Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сведение уравнений в частных производных к обыкновенным дифференциальным уравнениям

Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]


В дальнейшем придется часто встречаться с такого рода случаями возможности сведения уравнений в частных производных к обыкновенным дифференциальным уравнениям. В этих случаях решение представляется в функции от одного аргумента, который является некоторым сочетанием основных аргументов задачи. Постоянным значениям этого сложного аргумента соответствуют целые многообразия решений по отдельным аргументам, которые можно рассматривать как подобные между собой. По этой причине вообще решение дифференциального уравнения в частных производных, выраженное в функции одного сложного аргумента, представляющего одночленную совокупность аргументов, содержащихся в постановке задачи, и удовлетворяющее обыкновенному дифференциальному уравнению, к которому в этом случае приводится основное уравнение в частных производных, носит наименование автомодельного (в заграничной литературе — подобного) решения, а сама задача называется автомодельной.  [c.153]

Сведение уравнений в частных производных к обыкновенным дифференциальным уравнениям  [c.187]

Наиболее распространенным типом точных решений являются подобные или автомодельные решения уравнений Стокса. Как уже неоднократно упоминалось, под этим подразумеваются решения таких задач, которые допускают сведение дифференциальных уравнений в частных производных к таким же уравнениям, но с меньшим числом переменных, а в частном случае двух переменных к обыкновенным дифференциальным у р а в н е i I и я. м.  [c.534]

Сведение системы уравнений в частных производных к системе обыкновенных дифференциальных уравнений упрощает процедуру численного решения задачи и позволяет использовать в методе характеристик численные методы решения обыкновенных дифференциальных уравнений. При численном решении уравнений направления и совместности обычно используют итерационный метод, в этом случае первая итерация соответствует методу Эйлера, а вторая и последующие — методу Эйлера с пересчетом, что обеспечивает второй порядок точности численного решения.  [c.112]

Столь же перспективными для решения нелинейных задач динамики оказываются и вариационные методы сведения уравнений в частных производных к системам обыкновенных дифференциальных уравнений.  [c.351]

Изучение автомодельных движений представляет большой интерес. Возможность сведения системы уравнений в частных производных к системе обыкновенных дифференциальных уравнений для новых функций — представителей, чрезвычайно упрош ает задачу с математической точки зрения и в ряде случаев позволяет находить точные аналитические решения.  [c.616]


Уравнения автомодельного движения. Для определения поля скоростей и линий тока в струе эжектируемого воздуха воспользуемся известным в теории ламинарного пограничного слоя методом аффинных преобразований, сводящим систему дифференциальных уравнений в частных производных к одному обыкновенному дифференциальному уравнению, решение которого намного проще. Возможность сведения рассматриваемой задачи к автомодельной облегчается эмпирическим характером зависимости Рь допускающим некоторый произвол в выборе конкретной функциональной связи. Пусть, например, распределение твердых частиц в струе определяется экспоненциальной зависимостью вида (4). Гидродинамическое уравнение пограничного слоя при этом примет вид  [c.163]

Весьма привлекательна идея сведения обыкновенного дифференциального уравнения к алгебраическому, уравнения в частных производных с двумя аргументами к обыкновенному, уравнения в частных производных с п аргументами к уравнению также с частными производными, но с п — 1 аргументами, поскольку уменьшение числа аргументов в уравнении, как правило, упрощает отыскание его решения. Добиться уменьшения числа аргументов любого из перечисленных дифференциальных уравнений (в случае их линейности) принципиально возможно с помощью интегрального преобразования. Разберемся в этом вопросе на примере обыкновенного линейного дифференциального уравнения с постоянными коэффициентами, содержащего единственный аргумент t, исключение которого трансформирует дифференциальное уравнение в алгебраическое. Операторный метод весьма эффективен и находит широкое применение, например, в некоторых задачах теплопроводности [15]. В данной главе для иллюстрации метода приведены решения задач о прогреве тел простой формы стержня полубесконечного и стержня конечных размеров, а также круглой пластины.  [c.193]

В обычно применяемых методах определение движения свободной точки в пространстве под влиянием ускоряющих сил состоит в интегрировании трех обыкновенных дифференциальных уравнений второго порядка, а определение движения системы свободных точек, взаимно притягивающихся или отталкивающихся, — в интегрировании системы подобных уравнений, число которых втрое больше числа притягивающихся или отталкивающихся точек, если только мы предварительно не уменьшим это последнее число на единицу, рассматривая только относительные движения. Таким образом, в солнечной системе, если мы рассматриваем только взаимные притяжения Солнца и десяти известных планет [ ], определение движений последних относительно первого при помощи обычных методов сводится к интегрированию системы тридцати обыкновенных дифференциальных уравнений второго порядка, связывающих координаты и время, или же, при помощи преобразования Лагранжа, — к интегрированию системы шестидесяти обыкновенных дифференциальных уравнений первого порядка, связывающих время и эллиптические элементы. При помощи этих интегрирований тридцать переменных координат или шестьдесят переменных элементов могут быть найдены, как функции времени. В методе, предложенном в данной работе, задача сводится к отысканию и дифференцированию единственной функции, которая удовлетворяет двум уравнениям в частных производных первого порядка и второй степени подобным же образом всякая другая динамическая задача, относящаяся к движениям (как бы многочисленны они не были) любой системы притягивающихся или отталкивающихся точек (даже если мы предполагаем, что эти точки ограничены какими-либо условиями связи, совместными с законом живой силы), сводится к изучению одной центральной функции, форма которой определяет и характеризует свойства движущейся системы и определяется двумя дифференциальными уравнениями в частных производных первого порядка в сочетании с некоторыми простыми соображениями. Таким образом, по крайней мере интегрирование многих уравнений одного класса заменяется интегрированием двух уравнений другого класса, и даже если считать, что этим не достигается никакого практического облегчения, тем не менее можно получить некое интеллектуальное наслаждение от сведения, пожалуй, самого сложного из всех исследований.  [c.176]


Общая схема сведения. Поскольку непосредственный анализ устойчивости по уравнениям в частных производных затруднителен, то в прикладных расчетах их обычно сводят к системам обыкновенных дифференциальных уравнений. Для этого функции U (х, t) разлагают по некоторому базису с коэффициентами — функциями времени.  [c.248]

В математической физике методы приближенного решения дифференциальных и интегральных уравнений, основанные на сведении задач к решению системы алгебраических уравнений, принято называть прямыми методами. Прямые методы широко применяют непосредственно для построения приближенных решений задач, описываемых обыкновенными дифференциальными уравнениями и уравнениями в частных производных, а также вариационных задач, к которым сводятся соответствующие задачи математической физики.  [c.115]

Сведение уравнений пограничного слоя к обыкновенным дифференциальным уравнениям. Приведенные в п. 2.3 уравнения пограничного слоя являются нелинейными дифференциальными уравнениями в частных производных, которые трудно решить. Исключение составляют некоторые специальные случаи, когда достаточное число членов можно опустить, чтобы свести уравнения к обыкновенным дифференциальным уравнениям, например течение Куэтта, течение в трубе. Имеются, к счастью, и другие случаи, когда эти уравнения можно свести к обыкновенным дифференциальным уравнениям. Это происходит тогда, когда существует естественная система координат s, т], связанная с декартовой системой S, у соответствующими преобразованиями, в которой производные зависимых переменных разделяются, в результате чего получаются обыкновенные дифференциальные уравнения.  [c.43]

Стандартным приемом решения системы уравнений (6.4) и (6.5) в частных производных при толщине h, не зависящей от координаты ф, является сведение ее к системе обыкновенных дифференциальных уравнений путем разложения искомых функций и нагрузок в тригонометрические ряды по угловой координате ф  [c.292]

Таким образом, метод интегральных соотношений как разновидность проекционных методов решения уравнений в частных производных является обобщением метода прямых и инженерного метода сосредоточенных параметров. Решение разбивается на два этапа. Первый этап состоит в сведении точной системы уравнений в частных производных к аппроксимирующей системе обыкновенных дифференциальных уравнений. На втором этапе проводится численное решение этой аппроксимирующей системы каким-либо из стандартных методов (обычно методом Рунге—Кутта). При этом приведение системы обыкно1венных дифференциальных уравнений типа (7-46) к канонической форме может быть легко осуществлено непосредственно программой.  [c.96]

Основная идея метода прямых состоит в сведении решения краевой задачи для уравнения с частными производными к решению обыкновенных дифференциальных уравнений. В газовой динамике существует два численных метода, являющихся обобщением метода прямых метод интегральных соотношений Дородницына и метод Теленина, Эти методы используют в основном для решения внешних задач газовой динамики.  [c.180]

Для расчета оболочек вращения, а также оболочек с прямоугольным параметрическим планом широко используется аппроксимация системы дифференциальных уравнений в частных производных системой в обыкновенных производных и метод Ньютона. Линеаризованная краевая задача решается сведением ее к ряду задач Коши с дискретной ортогонализа-цней по Годунову [90, 91, 134, 186, 187]. Такой подход позволяет построить эффективные алгоритмы числеииого изучения прочности, устойчивости, собственных и вынужденных колебаний оболочек с учетом геометрической и физической нелинейностей задачи. Развитая в последующих главах методика  [c.24]

Теорема Якоби сводит решение системы обыкновенных дифференциальных уравнений (5) к отысканию полного инте1рала уравнения в частных производных (4). Может показаться удивительным, что такое сведение более простого к более сложному доставляет эффективный метод решения конкретных задач. Между тем оказывается, что это — самый сильный из сущ ествую111 11х методов точного интегрирования, и многие задачи, решенные Якоби, вообще не поддаются решению другими методами.  [c.229]


Смотреть страницы где упоминается термин Сведение уравнений в частных производных к обыкновенным дифференциальным уравнениям : [c.182]    [c.243]    [c.6]   
Смотреть главы в:

Расчет машиностроительных конструкций методом конечных элементов  -> Сведение уравнений в частных производных к обыкновенным дифференциальным уравнениям



ПОИСК



Дифференциальное уравнение в частных производных

Дифференциальные в частных производных

Дифференциальные уравнения обыкновенные

К п частный

Луч обыкновенный

Обыкновенные дифференциальные

Производная

Производная частная

Уравнение в частных производных

Частные производные



© 2025 Mash-xxl.info Реклама на сайте