Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства алюминия олова

Кроме простых латуней применяются специальные (сложные) латуни, в которые для придания тех или иных свойств дополнительно вводят различные элементы. Для улучшения обрабатываемости резанием в латуни вводят свинец, для повышения сопротивления коррозии в морской воде — олово, для повышения механических свойств — алюминий, никель и др.  [c.194]

Бронзы обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, а также хорошей обрабатываемостью и литейными свойствами. В связи с этим бронзы широко применяют в подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках винтовых механизмов, для изготовления арматуры и т. п. Бронзы по основному, кроме меди, компоненту делят на оловянистые, свинцовистые, алюминиевые, бериллиевые, кремнистые и др. Их обозначают буквами Бр и условными обозначениями основных компонентов А — алюминий, Б — бериллий, Ж — железо, К —кремний, Мц —марганец, Н — никель, О — олово, С — свинец, Ц — цинк, Ф — фосфор, а также цифрами, выражающими среднее содержание компонентов в процентах. Например, Бр ОФ 10-1 обозначает бронзу с содержанием 10% олова и 1% фосфора. Фосфористую (Бр ОФ 6,5-1,5) и бериллиевую (Бр Б 2,5) бронзы применяют для изготовления трубчатых пружин, мембран, моментных пружин (волосков) и т. д. Механические свойства и области применения других марок бронз приведены в табл. 16.3.  [c.162]


Легирование алюминием для обеспечения свойств сплава производится в зависимости от качества (содержания кислорода) исходной титановой губки. В случае губки с прочностью менее 50 кГ/мм для сохранения указанного в ТУ уровня механических свойств рекомендуется добавка олова 2—3%. В атом случае сплаву присваивается марка ВТ5-1.  [c.372]

В первом томе приведены справочные сведения о принципах выбора, областях применения и влиянии методов обработки на служебные свойства цветных металлов и сплавов в машиностроении. Ои содержит также данные о марках, физико-механических и технологических свойствах алюминия, магния, титана, меди, свинца, олова, цинка, кадмия, благородных металлов и их сплавов, а также биметаллов, применяемых в машиностроении.  [c.4]

Влияние температуры отжига на механические свойства холоднодеформированных сплавов алюминия с 29 и 39% олова (катаные полосы, деформация 70%, отжиг 500° С в течение 30 шт)  [c.121]

Во время войны 1914—1918 гг. количество олова в сплавах стало заметно снижаться, н к концу войны сплавы с оловом были вытеснены цинковыми сплавами с алюминием и медью. Наиболее известные цинковые сплавы различных составов и их механические свойства приведены в табл. 68.  [c.215]

К числу примесей, оказывающих отрицательное воздействие на образование шаровидного графита и значительно понижающих механические свойства чугуна, относятся следующие титан, свинец, сурьма, висмут, олово, мышьяк, алюминий, медь.  [c.154]

Сплавы меди с цинком называются латунями. К специальным латуням относятся медно-цинковые сплавы, в состав которых входят железо, алюминий, марганец, никель, олово, свинец и др. На механические свойства латуни большое влияние оказывает содержание цинка (рис. 3).  [c.111]

Рис. 19. Влияние алюминия (О — О), циркония (Д—Д) и олова ( — ) на механические свойства титана (мелкое зерно) Рис. 19. Влияние алюминия (О — О), циркония (Д—Д) и олова ( — ) на механические свойства титана (мелкое зерно)
К сплавам с а-структурой относятся сплавы титана с алюминием (например, ВТ5), а также сплавы, дополнительно легированные оловом или цирконием (например, ВТ5-1). Они характеризуются средней прочностью при 20 °С, высокими механическими свойствами при криогенных и повышенных (450 - 500 °С) температурах. Сплавы имеют высокую термическую стабильность свойств и обладают отличной свариваемостью. Прочность сварного шва составляет 90 % прочности основного сплава. Обрабатываемость резанием удовлетворительная.  [c.419]


Легирование латуней алюминием, никелем, кремнием, оловом повышает их коррозионную стойкость и улучшает механические свойства и обрабатываемость. Фи-зико-механические характеристики бронз и латуней представлены ниже  [c.115]

Механические свойства. Как конструкционные материалы в авиастроении используют сплавы с ванадием, молибденом, хромом, марганцем, вольфрамом, танталом, ниобием, углеродом, алюминием, оловом. Наибольшее применение имеют сплавы титана с алюминием, хромом, ванадием и углеродом.  [c.289]

Применяются только специальные латуни, кроме меди и цинка содержащие алюминий, железо, марганец, кремний, олово, свинец, улучшающие литейные и механические свойства и сообщающие некоторые специальные свойства этим сплавам. Из них изготовляют детали и арматуру для морского судостроения подшипники, втулки и другие антифрикционные детали гайки нажимных винтов, червячные винты, зубчатые коле-са и др.  [c.268]

Главное преимущество титана и его сплавов состоит в сочетании самих высоких механических свойств с коррозионной стойкостью в агрессивных средах (в азотной, соляной и фтористой кислотах) и низкой плотностью. Для получения сплавов титана с заданными механическими свойствами его легируют хромом, алюминием, ванадием, молибденом, оловом и другими металлами. Сплавы титана имеют хорошую жаропрочность, их можно использовать при температуре до 600—700 °С.  [c.104]

Легирование цинка оловом, алюминием, кадмием приводит не только к снижению температуры начала и конца затвердевания припоев, но существенно влияет и на их механические свойства. Так, например, среди сплавов Zn—Sn наиболее прочными и достаточно пластичными являются сплавы с 20—30% Sn (рис. 93). Однако эти сплавы характеризуются большим интервалом кристаллизации (199—375° С) и, что особенно важно, 200  [c.200]

Бронзы. Сплавы меди с оловом, алюминием, кремнием, марганцем, свинцом, бериллием называют бронзами. Раньше к бронзам относили сплавы только двойной системы медь — олово. С течением времени разработаны новые сплавы на медной основе, в которых олово частично или полностью заменено другими элементами. Однако название сплавов осталось прежним, так как они по многим физико-механическим свойствам и цвету не отличаются от медно-оловянистых сплавов. В зависимости от введенного элемента бронзы называют оловянистыми, алюминиевыми, кремнистыми, марганцовистыми и т. д.  [c.166]

Для получения сплавов с высокими механическими свойствами титан легируют алюминием, молибденом, ванадием, марганцем, хромом, оловом и др. Большей частью промышленные сплавы титана содержат алюминий, который повышает временное сопротивление, но уменьшает пластичность сплава.  [c.142]

Механические свойства меди зависят от содержания в ней примесей. Вредной примесью является висмут, если его более 0,05%. В небольших количествах допускается в меди алюминий, сурьма, олово, цинк и никель. Чтобы получить латунь с хорошей пластичностью, содержание цинка должно быть не более 30—32%.  [c.11]

Для изготовления различных деталей конструкций чистая медь применения почти не имеет, так как она обладает низкими механическими свойствами. Медь МО и М1 применяется для изготовления проводников тока, для сплавов высокой чистоты. Медь М2 и МЗ — для сплавов, обрабатываемых давлением, а М4 — для литейных бронз и неответственных сплавов. Сплавы меди с цинком, оловом, алюминием и т. д. обладают гораздо более высокими механическими и технологическими свойствами, чем чистая медь. Они нашли щирокое применение в промышленности.  [c.359]

Простые латуни, как сплавы Си -Ь 2п для фасонного литья, применяются редко. Специальные латуни (ГОСТ 1019-47) получают добавкой в простые латуни олова, алюминия, никеля, марганца, железа и других элементов, улучшающих литейные и механические свойства простых латуней или сообщающих этим латуням специальные свойства. На ряде наших заводов такие латуни с успехом применяют для замены оловянистых бронз.  [c.323]

Латуни — это сплавы меди с цинком. К некоторым латуням до-иавляются легирующие элементы алюминий, никель, железо, олово, кремний, марганец, свинец и др. Некоторые из этих легирующих элементов Алюминий, никель, железо) добавляются в латуни для повышения их механических свойств, другие (олово, алюминий) — для повышения коррозионной стойкости. Свинец добавляется для улучшения обрабатываемости при обработке латуни, не содержащей свинца, образуется вьющаяся (сливная) стружка, которая, как мы знаем из параграфа 12, затрудняет оюработку резанием на станках. При обработке же свинцовых латушей получается сыпучая стружка, и обработка идет очень хорошо.  [c.133]


Кроме простых латуней — сплавов только меди и цинка, применяют специальные латуни, в которых для придания тех или иных свойств дополнительно вводят различные элементы свинец для улучшения обрабатываемости (латунь марки ЛС59 содержит около 40о/о Zn и 1—2% РЬ, так называемая автоматная латунь), олово для повышения сопротивления коррозии в морской воде (так называемая морская латунь), алюминий и никель для повышения механических свойств и т. д.  [c.609]

Сплавы меди с алюминием, кремнием, бериллием и другими элементами также называются бронзами в отличие от оловя-ннстых их называют соответственно алюминиевыми, кремнистыми и т. д. Малой величиной усадки оловянистая бронза превосходит эти бронзы, но они в свою очередь превосходят оловя-нистую в других отношениях по механическим свойствам (алюминиевая, кремнистая бронза), но химической стойкости (алюминиевая бронза), по жидкотекучести (кремнецннковистая бронза). Олово — дефицитный элемент, поэтому эти бронзы, кроме, разумеется, бериллиевой, дешевле оловяннстой.  [c.614]

В работах, выполненных под руководством А. А. Бочвара [68], исследовано влияние давления на свойства сплавов алюминия с медью (0—14% Си), меди с оловом (О—157о Sn), а также других сплавов (силуминов, кремнистых бронз и т. п.). Показано, что все исследованные сплавы (за очень небольшим исключением) имеют более высокие показатели механических свойств при кристаллизации под давлением, чем литые в атмосферных условиях.  [c.63]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]

Примеси мышьяка, сурьмы, олова, кремния, свинца и фосфора сильно снижают механические и технологические свойства алюминн-Дтнн. % са  [c.115]

Для пайки-сварки изделий, к механическим свойствам и товарному виду которых предъявляются повышенные требования, применяется припой ЛОМНА-54-1-10-4-02, содержащий медь, олово, марганец, никель и до 0,6 % алюминия. При пайке-сварке этим припоем металл паяносварного шва имеет цвет чугуна, твердость 180. .. 200 НВ и временное сопротивление разрыву 280. .. 340 МПа.  [c.431]

Алюминиевый баббит. В настоящее время предложены два типа алюминиевого баббита один для наплавки на стальную ленту, содержащий 6,5% Sn, 1 % Си, 0,5% Ni и 1,5% Si, остальное — алюминий. Его микроструктура состоит из твердых частичек NiAlg и кремния, расположенных в основной массе вязкого алюминия, и мельчайших частиц олова. Другой алюминиевый баббит предназначается для отливки в металлические формы и содержит 6,5% Sn, 1% Си и 1% Ni, остальное — алюминий. Алюминиевый баббит, особенно наплавленный на ленту, удовлетворяет большинству важнейших требований, предъявляемых к подшипниковым сплавам, и имеет перспективы, применения в автомобильной и тракторной промышленности. Его несколько низкие механические свойства и высо-  [c.458]

Легирование цинка оловом, алюминием, кадмием приводит не только к снижению температуры начала и конца затвердевания припоев, но существенно влияет и на их механические свойства. Так, например, среди сплавов Zn—Sn наиболее прочны и достаточно пластичны сплавы, содержащие 20—30% Sn. Однако эти сплавы имеют большой интервал кристаллизации (199—375° С) и, что особенно важно, низкую температуру солидуса и поэтому неперспективны для пайки соединений, работающих в условиях нагрева до температур 200—250° С. X. К. Харди показал, что относительное удлинение цинковых сплавов с оловом (Sn — 25% Sn) в значительной степени зависит от скорости охлаждения при затвердевании. Относительное удлинение сплава, отлитого в кокиль, подогретый до температуры 100° С, равно 25%, а отлитого в кокиль, подогретый до температуры 200° С, 6,2%.  [c.97]


Двойные медиоцинковые сплавы обладают хорошими механическими и технологическими свойствами. Добавки олова, марганца, никеля, алюминия, железа и др. сообщают сплавам повышенные механические и физические свойства.  [c.226]

Бронза — сплав меди с оловом содержание последнего — до 30%. Бронзы более твердые и прочные, чем латуни. Бронзы, содержащие менее 13% олова, хорошо обрабатываются ковкой и штамповкой в холодном со-стояшш. Для повышения механических свойств и способности противостоять окислению в сплав добавляют небольшое количество других элементов никеля, алюминия, свинца, кремния, марганца, фосфора, цинка.  [c.535]

Более распространенным сплавом для цветного литья является латунь. Она обладает меньшей по сравнению с бронзой плотностью, имеет хорошие литейные свойства и более высокие механические свойства. Введение в состав латуни марганца, свинца, олова, алюминия, железа, никеля, кремния еще более повышает ее механические свойства и улучшает технологические. В литейном производстве применяют латуни марок ЛАЖМц66-6-3-2, ЛК80-3, ЛКС80-3-3.  [c.283]

Пластифицирование — уменьшение предела текучести и коэффициента упрочнения при деформировании с постоянной скоростью или возрастание-скорости ползучести (рис. 23.1). Такие изменения механических свойств происходят, например, при деформировании олова, алюминия, свинца в растворах органических поверхностно-активных веществ (олеиновой кислоты, це-тилового спирта, синтетических мылообразных веществ и т. п.).  [c.229]

Медь широко применяется в качестве конструкционного материала для изготовления различного рода сосудов, трубопроводов, химической аппаратуры, электрораспределительных устройств и другой аппаратуры. Медь обладает высокой тепло- и электропроводнофью, химической стойкостью и сохраняет свои механические свойства в условиях низких температур, когда почти все стали становятся хрупкими. Медь имеет температуру плавления 1083°С (1356 К), временное сопротивление в отожженном состоянии 200 МПа и плотность 8,9 г/см . Большое распространение в народном хозяйстве нашли сплавы меди — латунь и бронза. Латунь — это сплав меди с цинком. Ее применению способствует меньшая стоимость и плотность цинка по сравнению с медью. Температура плавления (800—900°С) зависит от состава — чем больше цинка, тем ниже точка плавления. Бронза представляет собой сплав меди с оло-вом, алюминием, бериллием и свинцом. Температура плавления 720—1000 °С. Чем больше в бронзе олова, тем ниже температура ее плавления.  [c.17]

Пресс-формы для термопластичных масс (капрона, полистирола, этрола, полиэтилена), и эпоксидных смол (АСТ-Т, стирак-рила) можно изготовлять из сплава, состоящего из 90% цинка и 10% олова. Более высокие механические свойства (предел прочности ггв = 0,35—0,4 ГПа н твердость НВ 130—140) могут быть получены при использовании сплава цинка, алюминия, меди и бериллия. Сплав имеет хорошие литейные свойства.  [c.161]

Бронзы — сплавы меди с оловом, свинцом, алюминием, железом, кремнием, марганцем и другими металлами (кроме цинка), в соответствии с которыми бронзы получают название. Обозначение марки бронзы начинается с букв Бр, за которыми) следуют заглавные буквы легирующих элементов и их процентное содержание. Например, БрОФ 10-1 — бронза, содержащая 10 % олова, 1 % фосфора и остальное — медь. Бронзы обладают высокими антифрикционными, антикоррозионными и литейными свойствами и имеют хорошие механические характеристики. Наилучшие антифрикционные и механические свойства имеют оловянные бронзы Бр010Ц2 и БрОЮСЮ. Вследствие высокой стоимости и дефицитности оловянных бронз часто применяют безоловянные бронзы, выпускаемые в соответствии с ГОСТ 18175—78 . Из них наибольшее распространение получила алюминиево-железная бронза БрАЖ9-4 для венцов червячных колес, гаек ходовых и грузовых винтов и т. п.  [c.32]

Латунь, особенно выоокоцинковая (а +13, а также (3), в нейтральных и слабокислых растворах подвергается специфическому разрушению — обесцинкованию с образованием на отдельных участках поверхности металла рыхлого слоя меди. Это происходит вследствие вторичного вытеснения латунью меди из раствора в процессе коррозии. Участок поверхности, покрытый рыхлой медью, хуже аэрируется, чем непокрытая медью поверхность, и потому коррозия развивается в глубь металла, образуя язвы. Механические свойства латуни при этом сильно падают. Присадки мышьяка (0,001—0,2%) в латунь заметно снижают склонность сплава к этому виду разрушения. Легирование латуни оловом (1%) и алюминием (2%) повышает стойкость  [c.54]

Сплав ВТ5, относящийся к системе Ti—А1, хорошо деформируется в горячем состоянии и сваривается обладает высокой сопротивляемостью коррозии, но склонен к водородной хрупкости. Дополнительное легирование сплава ВТ5 оловом (ВТ5-1) улучшает технологические и механические свойства сплава. Псевдо а-сплавы, т. е. не вполне однофазные а-сплавы типа 0Т4, хорошо обрабатываются давлением в горячем и холодном состояниях, свариваются всеми видами сварки, но склонны к водородной хрупкости. Наилучшие сочетания свойств достигается в a+ -сплавах. Как видно из табл. 23, a+ -сплавы, как правило, содержат алюминий, который, с одной стороны, расширяет область температур, при этом сохраняется стабильность а-фазы, а с другой стороны, повышает термическую стабильность -фазы. Алюминий понижает плотность сплавов, компенсируя увеличение плотности вследствие введения более тяжелых элементов ( -ста-билизаторов). а+ З-спла ВТ6 обладает хорошими механиче-  [c.359]

Первоначально исследовалось главным образом влияние окружающей среды на механические свойства металлических монокристаллов, таких, как олово, свинец, цинк, алюминий, выращиваемых по методу П. Л. Капицы, И. В. Обреимова и методом рекристаллизации. Было установлено, что интенсивность воздействия поверхностно-активных веществ на механические свойства металлических монокристаллов существенно зависит от температуры и скорости деформации (В. И. Лихтман, П. А. Ребиндер и Л. П. Янова, 1947). В то же время при одинаковых температурах и скоростях деформации механические свойства твердых тел и особенно металлов могут меняться в довольно широком диапазоне в зависимости от распределения напряжений внутри образца. Как известно, обычные диаграммы деформации представляют собой усредненные значения сил и деформаций и дают весьма косвенное представление об истинном распределении напряженного и деформированного состояния внутри тела. Количественная сторона этого вопроса весьма сложна, но качественная картина явления довольно полно исследована, начиная по преимуществу с работ Н. Н. Давиденкова (1936). Дело в том, что в процессе деформирования происходит превращение гомогенной механической системы в гетерогенную, причем это превращение заключается в основном в развитии дефектных участков структуры, всегда присутствующих в реальном твердом теле. Как показали эксперименты (В. И. Лихтман и Е. К. Венстрем, 1949), объемное напряженное состояние существенным образом влияет на величину адсорбционного эффекта (например, он возрастает по мере отклонения напряженного состояния вблизи поверхности от состояния всестороннего сжатия см. П. А. Ребиндер, Л. А. Шрейнер и др., 1944, 1949).  [c.434]

Оловянистые бронзы имеют хорошие литейные свойства и особенно малую усадку, поэтому из них изготовляют изделия сложной формы. Бронза с содержанием 10% олова является одним из лучших антифрикционных сплавов. Однако олово является дорогостоящим и дефицитным элементом. Поэтому оловянистые бронзы стараются заменить более дешевыми. Алюминиевые бронзы (содержание алюминия 5—10%) по механическим свойствам и коррозийной стойкости превосходят оловянистые, но обладают большей усадкой. Из алюминиевых бронз изготовляют мелкие ответственные детали — фланцы, втулки, зубчатые колеса и т. д. Другими заменителями оловянис-тых бронз являются кремнистые. Хорошими антифрикционными свойствами обладают свинцовистые бронзы (содержание свинца 30%), они применяются для изготовления сильно нагруженных подшипников. Все большее распространение, особенно в приборостроении, получают бериллиевые бронзы, из которых изготовляют мембраны, пружины и другие детали.  [c.47]



Смотреть страницы где упоминается термин Механические свойства алюминия олова : [c.358]    [c.43]    [c.200]    [c.98]    [c.204]    [c.203]    [c.138]    [c.405]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.250 , c.251 ]



ПОИСК



Алюминий Механические свойства

Алюминий — Свойства

Олово

Олово — Свойства



© 2025 Mash-xxl.info Реклама на сайте