Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения теории ползучести

Уравнение (1.3) является основным уравнением теории ползучести неоднородно-стареющих тел при одноосном напряженном состоянии в случае малых деформаций. Отметим, впрочем, что уравнение (1.3) можно представить и в виде (1.2), если продолжить напряжение (т) нулем при т То х). Кро е того, уравнению (1.3) можно придать иную форму.  [c.14]

При повышенных температурах возникает явление ползучести материала, которое, как известно, приводит с течением времени изменению напряженного состояния тела от начального упругого к состоянию установившейся ползучести. Точное решение конкретных задач с учетом ползучести связано с большими математическими трудностями (сложная структура уравнений ползучести и большого разброса данных). Поэтому при решении рассматриваемой задачи будем исходить из более простых приближенных формулировок основных уравнений теории ползучести.  [c.21]


ОСНОВНЫЕ УРАВНЕНИЯ ТЕОРИИ ПОЛЗУЧЕСТИ  [c.59]

Основные уравнения теории ползучести стареющих тел  [c.443]

Стареющие материалы и среды широко распространены в технике и строительстве. Типичными их представителями являются многие полимеры и пластмассы, бетон, каучук, горные породы, грунты, лед й т. д. Основные уравнения, теории ползучести, выражающие связь между напряжениями и деформациями для наследственных стареющих сред, в случае малых деформаций имеют вид [1, 2]  [c.443]

ОСНОВНЫЕ УРАВНЕНИЯ ТЕОРИИ ПОЛЗУЧЕСТИ В УСЛОВИЯХ СЛОЖНОГО НАПРЯЖЕННОГО СОСТОЯНИЯ  [c.384]

ОСНОВНЫЕ УРАВНЕНИЯ ТЕОРИИ ПЛАСТИЧНОСТИ И ПОЛЗУЧЕСТИ  [c.197]

В параграфе приводятся основные уравнения теории пластической наследственности, связывающие компоненты тензоров деформации и напряжений, с учетом ползучести и старения материала в случае плоского деформированного состояния тела. Решается задача о равновесии полуплоскости, находящейся в условиях нелинейной ползучести, под действием сосредоточенной силы, приложенной нормально к ее свободной поверхности. Доказывается, что решение плоской контактной задачи нелинейной теории ползучести сводится к совместному решению двух связанных между собой интегральных уравнений. Приводятся решения этих уравнений для случаев симметричного и кососимметричного нагружения контактирующих тел.  [c.221]

В третьем разделе приведены основные законы и уравнения теории установившейся и неустановившейся ползучести, методы их применения при расчете элементов конструкций с учетом деформаций ползучести и решения краевых задач, а также методы расчета на прочность стержней, стержневых систем, цилиндров, пластин и дисков, работающих в условиях ползучести. Наиболее подробно рассмотрены законы и уравнения теории ползучести, применяемые при сложном напряженном состоянии твердого деформируемого тела.  [c.12]

Настоящая книга посвящена построению теории ползучести неоднородно-стареющих тел. Она состоит из шести глав. В гл. 1 приводится интегральная форма основных определяющих соотношений между напряжениями и деформациями, т. е. уравнений состояния дается постановка и формулируются условия, которые определяют решения краевых задач теории ползучести для наращиваемых тел, подверженных старению. Исследуется структура ядер ползучести и релаксации, которые отражают наиболее характерные особенности деформирования стареющих материалов во времени. Доказывается ограниченность и асимптотическая устойчивость решения краевой задачи теории ползучести для неоднородно-стареющих тел с односторонними связями.  [c.9]


Настоящая глава посвящена построению теории ползучести неоднородно-стареющих тел. Приводится интегральная форма линейных и нелинейных уравнений состояния, определяющих связь между напряжениями и деформациями. Дается постановка основных краевых задач теории ползучести для наращиваемых тел, подверженных старению. Исследуется структура ядер ползучести и релаксации, отражающих наиболее характерные особенности деформирования стареющих материалов во времени. Устанавливаются достаточные условия ограниченности и асимптотической устойчивости решений краевой задачи теории ползучести для неоднородно-стареющих тел с односторонними связями как внутри, так и на границе этих тел.  [c.12]

Основная задача нелинейной теории ползучести неоднородно-стареющих тел состоит в установлении определяющих уравнений, связывающих механические параметры состояния — напряжения и деформации. В этих уравнениях связь между деформациями ползучести и напряжениями будет нелинейной, что справедливо в широкой области изменения напряжений для многих стареющих материалов [98, 388].  [c.21]

Уравнения состояния (2.5), (2.6) или (2.8) являются основными определяющими уравнениями нелинейной теории ползучести для неоднородно-стареющих тел при объемном напряженном состоянии в случае малых деформаций. Рассмотрению нелинейных соотношений общего вида теории вязкоупругости, а также исследованию специальных частных случаев посвящены работы [334-336, 371, 418].  [c.25]

Возвращаясь к основным определяющим уравнениям (2.5), (2.6) и (2.8) нелинейной теории ползучести неоднородно-стареющих тел, отметим следующее. Для стареющих материалов, у которых время упругого последействия или время релаксаций зависит от напряжений а, кривые ползучести, на основе которых  [c.25]

Экспериментальные исследования [231, 233] показали, что при достаточно длительном приложении нагрузки кривые ползучести, полученные на образцах, загруженных водном и том же возрасте, перестают быть аффинными, а нелинейность деформации ползучести с течением времени смягчается . Основной причиной этого явления является рост прочности материала с течением времени, т. е. развитие процесса его старения и соответствующее увеличение области линейной ползучести. Однако эта тенденция в старом возрасте материала продолжается уже неинтенсивно. Путем модификации определяющих уравнений нелинейной теории ползучести рядом авторов [119, 469, 530] были предложены разные пути для учета влияния старения материала на снижение нелинейности деформации ползучести.  [c.26]

Непрерывное наращивание. Сформулируем постановку и приведем основные уравнения краевой задачи теории ползучести для неоднородно-стареющих тел при их непрерывном наращивании [21]. Пусть неоднородно-стареющее тело, материал которого обладает свойствами ползучести, занимает область 2. Известно, что оно изготовлено к моменту времени о = 0 и загружено в момент времени 0. Далее, начиная с некоторого момента времени I То, это тело непрерывно наращивается элементами материала различного возраста.  [c.32]

Отсутствие общей теории ползучести вынуждает исследователей осуществлять описание общих закономерностей процесса с помощью уравнений феноменологического типа, в которых в максимально возможной степени отражено влияние ведущих физических процессов и учтены основные представления механики твердого тела о ползучести материалов.  [c.81]

При решении задач ползучести и устойчивости гибких оболочек используем физические зависимости теории течения в сочетании с гипотезами течения и упрочнения, Анизотропию при ползучести следует учитывать исходя из основных положений анизотропной теории пластичности [9, 69], в частности из модифицированных уравнений изотропной ползучести при сложном напряженном состоянии. Эти модификации состоят во введении параметров анизотропии, что эквивалентно замене интенсивности скоростей деформаций и напряжений на соответствующие квадратичные формы, в которые входят параметры анизотропии, а также в формулировке определенных условий и гипотез.  [c.15]


Техническая теория гибких упругопластических оболочек развита в работах [24, 26] техническая теория ползучести тонких оболочек при малых прогибах с использованием деформационной теории и гипотезы старения — в работах [8, 9]. Дифференциальные уравнения ползучести гибких пологих оболочек с физическими соотношениями, линеаризованными относительно основного безмоментного состояния, приведены в работе [18].  [c.16]

Различия в модельных представлениях о свойствах тела, которые используются в каждом из перечисленных выше разделов механики деформируемого твердого тела, порождают существенные различия в методах исследования. Каждый их этих разделов механики деформируемого твердого тела имеет свою историю, свой предмет изучения и метод исследования. Именно это и дает основание рассматривать теорию упругости, теорию пластичности и теорию ползучести как самостоятельные науки. Конечно, в этих науках сохранилось и много общего -структура и содержание основных уравнений отличие связано с формулировкой физических соотношений, которыми устанавливается связь между напряжениями и де рмациями.  [c.18]

Основные уравнения связи между напряжениями и деформациями зависят от конкретных соотношений пластичности и поЛ зучести, положенных в основу расчета. Наиболее разработанными и широко используемыми являются теории пластичности и ползучести деформационного типа, а также теории пластического течения и упрочнения. Основные положения этих теорий достаточно известны [49, SI, 52, 102 и др.]. В гл. 3 приведены только уравнения, необходимые для конкретных расчетов.  [c.68]

Главное, что будет излагаться в этой книге, по существу, состоит из трех основных частей 1) основные понятия о перемещениях, внутренних напряжениях, деформациях и работе внутренних сил, а также о процессе нагружения малого элемента твердого тела 2) основные механические свойства твердых тел, такие, как упругость и идеальная пластичность, текучесть, ползучесть и релаксация, вязкость и динамическое сопротивление, усталость и разрушение 3) основные кинематические и геометрические гипотезы, упрощающие математическую постановку задач о напряжениях, деформациях, перемещениях и разрушениях твердых тел при различных внешних воздействиях, а также основные уравнения и методы решения задач о деформации и прочности тел. Методы сопротивления материалов отличаются от более строгих методов теории упругости и пластичности в основном введением ряда упрощающих предположений кинематического и геометрического характера и, тем не менее, в большинстве случаев оказываются достаточно точными.  [c.12]

Если, например, исходить из предположения, что ползучесть материала описывается общим соотношением теории упрочнения, то основные уравнения, лежащие в основе модели смешанного разрушения, будут записываться следующим образом  [c.199]

В работах [17, 55, 66, 73] приводятся решения некоторых плоских и осесимметричных контактных задач о вдавливании без трения жесткого штампа в двухслойное стареющее вязкоупругое основание. Предполагается, что верхний слой тонкий относительно области контакта, неоднородно-стареющий реологические свойства нижнего слоя описываются уравнениями линейной теории ползучести стареющих материалов слои жестко сцеплены между собой область контакта не изменяется с течением времени. В зависимости от соотношений между модулями упругомгновенных деформаций слоев смешанные задачи сводятся к интегральным уравнениям первого или второго рода, содержащим операторы Фредгольма и Вольтерра. Используемый для их решения аналитический метод (см. 9, гл. 1) позволил построить разложения для основных характеристик контактного взаимодействия при произвольным образом меня-  [c.465]

Решение основного интегрального уравнения плоской контактной задачи нелинейной теории ползучести  [c.236]

Обобщены основные законы и уравнения теории пластичности и ползучести при стационарных и нестационарных режимах нагружения. Приведены общие методы решения основных типов краевых задач.  [c.2]

Последняя, седьмая, глава посвящена исследованию контактных задач вязкоупругости для полосы с тонким покрытием вин-клеровского типа. В ней даны основные уравнения теории ползучести неоднородно-стареющих и нелинейно-стареющих тел получено асимптотическое решение задачи о равновесии на жестком основании топкого стареющего слоя. Далее, на основе этих результатов поставлена и решена контактная задача для составного неоднородно-стареющего по глубине основания (винкле-ровское покрытие на полосе или полуплоскости). Наконец, рассмотрена задача о вдавливании штампа в упругий слон, армн )о-  [c.13]

Таким образом, та предпосылка в современных теориях ползучести, согласно которой бетон рассматривается как изотропный материал, приемлема только для тяжелых бетонов. Что касается легких бетонов, то для них основные уравнения теории ползучести должны быть построены с учетом ортотропности бетона.  [c.164]

Рассмотрим основные уравнения установившейся ползучести. Уравнения теории напряжений и теории деформации остаются теми же, что и в теории упругости и пластичности. Это дифференциальные уравнения равновесия (4, Г), условия на поверхности (4.2), геометрические соотношения Хоши (4.С) и уравнения неразрывности 4.4).  [c.253]


Основным недостатком теории старения является отрицание влияния истории нагружения. Из уравнения (98) следует, что в момент времени t данному папрягкепию соответствует определенная деформация ползучести. Следовательно, если напряжение мгновенно возрастет, то должна мгновенно увеличиться и деформация ползучести, что, конечно, нроизо11ти не может. Более правильно считать, как это делается в других теориях ползучести, что при мгно-  [c.133]

Приведенные данные позволяют сделать предположение о том, что деформационные свойства в прямой форме не зависят от скорости в рассматриваемом диапазоне скоростей деформирования, а основное значение имеет рремя деформирования при повышенной температуре. В соответствии с этим можно предложить свести реологические уравнения состояния к уравнениям теории старения [300, 306]. Применительно к ползучести теория старения выражает  [c.90]

В монографии обобщены теоретические и экспериментальные исследования пластичности, ползучести и долговечности материалов при простых и сложных нестационарных нагружениях. Экспериментально показано, что основные гипотезы теории пластичности, ползучести и долговечности при сложных нестационарных процессах нагружения нарунгаются. Дана оценка влияния различных параметров сложности нагружения на основные характеристики пластичности, ползучести и долговечности. Приведены обобщающие уравнения и критерии предельного состояния материалов при сложных процессах нагружения.  [c.440]

В отличие от изложенной выше теории, основанной на использовании теории ползучести старения, рассматриваемая задача о деформациях оболочки твэла поставлена в рамках более совершенной теории ползучести течения. Это приводит к появлению неэрмнтовых операторов в основном и сопряженном уравнениях, описывающих деформирование оболочки. Получим вначале основные уравнения процесса.  [c.130]

Отметим, что при f = tq из общ1его решения основных уравнений плоской контактной задачи нелинейной теории ползучести (1.58) и  [c.236]

Для расчета элементов конструкций, работающих в упругопластической области при переменных нагружениях и температуре, применяются законы и уравнения циклической пластичности, изложенные в монографиях В. В. Москвитина, Ю. Н,Шевченко, Г. С. Писаренко, Н. С. Можаровского, Е. А. Антипова, С. В. Се-ренсена, Р. М. Шнейдеров и ча, А. П. Гусенкова и др. Уравнения получены в предположении, что при данных нагрузке и температуре напряженное и деформированное состояния твердого тела не претерпевают изменений с течением времени. В действительности напряжения и деформации деформируемого тела при данных нагрузке и температуре с течением времени изменяются. Задачи с такими условиями решаются при помощи теории ползучести. Основные законы и уравнения, описывающие явления ползучести материала твердого деформируемого тела, приведены в монографиях и учебниках Ю. Н. Работнова, С. Т. Милейко, Н. X. Арутюняна, И. И. Гольденблатта, Н. Н, Малинина, И. А. Одинга и др.  [c.11]

В первом разделе рассмотрены основные законы и общие уравнения механики твердого деформируемого тела, применяемые в теории пластичности и ползучести. Особое внимание уделено теориям полей напряжений и деформаций, а также векторному представлению процесса нагружения в точке упругопластически деформируемого тела как в пространстве напряжений, так и в пространстве деформаций. Приведены основные законы и уравнения теории пластичности, показано их применение при решении краевых задач. Обобщены методики приложения теории пластичности к расчету на прочность стержней и стержневых систем, цилиндров, оболочек дисков и пластин. Рассмотрено предельное состояние элементов конструкций.  [c.12]

Основные уравнения связи между напряжениямиг деформациями, скоростями деформаций и временем в теории ползучести при линейном напряженном состоянии  [c.344]

Использовались разные теории ползучести, и при вычислениях, как правило, требующих реализации на ЭВЦМ, принимались те или иные упрощающие предположения. Так, в работах Л. М. Куршина, а также Э. И. Григолюка и Ю. В. Липовцева использовались уравнения ползучести, линеаризованные около основного безмоментного состояния.  [c.149]


Смотреть страницы где упоминается термин Основные уравнения теории ползучести : [c.165]    [c.126]    [c.89]    [c.97]   
Смотреть главы в:

Длительная прочность в машиностроении  -> Основные уравнения теории ползучести



ПОИСК



Теории Уравнения

Теория ползучести

Уравнение основное

Уравнение ползучести

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте