокна подразделяются на карбонизованные и графитизированные. Вследствие различия их кристаллического состояния первые называют карбоновыми или углеродными, а вторые - графитовыми.О По физическим характеристикам они подразделяются на высококачественные и низкокачественные (низкосортные) углеродные волокна. К высококачественным волокнам относятся 1) высокопрочные углеродные (I) и высокомодульные графитовые (II) волокна, углеродные волокна с повышенной прочностью и удлинением (III) [на основе полиакрилонитрила (ПАН)] 2) высокомодульные графитовые волокна (IV) [на основе жидкокристаллических (мезофазных) пеков]. К низкосортным волокнам или волокнам общего назначения относятся 1) низкографитизированные углеродные (V) и графитовые (VI) волокна и материалы (на основе ПАН) 2) низкографитизированные углеродные (VII) и графитовые (VIII) волокна и материалы (на основе обыч-  [c.27]

Анизотропия физических свойств термопластов, наполненных углеродными волокнами, аналогична анизотропии свойств термопластов, содержащих стекловолокна. Сочетание стекловолокна со стеклоби-сером, дисперсными наполнителями неорганического и других типов приводит к ухудшению свойств композиционного материала то же самое наблюдается и при литье под давлением термопластов, наполненных углеродными волокнами. Большое влияние на усадку, приводящую к искажению формы изделия, оказывает расположение литников хороший эффект достигается при одновременном использовании нескольких литников. На рис. 3. 23 приведены результаты модельного эксперимента, в котором для образцов двух конфигуращ1Й изменяли расположение и форму литниковых отверстий и измеряли коэффищ1ент искажения формы.  [c.103]

I - металлическая матрица 2 - волокно 3 - предварительная обработка волокон 4 - формование полуфабрикатов 5 - получение слоистого материала из полуфабрикатов 6 - формование (получение композиционного материала и придание формы) 7 - вторичная обработка 8 - применение 9 - элементарные волокна 10 - жгуты, нити 11 - ткани 12 - короткие волокна (монокристал-лические усы" и т. д.) 13 - улучшение смачиваемости волокон металлом и адгезии с ним, регулирование реакционной способности поверхности волокон 14 -химическое и физическое осаждение в газовой фазе 15 - металлизация и т. д. 16 — сырые полуфабрикаты в виде листов или лент 17 — металлизованные в расплаве листы или ленты 18 - пропитанная расплавом лента 19 - листы, полученные методом физического осаждения в газовой фазе 20 — придание материалу заданных анизотропных свойств 21 — горячее прессование 22 — горячее вальцевание 23 - горячая вытяжка 24 — HIP 25 — литье с дополнительной пропиткой расплавом 26 — парафинирование и т. д. 27 — механическая обработка 28 - механическое соединение 29 — диффузионная сварка 30 - парафинирование 31 — электросварка 32 — склеивание и т. д.  [c.242]

ВОЛОКОН связующим. Обычно полимерные связующие хорошо смачивают поверхность армирующих волокон при использовании металлических связующих проблема смачиваемости приобретает особое значение. И борные, и углеродные волокна плохо смачиваются расплавами металлов и сплавов. Поэтому, для того чтобы металлическое связующее достаточно хорошо проникало в межволоконное пространство, необходимо проводить специальную обработку поверхности волокон. Однако такая обработка элементарных волокон в пучке затруднена контактом волокон друг с другом это обстоятельство характерно для углеродных армирующих материалов, состоящих из большого числа элементарных волокон. Следует отметить, что вещества, нанесенные на поверхность тонких волокон, оказывают заметное влияние на свойства матрищ>1. Так, при нанесении поверхностного слоя толщиной 0,5 мкм на волокна диаметром 5 мкм площадь поперечного сечения поверхностного слоя составляет 44% площади поперечного сечения волокон. Это приводит к заметному изменению механических и физических свойств матрищ>1. Площадь поперечного сечения поверхностного слоя такой же толщины, нанесенного на борные волокна диаметром 100 мкм, составляет всего лишь 2% площади поперечного сечения волокон и его влияние на свойства матрицы менее значительно.  [c.269]


Непрерывные волокна из оксида алюминия имеют либо структуру шпинели ( ) -А12 0з), либо структуру а-Л12 0з. Для армирования материалов могут использоваться оба указанных типа непрерывных волокон из оксида алюминия [24—25]. Их физико-механические свойства приведены в табл. 8.8, а на рис. 8.12 показаны их микрофотографии, полученные методом растровой электронной микроскопии. Волокна из оксида алюминия со структурой шпинели изготавливают путем спекания в воздушной среде волокон, полученных прядением по мокрому методу из раствора, содержащего полимер алюминийорганического соединения и кремнийорганическое соединение. Такие волокна состоят из микрокристаллов размером порядка 10 нм, сохраняют стабильную структуру до высоких температур и содержат около 15 масс. % оксида кремния. Волокна из а-Д12 Оз также изготовляют спеканием в воздушной среде волокон, полученных прядением из суспензии мелкодисперсного порошка а-Л12 0з в основном хлориде алюминия. Агломераты частиц имеют размер 0,5 мкм. Достоинствами этих двух типов армирующих волокон из оксида алюминия по сравнению с углеродными волокнами являются электроизоляционные свойства, бесцветность, стабильность свойств на воздухе при высоких температурах и при контакте с расплавленными металлами. Их недостаток — сравнительно высокая плотность. Различие структуры указанных двух типов непрерывных волокон из оксида алюминия приводит к различию их физических свойств. Волокна со структурой шпинели имеют большую прочность и поддаются текстильной переработке для получения ткани и т. д. Эти волокна имеют меньшую плотность, чем волокна из a-Al2 О3. С другой стороны, волокна из a-Al2 О3 имеют более высокий модуль упругости. Различия этих двух типов волокон подобны различиям между двумя типами углеродных волокон карбонизованными и графитизированными.  [c.280]

Циркульные пилы различаются по профилю зубьев, размер и профиль которых определяются направлением резания по отношению к волокнам древесины и зависят от физических и технологических свойств древесины и размеров полотна пилы. -Профили зубьев циркульных пил для продольной распиловки показаны на фиг. 94 (профиль А — зуб с прямой спинкой, Б — зуб с выпуклой спннкой, В и / — волчий профиль зуба).  [c.93]

Хризотиловый асбест при механическом воздействии легко расщепляется на тончайшие волоконца, длина которых колеблется от долей миллиметра до нескольких сантиметров. Длинноволокнистый асбест встречается гораздо реже, чем коротковолокнистый. Механическая прочность асбестового волокна при растяжении достигает 5,6 ГПа. Волокна хризотилово-го асбеста являются одними из самых стойких по отношению к щелочам, но легко разрушаются кислотой. При термообработке асбестовое волокно претерпевает ряд изменений, которые влияют на его физические свойства. При продолжительном нагревании при 110°С выделяется значительная часть адсорбционной воды, при дальнейшем нагревании в интервале НО—370"С выделяется остальная часть адсорбционной воды и часть конституциокной. В интервале 500—600 X полностью выделяется конституционная вода. При температурах выше 370 °С механическая прочность волокон хри-зотилового асбеста падает, а длительное нагревание при 430 °С вызывает потерю механической прочности волокон до 20 %, при 480 °С теряется 40 % прочности, а нагревание при 540 С вызывает быструю потерю прочности. Эти изменения связаны с выделением конституционной воды. При температурах между 5Ю и 600 °С происходит обезвоживание асбеста и образуется аморфная фаза — форстерит, а при 1100 С — энстатит. В связи с этим применение материалов из волокон хрязотилового асбеста в электрической изоляции, как правило, ограничивается температурой 450—500 °С.  [c.265]

Температура шлакового расплава. В начальный период пуско-наладочных работ и освоения технологии получения мнне-раловатных изделий процесс образования волокна протекал крайне неустойчиво, так как резко менялись такие технологические параметры, как состав шлаков, температура и количество шлакового расплава, поступающего на центрифуги, давление пара. Это затрудняло получение непосредственных зависимостей изменения физических свойств минерального волокна, например объемного веса от изменения только одного какого-либо технологического параметра процесса волокнообразования.  [c.28]

Каждая из экспериментальных групп имеет свои качественные аспекты, характеризующие уникальные свойства сердечной мышцы. Так, например, в изометрических экспериментах с увеличением вытяжения волокна время достижения максимума напряжения также растет (Рис.5.5), а зависимость максимального активного напряжения от степени вытяжения волокна выражается законом Франка-Старлинга (Рис.5.7) в изотонических экспериментах (Рис.5.6) установлен фундаментальный закон, связывающий скорость сокращения и силу сокращения,- закон Хилла (Рис.5.8) в экспериментах третьей группы с увеличением скорости укорочения волокна величина развиваемой силы сокращения падает (Рис.5.9), а при быстрой нагрузке-разгрузке волокна напряжение, развиваемое после укорочения, всегда будет тем больше, чем раньше окончено укорочение (Рис.5.10). Отметим, что как вид физических соотношений (5.63)-(5.65), так и диапазон изменения констант //3, 3,Д определяются прежде всего качественном характером поведения мышечного волокна и физиологическим уровнем Т1к. Так, например, увеличение Д >1.25 приводит к несоблюдению закона Хилла, а уменьшение Д <0.75 к эффекту неполного расслабления при изометрии и неустойчивости про  [c.523]

С физической точки зрения решение уравнений (2.69) описывает не только распространение пластической деформации (распространение дислокаций), но и изменение формы включения в композиционном материале, границы зерна. Все это имеет прямую связь с демпфирующими свойствами композиционного материала, уменьшением хрупкости таких материалов с размельчением и без размельчения структурных элементов среды, проблемой взаимодействия матрица — волокно в конструкционном материале, рекри-сталлизационными явлениями на границах зерен, активацией зернограничного проскальзывания, упрочнением конструкционных материалов внешним воздействием (ультразвук).  [c.47]


Смотреть страницы где упоминается термин Волокниты Свойства физические : [c.45]    [c.141]    [c.229]    [c.336]    [c.54]    [c.130]    [c.241]    [c.243]    [c.243]    [c.463]    [c.24]    [c.4]    [c.63]    [c.38]    [c.100]   
Материалы в машиностроении Выбор и применение Том 5 (1969) -- [ c.76 , c.79 ]



ПОИСК



Волокна

Волокна природные — Кривые растяжения и изменение прочности 325 Свойства механические 328 Свойства физические и химически

Волокна прочности 325 — Свойства механические 328 — Свойства физические и химические

Волокна свойства

Волокниты Свойства

Свойства Физические свойства

Свойства физические

Физические ПТЭ - Физические свойства



© 2025 Mash-xxl.info Реклама на сайте