Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамика воды

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ВОДЫ И СИСТЕМ МЕТАЛЛ — ВОДА  [c.36]

Для некоторых веществ, наиболее широко применяемых в технике и науке, подобные данные сведены в обширные таблицы, показывающие числовые значения многих свойств в удобной для применения форме. Так, например-, имеются та блицы термодинамических свойств (т. е. свойств, обычно используемых в термодинамике) воды, двуокиси углерода и некоторых других веществ.  [c.36]

Для задач технической термодинамики важно не абсолютное значение внутренней энергии, а ее изменение в различных термодинамических процессах. Поэтому начало отсчета внутренней энергии может быть выбрано произвольно. Например, в соответствии с международным соглашением для воды за нуль принимается значение внутренней энергии при температуре 0,01 °С и давление 610,8 Па, а для идеальных газов — при  [c.12]


Хотя и можно было легко сделать качественные наблюдения, однако объяснение их оставалось неясным и запутанным, примером чего может служить теория теплорода, которая рассматривала теплоту как жидкость, аналогичную воде. Только с про-— ведением количественных измерений в течение последних двух столетий понятие энергия было выяснено и точно определено. Теперь можно экспериментально показать, что масса и энергия взаимно превращаемы и что общая масса и энергия сохраняются при всех известных превращениях. Понятие сохранения массы и энергии теперь принято как основной закон термодинамики.  [c.30]

Наконец, одним из практических методов защиты металлов от коррозии является создание условий, уменьшающих или полностью исключающих возможность протекания коррозионного процесса (применение защитных газовых атмосфер, обескислороживание воды, катодная защита), которые могут быть рассчитаны с помощью термодинамики.  [c.11]

Грандиозные перспективы развития советской теплоэнергетики ставят перед термодинамикой обширные задачи по исследованию теплофизических свойств воды и водяного пара при сверхвысоких давлениях — до 2000 am и температурах пара до 1000° С. Методы этих исследований можно будет распространить и на опре-  [c.6]

Особенность кривой затвердевания для воды определяется ее так называемой аномальностью по сравнению с другими жидкостями. Более подробно об аномальности воды говорится в специальных курсах термодинамики и физики.  [c.177]

В термодинамике энтальпию и энтропию воды в состоянии, соответствующем тройной точке, принимают равными нулю  [c.178]

Вода при 0° С и окружающая среда при 25°С образуют теплоизолированную систему, над которой производится работа А, увеличивающая степень ее неравновесное . Ввиду теплоизолированное системы А = Д( + EQ), где Я—внутренняя энергия воды, "о—окружающей среды. По первому закону термодинамики  [c.119]

Воспользуемся в изобарном процессе подогрева воды первым законом термодинамики, по которому  [c.112]

В термодинамике довольно часто пользуются понятием чистого вещества и смеси (или раствора). Под чистым принято понимать вещество, все молекулы которого одинаковы. К таким веществам относятся вода, азот, кислород и т. д.  [c.22]

Все приведенные постулаты второго начала термодинамики эквивалентны между собой и все отражают необратимость реальных процессов. Одновременно эти формулировки (особенно последняя) утверждают и невозможность построения вечного двигателя второго рода, который способен был бы работать без разностей температур, т. е. при наличии только одного источника теплоты. Если бы такой двигатель можно было построить, то он работал бы, например, за счет охлаждения атмосферы воздуха, воды в океане и т. п. Утверждение принципа о невозможности построения вечного двигателя второго рода также может служить формулировкой второго начала термодинамики.  [c.56]


Различают два вида жидкостей жидкости капельные и жидкости газообразные. Капельные жидкости представляют собой жидкости, встречающиеся в природе и применяемые в технике вода, нефть, бензин и т. д. Все капельные жидкости оказывают большое сопротивление изменению объема и трудно поддаются сжатию. При изменении давления и температуры их объем изменяется весьма незначительно. Наоборот, газообразные жидкости (газы) изменяют свой объем под влиянием указанных факторов в значительной степени. В гидравлике обычно изучаются капельные жидкости, в дальнейшем для краткости называемые просто жидкостями. Газообразные жидкости, их свойства и применение рассматриваются в соответствующих специальных дисциплинах — термодинамике и аэромеханике.  [c.7]

Подогрев воды при постоянном давлении. Для процесса подогрева воды массой 1 кг уравнения теплоты и первого закона термодинамики можно представить в форме  [c.89]

М. Планк дал эту формулировку в своем курсе термодинамики, первое издание которого вышло в 1897 г. всего в Германии было 10 изданий, из них на русский язык переведено три 1898, 1900 и 1925 года изданий. Близкую по смыслу формулировку дал ранее (1851 г.) В. Томсон (лорд Кельвин)—один из создателей второго закона термодинамики. Вторым считают Р. Клаузиуса (1850 г.). Однако В. Томсон и Р. Клаузиус развили и обобщили идеи С. Карно, изложенные им в его знаменитом сочинении Размышления о движущей силе огня и о машинах, способных развивать эту силу (1824 г.). С. Карно считал, что тепловая машина не поглощает тепло, превращая его в работу, а передает его холодному телу, подобно тому, как вода, падая из верхнего резервуара в нижний, совершает на своем пути работу. Это и есть основная идея второго закона.  [c.39]

Существование энтропии позволяет ввести так называемую тепловую диаграмму — Т — з-диаграмму (рис. 3.7). На оси ординат наносят значения термодинамической температуры от абсолютного нуля, на уровне Т=0 К проводят ось абсцисс, которую снабжают масштабом энтропии з, кДж/(кг-К). Вопрос о начале отсчета энтропии решается третьим законом термодинамики. В технической термодинамике в подавляющем больщинстве случаев представляет интерес приращение энтропии, поэтому начало отсчета на оси энтропии выбирают по соглащению (например, на энтропийных диаграммах для воды считают, что з=0 при /= = 0,01 °С) или же такое начало отсутствует вообще.  [c.65]

Вода используется в качестве теплоносителя, поэтому необходимо определять теплоту в процессе изменения ее состояния и необходимые для этого термодинамические параметры. Согласно первому закону термодинамики теплота произвольного элементарного процесса определяется выражением dq — dh—vdp , подставляя сюда величину dh, согласно зависимости к=1г р, Т), получим  [c.122]

Основными проблемами для технической термодинамики традиционно считают изучение закономерностей превращения теплоты в работу. Типичный способ такого превращения включает два этапа подвод теплоты к рабочему телу с целью увеличения его внутренней энергии и расширение рабочего тела (чаще всего адиабатное) с целью получения работы. Поскольку превращение теплоты в работу осуществляется непрерывно (циклически), имеются и другие этапы, которые подробно рассмотрены в гл. 8. Расширение рабочего тела (газа или пара) часто осуществляется при истечении из сопла — канала, в котором происходит увеличение скорости потока. Высокоскоростной поток газа взаимодействует затем с лопатками турбины, в результате чего от потока отводится техническая работа. Так работают паровые и газовые турбины. Кинетическая энергия выходящего из сопла потока может использоваться и для других целей, например для создания направленного движения воздуха в отапливаемой или вентилируемой зоне, для дробления воды или жидкого топлива в пневматических форсунках, для создания горючей смеси на  [c.174]

В калориметрах пар охлаждается и конденсируется за счет отдачи теплоты охлаждающей воде. Температуру конденсата, выходящего из калориметра, измеряют, а сам конденсат, предварительно охлажденный в холодильниках 15, собирают и взвешивают. Таким образом, в этом калориметре температура пара очень сильно изменяется (на 400—700 °С) и изменяется агрегатное состояние вещества. Тем не менее основные расчетные формулы, выведенные ДЛЯ проточных калориметров, справедливы и для этого случая, так как уравнение первого начала термодинамики (6.13), из которого эти формулы получены, не имеет ограничений. Количество теплоты, отданное паром,  [c.207]


Как известно, функции и, i к s могут быть найдены с помощью дифференциальных уравнений термодинамики, если известно уравнение состояния. Полученные таким образом формулы для вычисления искомых функций по заданным значениям параметров (v, р и Т) столь сложны, что для практических расчетов не могут быть применены. По этим формулам обычно составляют таблицы перегретого пара. В приложении 6 даны такие сокращенные таблицы. В них приведены значения и, f и s для разных давлений и температур перегретого водяного пара, там же приведены значения параметров воды и перегретого пара.  [c.165]

Часть пара среднего давления pi с температурой Г, направляется в абсорбер I и часть —в испаритель VII. В абсорбере при давлении р, происходит поглощение пара раствором, концентрация которого поддерживается на уровне (рис. 156, б). Абсорбция пара сопровождается выделением теплоты абсорбции, благодаря чему в абсорбере устанавливается температура T, > i. Основное количество теплоты абсорбции непрерывно отводится из абсорбера благодаря циркуляции раствора под действием насоса VI через генератор пара высокого давления III. В генераторе теплота используется для испарения воды при температуре T. > Ti и давлении насыщения p< > pi, соответствующем. этой температуре. Получение пара с температурой эквивалентно передаче теплоты от менее нагретого тела к более нагретому. В соответствии со вторым законом термодинамики это сопровождается пере-  [c.353]

Если на диаграмме v—р нанести точки, отображающие начало процесса кипения воды при различных давлениях, и соединить эти точки между собой, го получим кривую линию, называемую нижней пограничной кривой. Из способа построения этой кривой следует, что она представляет собой геометрическое место точек, отображающих на диаграмме v—р состояния начала кипения воды при различных давлениях. На рис. 10-2 нижняя пограничная кривая проходит через точки и/, Vi, V3 и К (через v в термодинамике обозначают удельный объем кипящей воды).  [c.102]

Количество тепла в, необходимое для нагрева 1 кг воды при постоянном давлении от 0°С до произвольной температуры t, меньшей температуры кипения согласно первому закону термодинамики, равно  [c.103]

Значения энтальпии, энтропии и удельных объемов некипящей воды и перегретого пара находят по таблицам, которые в данном учебнике не приведены, но имеются в ряде учебников и пособий по технической термодинамике.  [c.107]

В природе и в промышленных установках протекают процессы обмена различных объектов энергией и массой (иногда применяют вместо термина обмен — перенос). Самым распространенным явлением тепло-и массопереноса в природе является испарение воды в океанах, протекающее за счет солнечной энергии химическое вещество Н2О покидает жидкую фазу (воду океана) и поступает в газообразную (воздух). Процесс сушки сырых материалов является типичным примером тепло- и мас-сообмена в промышленных процессах. Удаление влаги осуществляют в сушильных установках в результате теплообмена материала с горячим воздухом или горячей газо-воздушной смесью и при этом тепло- и массообмен протекают совместно. Тепло- и массообмен может происходить не только в физических процессах, по часто сопровождается и химическими реакциями. Процесс горения и газификации твердого топлива в промышленных топках и газогенераторах является примером тепло-и массообмена в таких устройствах. Процессы тепло- и массообмена сложны по своей природе, они связаны с движением вещества — конвективной (молярной) и молекулярной диффузией и определяются законами аэродинамики и газодинамики, термодинамики, передачи энергии в форме тепла, передачи лучистой энергии и превращением ее в теплоту и наоборот.  [c.133]

С целью повышения экономичности установки котел обычно дополняют пароперегревателем (Л4), водяным экономайзером (А6) и воздухоподогревателем А7). Пароперегреватель предназначается для повышения температуры производимого в котле пара, что, как известно из термодинамики, приводит к повышению к. п. д. термодинамического цикла паросиловой установки. Водяной экономайзер и воздухоподогреватель устанавливают для лучшего использования тепла сгоревшего топлива. В водяном экономайзере в результате использования тепла уходящих из котла дымовых газов происходит подогрев питательной воды перед поступлением ее в котел. В воздухоподогревателе оставшимся теплом дымовых газов подогревается воздух, подаваемый в топку для сжигания топлива, что существенно улучшает процесс горения.  [c.250]

Из курса термодинамики известно, что термический к. п. д. паровой турбины тем выше, чем ниже температура пара в конце расширения. Для получения низкой температуры в выпускном патрубке турбины, как следует из свойств водяного пара, давление должно быть ниже атмосферного, т. е. должен быть создан вакуум. Это достигается в результате конденсации отработавшего пара, охлаждаемого циркуляционной водой образующийся конденсат откачивается насосами. При конденсации скрытая теплота парообразования отработавшего пара воспринимается циркуляционной водой, температура которой повышается.  [c.362]

Таким образом, в идеале предельно допустимой с точки зрения термодинамики коррозионного процесса концентрацией кислорода в воде при показателе pH = 9 следует считать 28 Ю мг/л. Концентрация ионов железа в этих условиях составит [Ре ] = = 5 10" г-ион/л и [Ре ] = 10 г-ион/л.  [c.59]

После Великой Октябрьской социалистической революции в нашей стране широкое развитие колучили исследования в области термодинамики м других теоретических основ теплотехники. Особо следует отметить большие работы таких научных учреждений, как Всесоюзный теплотехнический институт им. Ф. Э. Дзержинского, Центральный котлотурбинный институт им. И. И. Ползунова, Энергетический институт им. Г. М. Кржижановского АН СССР, Московский энергетический институт. Центральный аэрогидродина-мический институт и ряддругих. Были проведены экспериментально обоснованные расчеты рабочих процессов двигателей внутреннего сгорания, газовых течений и разработаны теории расчета газотурбинных и ракетных двигателей. Проводились обширные исследования теплофизических свойств большого количества рабочих тел (вода, ртуть, холодильные агенты, жидкие горючие и окислители). Водяной пар, имеющий широкое применение в теплоэнергетике, исследовался весьма тщательно в больших диапазонах давлений и температур. Здесь следует выделить работы М. П. Вукаловича,  [c.8]


XI Генеральная конференция по мерам и весам и ГОСТ 8550—61 решили определять термодинамическую шкалу температур [юсред-ством тройной точки воды, где в равновесном состоянии на) одится лед, вода и водяной пар, и приписать ей значение Т = 273,16 К. Во всех формулах термодинамики необходимо подставлят11 абсолютную температуру по шкале Кельвина,  [c.17]

В термодинамике в качестве рабочих тел кроме чистых веществ, имеющих одинаковые молекулы, часто используют однородные смеси этих веществ (растворы). Примером чистых веществ являются кислород, водород, аммиак, вода и др. Смеси состоят из нескольких чистых веществ, называемых компонентами смеси, которые не вступают друг с другом в химические реакции. Типичным примером однородной газовой смеси может служить атмосферный воздух, состоящий из азота, кислорода и ряда других газов. Примерами однородных смесей (растворов), используемых в холодильных машинах, являются азеотропные смеси (R500, R501, R502, Л1 и др.), в абсорбционных машинах — смесь воды и бромида лития, в абсорбционно-диффузионных — смесь аммиака, воды и водорода.  [c.120]

Процесс нагрева 1 кг воды от точки М при давлении р, происходит вначале по изобаре Ма, практически совпадающей с пограничной кривой X = 0. Количество подведенной теплоты при этом характеризуется площадью Ma loM и в соответствии с первым началом термодинамики (процесс р = idem) равно  [c.66]

Согласно нулевому началу термодинамики, каждому равновесному состоянию термодинамической системы соответствует определенное значение температуры (см. пример 2.1). Численное значение эмпирической температуры зависит не только от состояния термодинамической системы, но и от свойств термометрического вещества. Если, например, использовать для получения эмпирической шкалы две реперных точки (франц. repere — метка, исходная точка), соответствующих состоянию таяния льда н состоянию кипения воды, разбив промежуток между ними на 100 равных частей, то некоторому промежуточному состоянию 1 будут соответствовать различные числовые значения эмпирических температур-  [c.83]

Данные рис. 5, а также зависимость коррозии металлов в морской воде от различных факторов показьшают, что предсказать совместное влияние всех факторов затруднительно. Так, повышение температуры в соответствии с законами термодинамики должно приводить к увеличению скорости коррозии. Однако при рассмотрении морской коррозии необходимо зл)есть одновременное влияние других факторов при повышении температуры. Растворимость кислорода при этом падает, биологическая активность возрастает, а образование защитного известкового осадка облегчается. Поэтому конечный результат совместного влияния нескольких факторов может быть выявлен только в результате самостоятельных исследований в каждом конкретном случае. При этом суммарное воздействие факторов, влияющих в одинаковом направлении, обычно больше суммы воздействий каждого фактора в отдельности.  [c.18]

Процессами, протекающими во влажном воздухе, рассматриваемыми в технической термодинамике, являются процессы сушки материалов, охлаждения газов в хвостовых поверхностях котлоагрегатов, сжатия воздуха в компрессорах и т. д. Во всех этих процессах количество сухого воздуха и его агрегатное состояцие не изменяются, в то время как количеетво водяного пара, содержащегося в воздухе, может во время протекания процесса изменяться, пар может частично конденсироваться и, наоборот, вода испаряться. Эти обстоятельства обусловливают некоторые особенности исследования процессов, протекающих во влажном воздухе, по сравнению со смесями идеальных газов. "В частности, при исследовании процессов влажного воздуха широко применяются графические методы.  [c.213]

Исходными для определения параметров состояния влажного воздуха по / г-диаграмме (рис. 3-22) служат показания влажного и сухого термометров психрометра. В несколько упрощенном виде принцип действия психрометра можно представить так. У поверхности жидкости, находящейся в чашке, куда опущена ткань, окружающая шарик мокрого термометра психрометра, появляется в процессе испарения воды тонкий слой насыщенного воздуха, образующийся в результате вылета из жидкости молекул ее, преодолевших поверхностное натяжение жидкости. Так как дальнейшее проникновение молекул жидкости из этого слоя в воздух затруднено вследствие столкновения их с молекулами воздуха, концентрация молекул жидкости в тонком слое, прилегающем к поверхности жидкости, велика и с достаточной степенью точности можно считать, что воздух в этом слое насыщен водяным паром. Парциальное давление этого пара есть давление насыщенного пара при температуре поверхностного слоя жидкости, показываемом мокрым термометром (при точных расчетах в это показание вносятся поправки). Сухой же термометр показывает температуру ненасыщенного влажного воздух а в помещении. В подробных курсах технической термодинамики доказывается, что энтальпия насыщенного воздуха над поверхностью жидкости и ненасыщенного воздуха в помещении, где находится психрометр, (почти) одинаковы. Отсюда нахождение в / f-диаграмме точки, характеризующей состояние ненасыщенного воздуха в помещении по показаниям психрометра, сводится к следующему. На линии ср = 100% находят точку соответственно показанию мокрого термометра. Из нее проводят линию 1 = = onst. Очевидно, на этой линии находится точка, характеризующая состояние воздуха в помещении, в котором находится психрометр. Взяв пересечение линии I = onst с изотермой сухого термометра, находят искомую точку. По ее координатам и с помощью линий /d-диаграммы находят все параметры воздуха в помещении (см. пример 3-17).  [c.145]

Ts-д и а г р а м м а. Как и в случае газов, в термодинамике паров находит широкое применение Ts-диаграмма, в которой площадь под кривой процесса дает количественное выражение теплоты процесса. На рис. 1.14 в системе координат Т, s представлен изобарный процесс превращения 1 кг воды при температуре плавления в перегретый пар заданной температуры перегрева, соо1ветствующей состоянию в точке d. Кривая аЬ представляет изобарный процесс нагрева воды от То = = 273 К до Т при данном давлении р поэтому площадь под кривой процесса будет представлять q . В процессе подогрева жидкости зависимость s = p(T) выражается уравнением (1.128), откуда следует, что кривая аЬ в первом приближении есть логарифмическая линия. Площадь под кривой Ьс есть теплота парообразования г. В соответствии с уравнением = s"x -Ь s (l — х) = s -t- rx/Tn в процессе парообразования. 5, — s = rxjTn и, следовательно, площадь под прямой be есть гх. Очевидно, площадь под кривой d есть теплота перегрева q e. Процесс перегрева описывается уравнением (1.130), которое приближенно можно представить в виде s e - s" In T IT ). Следовательно, в первом приближении линия d есть логарифмическая кривая.. Так как для воды Срж > Ср, то кривая перегрева пара d идет круче кривой нагрева воды аЬ. Степень сухости влажного пара давлением р в точке е определится как отношение отрезков be к Ьс, так как Ье Ьс = (rxjT (г/Тп) = х. Как видно из рис. 1.14, 1.15, при увеличении давления точки hue, оставаясь в каждом отдельном случае на горизонтали, сближаются и при критическом давлении сливаются в одну точку к. Соединив между собой точки hi, hi, Ьз и т. д., соответствующие состоянию кипящей жидкости при различных давлениях, получим пограничную кривую жидкости. X = 0. Аналогичным образом получим пограничную кривую пара X = 1, соединив между собой точки с, Сь С2 и т. д., соответствующие состоянию сухого насыщенного пара при различных давлениях. Подобно пограничным линиям ри-диаграммы, пограничная кривая  [c.36]


Теплофикационный цикл. Оэгласно второму закону термодинамики значительная часть теплоты (более 50 %), сообщаемой пару в паровом котле, неизбежно должна передаваться в конденсаторе теплоприемнику и бесполезно уноситься с охлаждающейся водой имеющей температуру после конденсатора 15...30 С. Естественно, теплота с такой низкой температурой (низкопотенциальная теплота) не может быть использована ни для отопительных, ни для технологических нужд.  [c.124]

Энтальпия тела определяется в термодинамике с точностью до некоторой постоянной слагающей. В термодинамике эту постоянную выбирают произвольным образом так, например, принимают, что вода, находящаяся в состсянии тройной точки, имеет 1 = 0. Часто также энтальпию газа в идеальном состоянии (т. е. в случае р- О) считают равной нулю при 0° С или 0° К.  [c.39]

Термодинамическая температурная щкала основана на втором нa але термодинамики. Температура, при которой полностью прекращается тепле вое движение молекул, принята за абсолютный нуль — начало отсчета. Другой оч-кой, определяющей термодинамическую температурную щкалу, является температура тройной точки воды (температура равновесия между льдом, водот и паром), равная 273,16 К. За единицу  [c.8]

Чтобы судить о содержании во влажном паре воды и сухого насыщенного пара, в термодинамике применяют понятие о степени сухости или просто сухости пара. Под степенью сухости (сухостью) пара понимают массу сухого пара, содержащегося в единице массы влажного пара, т. е паро-водяной смеси. Степень сухости пара обозначают буквой X и она выражает долю сухого насыщенного пара во влажном паре. Очевидно, величина 1—х представляет собой массу воды в единице массы паро-водяной смеси. Эту величину называют влажностью пара. Сообразно с этими понятиями началу кипения воды соответствует степень сухости пара, равная О, и влажность пара, равная 1, и, наоборот, завершению процесса парообразования, т. е. состоянию сухого насыщенного пара соответствует степень сухости пара, равная 1, и влажность пара, равная 0. Таким образом, по мере парообразования величина степени сухости пара возрастет от О до 1, а влажность пара уменьшается от 1 до 0.  [c.101]

Принципиальные схемы электрических станций простейших типов рассмотрены а разделе термодинамики. Действительные тепловые схемы электростанций значительно сложнее. В качестве примера на рис. 35-2 показана принципиальная схема электрической станции, на которой установлен турбогенератор Уральского трубомоторного завода (УТМЗ) типа ПТ-50-130-7 мощностью 50 Мет, рассчитанный на начальные параметры пара 19,7 Мн м и 565°С давление в конденсаторе составляет 0,03 Mnju . Турбина выполнена двухцилиндровой с 7 отборами пара, предназначенными для регенеративного подогрева питательной воды до  [c.449]

Рассмотрим процесс подогрева жидкости от 0° С до температуры кипения t (см. рис. 17, процесс а—Ь). Теплота, расходуемая при р = onst на подогрев 1 кг воды от 0° С до температуры кипения называется теплотой жидкости q. В Т— s-днаграмме она определяется площадью под линией а—Ь. В соответствии с первым законом термодинамики теплота жидкости в процессе а—Ь расходуется на изменение внутренней энергии Аи = и — и на работу расширения жидкости I = р и — у ). В р—у-диаграмме эта работа определяется площадью под линией а—Ь, т. е.  [c.57]

Абсолютная температурная шкала или шкала Кельвина или термодинамическая температурная шкала признана Международным комитетом мер и весов в качестве основной. Определение термодинамической температурной шкалы базируется на втором законе термодинамики и использует цикл Карно. Одним из важнейших свойств термодинамической шкалы является независимость ее от термометрического вещества. Для определения градуса шкалы используется одна реперная точка — тройная точка воды, а нижней границей температурного промежутка является точка абсолютного нуля. Тройной точке воды присваивается температура 273,15 К точно, и таким образом градус Кельвина равен V273.16 части термодинамической температуры тройне точки воды. Термодинамическая температура может быть выражена и в градусах Цельсия с помощью формулы  [c.47]


Смотреть страницы где упоминается термин Термодинамика воды : [c.90]    [c.115]    [c.22]    [c.20]    [c.9]   
Смотреть главы в:

Термодинамика, статическая физика и кинетика Изд.2  -> Термодинамика воды



ПОИСК



Термодинамика

Термодинамика системы воздух—вода—пар

Химическая термодинамика воды и систем металл—вода



© 2025 Mash-xxl.info Реклама на сайте