Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамическая температурная

Градус Кельвина — единица измерения температуры по термодинамической температурной шкале, в которой для температуры тройной точки воды установлено значение 273,16 °К.  [c.10]

Термодинамическая температурная шкала Термодинамическая тем-пература (абсолютная) т градус Кельвина К К  [c.15]

Этот же ГОСТ предусматривает применение двух температурных шкал термодинамической температурной шкалы, основанной на втором законе термодинамики, и международной практической температурной шкалы, являющейся практическим осуществлением термодинамической температурной шкалы с помощью реперных (опорных) точек и интерполяционных уравнений.  [c.11]


Построенная таким образом температурная шкала называется термодинамической температурной шкалой, или шкалой Кельвина. Как уже говорилось ранее, на XI Генеральной конференции по  [c.132]

Температура характеризует степень нагретого тела. Ее измеряют или по термодинамической температурной шкале, или по международной практической температурной шкале. Единицей термодинамической температуры является кельвин (К), представляющий собой 1/273,16 часть термодинамической температуры тройной точки воды. Эта температура равна 273,16 К и является единственной воспроизводимой опытным путем постоянной точкой термодинамическом температурной шкалы (реперная точка).  [c.7]

Тройная точка воды—это температура, при которой нее три фазы воды (твердая, жидкая, газообразная) находятся в равновесии. Нижним пределом шкалы является абсолютный нуль. Термодинамическую температурную шкалу называют также абсолютной шкалой. Параметром состояния рабочего тела является абсолютная температура, обозначаемая символом Т и измеренная в кельвинах (К).  [c.7]

Поэтому формула перехода от практической к термодинамической температурной шкале имеет вид  [c.64]

Поэтому формула перехода от практической к термодинамической температурной шкале имеет вид 7 =ГС- -273,15°С.  [c.54]

Существуют две температурные шкалы термодинамическая температурная шкала и международная практическая температурная шкала 1948 г.  [c.12]

Термодинамическая температурная шкала (ее называют также абсолютной) характеризуется тем, что нулевая точка этой шкалы представляет собой наинизшую термодинамически возможную температуру эта точка называется абсолютным нулем.  [c.12]

Между температурой по термодинамической температурной шкале, выраженной в градусах Кельвина и в градусах Цельсия, имеет место соотношение  [c.12]

Термодинамическая температурная шкала, предложенная Кельвином, основана на втором законе термодинамики и не зависит от термометрических свойств тела. Построение шкалы опирается на следующие положения термодинамики. Если в прямом обратимом цикле Карно к рабочему телу подводится теплота С] от источника с высокой температурой Т и отводится теплота Сг к источнику с низкой температурой Гг, то T T =Q Q2 независимо от природы рабочего тела. Эта зависимость позволяет построить шкалу, опираясь только на одну постоянную или реперную точку с температурой Го. Например, пусть температура источников теплоты Т2—Т0 Т1 = Т, причем Г не известна если между этими источниками осуществить прямой обратимый цикл Карно и измерить количество подводимой и отводимой (Эз теплоты, то неизвестную температуру Г можно определить по формуле Г=Гo(Ql/Q2). Таким же способом можно произвести градуирование температурной шкалы.  [c.171]


Кельвин (К)—единица термодинамической температурной шкалы — определяется как 1/273,16 часть температурного интервала между тройной точкой воды и абсолютным нулем. Такой выбор единицы обеспечивает равенство еди-  [c.171]

Термодинамическая температурная шкала не связана с конкретными свойствами рабочего (термометрического) тела. Следовательно, термодинамическая температура является не эмпирической, а универсальной температурой. Легко убедиться, что термодинамическая температурная шкала является равномерной шкалой. Это вытекает из соотношения (2.6) и может быть уяснено из рассмотрения последовательного ряда двигателей Карно, каждый из которых характеризуется одной и той же величиной производимой работы L, а количество теплоты, отдаваемое одним двигателем, полностью передается другому (рис. 2.7).  [c.67]

Кельвин — единица температуры по термодинамической температурной шкале, равная 1/273,16 части термодинамического интервала от абсолютного нуля температуры до температуры тройной точки воды.  [c.14]

Термодинамическим параметром является термодинамическая температура Т. Термодинамическая температурная шкала устанавливается на основе известных из курса физики свойств цикла Карно и поэтому не зависит от свойств вещества, используемого для измерения температуры. При этом используется единственная экспериментально определяемая реперная (т. е. опорная) точка, каковой является тройная точка химически чистой воды. Тройной точке воды соответствует такое состояние, иначе говоря, такие  [c.17]

По решению Международного комитета мер и весов термодинамическая температурная шкала признана основной.  [c.117]

Термодинамическая температурная шкала. Температуру невозможно измерить непосредственно, ее значение определяют по температурному изменению какого-либо удобного для измерений физического свойства вещества, напри-  [c.29]

Термодинамическая температурная шкала не зависит от свойств рабочего тела. Из сопоставления выражений (1.121) и (1.124) следует, что  [c.29]

Термодинамическая температурная шкала основана на втором начале термодинамики и определяется с помощью цикла Карно.  [c.29]

Понятие о термодинамической температурной шкале  [c.48]

Термодинамическая температурная шкала равномерна. Действительно, если рассмотреть последовательный ряд п двигателей Карно,  [c.52]

В книге обобщены опыт работы ведущих термометрических лабораторий на протяжении последних двух десятилетий, позволивший создать Международную практическую температурную шкалу 1968 г., являвшуюся в момент ее установления наилучшим приближением к термодинамической температурной шкале, а также результаты последних исследований, выявивших недостатки и неточности МПТШ-68 и подготовивших основы для ее замены в недалеком будущем.  [c.5]

Второй важнейший результат состоит в установлении Гильднером факта систематического отклонения термодинамической температурной шкалы от  [c.5]

За исключением области самых низких температур (скажем, ниже 1 К), первичные термометры остаются гораздо более трудоемкими при использовании и менее воспроизводимыми, чем лучшие вторичные термометры. Для большинства целей удобство и воспроизводимость показаний термометра важнее, чем точность по термодинамической шкале. Кроме того, существует очень много физических величин, для измерения которых требуется находить разности температур. К их числу относятся теплоемкость, теплопроводность и другие теплофизические величины. Если отклонения применяемой практической шкалы от термодинамической описываются медленно меняющейся плавной функцией температуры, то серьезных проблем не возникает. Если же, напротив, практическая шкала содержит небольшие, но заметные скачки отклонений от.термодинамической шкалы, то и измерения соответствующих физических величин в зависимости от температуры дадут неожиданные ложные скачки, которые отражают только несовершенство термометрии. Для исключения подобных затруднений необходимо, чтобы практическая шкала была гладкой функцией от термодинамической температуры. Это эквивалентно требованию непрерывности первой и второй производных температурной зависимости разности практической и термодинамической температурных шкал. Если для конк >етного вторичного термометра (такого, например, как платиновый термометр сопротивления) нетрудно рассчитать гладкую практическую шкалу, то получить гладкое соединение шкал для двух разных вторичных термометров гораздо сложнее. Основной источник трудностей заключается в том, что два различных участка шкалы часто основаны на разных физических закономерностях, отклонения которых от термодинамической шкалы не совпадают. Соединение шкалы по платиновому термометру сопротивления и по платинородие-вой термопаре в МТШ-27, так же как и в МПТШ-48 и МПТШ-68, служит хорошим примером типичных трудностей. В МПТШ-68 в этой точке имеется скачок первой производной от разности / — 68, достигающий 0,2%. Такие разрывы можно  [c.44]


Выше были рассмотрены определение МПТШ-68, ее воспроизводимость, гладкость и единственность. Остается еще важный вопрос о том, насколько близко МПТШ-68 соответствует термодинамической температурной шкале. В разд. 2.4 было отмечено, что практическая шкала не обязана воспроиз-  [c.60]

Рис. 2.10. Отклонения МПТШ-68 от термодинамической температурной шкалы по результатам измерения газовым термометром в НБЭ [30]. Рис. 2.10. Отклонения МПТШ-68 от <a href="/info/3912">термодинамической температурной шкалы</a> по <a href="/info/8483">результатам измерения</a> газовым термометром в НБЭ [30].
Термодинамическая температурная шкала основывается на втором начале термодинамики, из которого следует, что для любого рабочего тела (независимо от природы), совершающего цикл Карно, отношение количества теплоты полученного телом от тепло-отдатчика, к количеству теплоты Q2, отдашюму теплоприемнику, равно отношению температуры  [c.89]

В качестве единствешюй реперной точки термодинамической температурной шкалы взята тройная точка воды (в горая реперная точка — точка абсолютного нуля).  [c.89]

С 1954 г. термодинамическая температурная шкала (шкала Кельвина) определяется одной реперной точкой тройной точко/i воды (она воспроизводится с большей точностью, чем точка таяния льда), которой приписывается те.мпература 273,16 К. Температура плавления льда при нормальном атмосферном давлении по этой плкале равна 273,15 К.  [c.21]

В качестве единственной реперной точки для Международной термодинамической температурной шкалы (1954 г.) принята тройная точка воды, и ей присвоено значение температуры -Ь273,16К (точно). Выбор этой точки объясняется тем, что она может быть воспроизведена с высокой точностью — с предельной погрешностью не больше 0,0001 К, что значительно меньше погрешности воспроизведения точек таяния льда и кипения воды.  [c.171]

В настоящее время принята МПТШ-68 (1968 г.), которая устанавливает температуру в диапазоне от 13,81 до 6300 К и максимально приближена к Международной термодинамической температурной щкале. Методика ее реализации базируется на основных реперных точках и на эталонных приборах, градуированных по этим точкам. МПТШ-68 опирается на 11 основных реперных точек, представляющих собой определенное состояние фазового равновесия некорых веществ, которым присвоено точное значение температуры.  [c.172]

Термодинамическая температурная шкала предложена в 1848 г. английским физиком Кельвином. Ее наз 1шают также шкалой Кельвина, а единицу температуры — кельвином (К). Температура плавления льда по шкале Кельвина равна 273,16К, а температура кипения воды — 373,16 К. В СИ единица кельвин устанавливается по интервалу температуры от абсолютного нуля до температуры тройной точки воды. Абсолютный нуль — это температура, при которой прекращается хаотическое движение молекул тела, т. е. начало отсчета абсолютной температуры. Тройная точка воды — это температура, при которой вода, водяной пар и лед находятся в равновесии — 273,16 К. Таким образом, 1 кельвин равен 1/273,16 части температурного интервала от абсолютного нуля до температуры тройной точки воды.  [c.11]

Для измерения температуры решением Международного комитета мер и весов приняты две и1калы термодинамическая температурная шкала, которая признана основной, и Международная практическая температурная шкала 1968 г. (МПТШ-68), выбранная таким образом, чтобы температура, измеренная по этой шк е, была близка к термодинамической температуре. Для каждой из этих шкал приняты две единицы температуры Кельвин (К) и градус Цельсия (°С). Температура, выражаемая в кельвинах, обозначается символом Т, температура в градусах Цельсия —Л Кельвину и градусу Цельсия отвечает один и тот же интервал температур, т. е.  [c.17]

Термодинамическая температурная шкала никак не связана с конкретными свойствами рабочего, т. е. термодинамического, тела. Следовательно, термодинамическая температура 0 является не эмпирической, а универсальной температурой. Термодинамическая температурная шкала является равномерной шкалой. Это вытекает уже из соотношения (3-6) и вполне может быть уяснено из рассмотрения последовательного ряда п машин Карно, каждая из которых характеризуется одной и той же величиной троизводимой работы L, а тепло, выделяемое одной машиной, поглощается другой (рис. 3-7). В таком ряду (нижняя машина имеет номер 1, а верхняя — п)  [c.67]

Термодинамическая температурная щкала основана на втором нa але термодинамики. Температура, при которой полностью прекращается тепле вое движение молекул, принята за абсолютный нуль — начало отсчета. Другой оч-кой, определяющей термодинамическую температурную щкалу, является температура тройной точки воды (температура равновесия между льдом, водот и паром), равная 273,16 К. За единицу  [c.8]

Для измерения температуры, характеризующей тепловое состояние тел, применяют приборы, основанные на определении тех или иных свойств вещества, изменяющихся с изменением температуры. Такие вещества, используемые в термометрах, называются термометрическими. Основным требованием, предъявляемым к свойствам термометрических веществ, является монотонность их изменения с изменением температуры. Отсчет температур производится от произвольно выбранного теплового состояния, принимаемого за стандартное, которому приписывается нулевое значение температуры. В 1742 г. шведский физик А. Цельсий предложил за нулевую принять температуру плавления льда, точке кипения воды приписать 100°, а интервал между ними разделить на 100 равных частей (100 градусов). Цена одного градуса, таким образом, чисто условная величина. Распространение намеченного деления за пределы выбранных стандартных значений дает всю термодинамическую температурную шкалу. Эта шкала должна иметь на всем своем протяжении равномерные деления, для чего термометрическое свойство вещества должно изменяться прямо пропорционалыю температуре. Однако ни одно из термометрических тел, применимых на практике, не обладает такой особенностью.  [c.50]



Смотреть страницы где упоминается термин Термодинамическая температурная : [c.64]    [c.83]    [c.19]    [c.172]    [c.72]    [c.9]    [c.51]    [c.52]   
Справочник машиностроителя Том 2 (1955) -- [ c.0 ]



ПОИСК



Единица термодинамической температуры — кельвин. Температурные шкалы

Некоторые сведения о термодинамических исследованиях стационарных и нестационарных температурных полей в продуктивных пластах

Приведение газовой температурной шкалы к термодинамической при помощи данных для эффекта Джоуля—Томсона (перевод Беликовой Т. П. и Боровика-Романова

Реализация термодинамической температурной шкалы

Современное определение абсолютной термодинамической температурной шкалы и соотношение этой шкалы с Международной практической температурной шкалой

Таблица 9. Единицы термодинамической и Международной практической температурных шкал

Температурная шкала международная термодинамическая

Температурная шкала термодинамическая

Термический КГЩ цикла Карно. Понятие о термодинамической температурной шкале

Термодинамическая и практические температурные шкалы

Термодинамическая температурная абсолютная шкала

Шкалы лабораторных термометров температурные термодинамические



© 2025 Mash-xxl.info Реклама на сайте