Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкость газообразная

Различают два вида жидкостей жидкости капельные и жидкости газообразные. Капельные жидкости представляют собой жидкости, встречающиеся в природе и применяемые в технике вода, нефть, бензин и т. д. Все капельные жидкости оказывают большое сопротивление изменению объема и трудно поддаются сжатию. При изменении давления и температуры их объем изменяется весьма незначительно. Наоборот, газообразные жидкости (газы) изменяют свой объем под влиянием указанных факторов в значительной степени. В гидравлике обычно изучаются капельные жидкости, в дальнейшем для краткости называемые просто жидкостями. Газообразные жидкости, их свойства и применение рассматриваются в соответствующих специальных дисциплинах — термодинамике и аэромеханике.  [c.7]


С возрастанием температуры вязкость капельных жидкостей уменьшается (табл 7 и 8), а вязкость жидкостей газообразных увеличивается.  [c.451]

Как и жидкости, газообразные тела не имеют постоянной и определенной формы они принимают форму сосуда, в котором находятся. Однако, в отличие от жидкостей, газы стремятся занять возможно больший объем.  [c.7]

Закалочные среды. Закалку осуществляют помещением нагретой стальной детали в различные охлаждающие среды — жидкости, газообразные и реже в твердые (путем зажатия деталей между стальными плитами или в штампах).  [c.95]

Флюсы для пайки применяют в виде порошка, пасты, жидкости, газообразные. Их наносят на кромки соединяемых деталей до пайки.  [c.308]

Жидкостями называют физические тела, легко изменяющие свою форму под действием сил самой незначительной величины. В отличие от твердых тел они характеризуются весьма большой подвижностью частиц. Жидкости обладают способностью принимать форму сосуда, в который они налиты. Различают капельные жидкости и газы. Первые представляют собой жидкости, встречающиеся в природе и применяемые в технике вода, нефть, бензин и т.д. Все капельные жидкости трудно поддаются сжатию. При изменении давления и температуры их объем изменяется весьма незначительно. Газы изменяют свой объем под влиянием указанных факторов в значительной степени. В гидравлике обычно изучают капельные жидкости, которые в дальнейшем для краткости можно называть жидкостями. Газообразные жидкости, их свойства и область применения рассматривают в специальных дисциплинах — термодинамике и газовой динамике.  [c.7]

Измерения энтальпий таких реакций могут проводиться в любых калориметрах, рассмотренных в 2 данной главы. Специфическим для них является только способ введения в калориметрическую жидкость газообразного реагента.  [c.192]

Существенное различие при работе двигателя на бензине и на газе заключается в способе получения бензино- и газовоздушных смесей. При работе на бензине распыливание и испарение жидкого топлива происходит в карбюраторе и впускном трубопроводе. Газовое же топливо поступает в смесительное устройство в газообразном, т. е. уже готовом для смесеобразования и последующего сгорания, виде. Благодаря более однородному составу и большему сродству воздуха с газом, чем воздуха с частицами жидкости, газообразные топлива создают лучшие условия для смешения с воздухом и более равномерного распределения рабочей смеси по цилиндрам.  [c.293]

По физическому состоянию коррозионные среды бывают жидкими (растворы кислот, щелочей, солей, органические жидкости), газообразными (пары, производственные газы) и твердыми (соли, шлаки, зола).  [c.6]


В плитных прессах наиболее распространены насыщенный пар, перегретая вода и электричество. Реже применяют высокотемпературные жидкости. Газообразные теплоносители ввиду присущих им недостатков в плитных прессах не применяются.  [c.116]

Поскольку величина б/ пропорциональна увеличению объема, то в качестве рабочих тел, предназначенных для преобразования тепловой энергии в механическую, целесообразно выбирать такие, которые обладают способностью значительно увеличивать свой объем. Этим качеством обладают газы и пары жидкостей. Поэтому, например, на тепловых электрических станциях рабочим телом служат пары воды, а в двигателях внутреннего сгорания — газообразные продукты сгорания того или иного топлива.  [c.13]

Обычно жидкие и газообразные теплоносители нагреваются или охлаждаются при соприкосновении с поверхностями твердых тел. Например, дымовые газы в печах отдают теплоту нагреваемым заготовкам, а в паровых котлах — трубам, внутри которых греется или кипит вода воздух в комнате греется от горячих приборов отопления и т. д. Процесс теплообмена между поверхностью твердого тела и жидкостью называется теплоотдачей, а поверхность тела, через которую переносится теплота,— поверхностью теплообмена или теплоотдающей н о в е р X н о с т ь ю /  [c.77]

Попытки привести в соответствие данные pvT и выразить их соотношение в алгебраической форме были более или менее успешны для некоторых газообразных соединений, но до сих пор еш,е нет полностью удовлетворительного соотношения pvT для жидкостей в требуемом интервале температуры и давления.  [c.163]

Д. И. Менделеев дал следующее определение Абсолютной температурой кипения я называю такую температуру, при которой частицы жидкости теряют свое сцепление (поднятие в капиллярной трубке равно нулю, скрытое тепло равно нулю) и при которой жидкость, несмотря ни на какое давление и объем вся превращается в пар- . Многочисленные опыты с реальными газами полностью подтвердили существование критической точки, в которой исчезает различие между газообразной и жидкой фазами.  [c.44]

Газообразное тело в состоянии, близком к кипящей жидкости, называется паром, а процесс превращения вещества из жидкого состояния в парообразное называется парообразованием. Испарением называется парообразование, которое происходит всегда прк любой температуре с поверхности жидкости. Процесс испарения заключается в том, что отдельные молекулы с большими скоростями преодолевают притяжение соседних молекул и вылетают в окружающее пространство. Интенсивность испарения возрастаете увеличением температуры жидкости.  [c.172]

Обе кривые АК и КВ делят диаграмму на три части. Влево от нижней пограничной кривой АК до нулевой изотермы располагается область жидкости. Между кривыми АК и КВ располагается двухфазная система, состоящая из смеси воды и сухого пара. Вправо от КВ и вверх от точки К располагается область перегретого пара или газообразного состояния тела. Обе кривые АК и КВ сливаются в одной точке К, которая называется критической точкой.  [c.175]

С. В тройной точке вещество одновременно находится в трех фазах твердой, жидкой и газообразной. Вид. кривых АВ, AD и АС и их расположение на рГ-диаграмме зависит от природы каждого вещества. В частности, кривая АВ для большинства жидкостей идет от точки А с наклоном вправо, т. е. по мере увеличения давления температура затвердевания увеличивается.  [c.177]

Поле течения сжимаемого газа внутри проницаемой полусферической оболочки может быть определено решением уравнения (3.74) относительно р. При граничных условиях (3.75) решение получается в аналитическом виде. Выполненный анализ показал, что для газообразного охладителя заблокированная зона вблизи лобовой точки становится больше. При давлении подачи ро = 1,5 минимальное относительное давление на застойной изобаре снижается до 0,929 по сравнению с 0,990 для жидкости.  [c.74]

О фазовых превращениях твердое тело — жидкость и жидкость— газ можно сказать буквально то же с мое, что было сказано в предыдущем параграфе о фазовом переходе твердое тело—газ. Они тоже являются переходами I рода и сопровождаются конечными скачками объема, внутренней энергии и энтропии. На плоскости (РТ) эти переходы изображаются соответствующими кривыми фазовых равновесий твердое тело — жидкость, АВ, и жидкость — газ, АС (рис.6.За). Точку А, в которой пересекаются линии ОА, АВ и АС, называют тройной точкой. При давлении Р. и температуре Г. находятся в равновесии твердая, жидкая и газообразная фазы.  [c.123]


Мы видим, что остающиеся ветви химического потенциала на рис.б.17й имеют точно такой вид, как это было показано на рис.6.15о. Точка их пересечения. В, определяет давление (температура у нас задана), при котором могут находиться в равновесии жидкая и газообразная фазы. На плоскости яш эта точка разворачивается в отрезок изотермы—изобары ВВ . Между точками В и С находятся перегретые состояния жидкости, а между точками В и Д —переохлажден состояния пара.  [c.141]

Целый комплекс дисциплин, изучающих механическое движение и механическое взаимодействие различных материальных тел, объединяют под общим названием механика. К этим наукам относятся, например, прикладная механика, обычно называемая теорией машин и механизмов и изучающая общие вопросы движения и работы механизмов и машин гидромеханика, изучающая движение жидкостей и тел, погруженных в жидкость аэромеханика, изучающая движение газообразных тел и движение твердых тел в газе, а также механические взаимо-  [c.5]

Целый комплекс дисциплин, изучающих механическое движение и механическое взаимодействие различных материальных тел, объединяют под общим названием механика. К этим дисциплинам относятся, например, прикладная механика, обычно называемая теорией механизмов и машин и изучающая общие вопросы движения и работы механизмов и машин гидромеханика, изучающая движение жидкостей и тел, погруженных в жидкость аэромеханика, изучающая движение газообразных тел и движение твердых тел в газе, а также механические взаимодействия между твердыми телами и газом небесная механика, изучающая движение небесных тел, и т. д. К механике относят также науки, изучающие способы расчетов сооружений, машин и их деталей (строительная механика, детали машин, сопротивление материалов), а также целый ряд наук, занимающихся изучением машин отдельных отраслей промышленности или специальных сооружений (механика пищевых машин, механика сельскохозяйственных машин, механика корабля и т. д. и т. п.).  [c.5]

Возможность свободного перемещения молекул относительно друг друга обусловливает свойство текучести жидкости. Тело в жидком состоянии, как и в газообразном, не имеет постоянной формы. Форма жидкого тела определяется формой сосуда, в котором находится жидкость, действием внешних сил и сил поверхностного натяжения. Большая свобода движения молекул в жидкости приводит к большей скорости диффузии в жидкостях по сравнению с твердыми телами, обеспечивает возможность растворения твердых веществ в жидкостях.  [c.83]

Насыщенный и ненасыщенный пар. Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала процесса испарения концентрация вещества в  [c.85]

Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называется насыщенным паром. Пар, находящийся при давлении ниже давления насыщенного пара, называется ненасыщенным.  [c.85]

Любое вещество, находящееся в газообразном состоянии, может превратиться в жидкость. Однако каждое вещество может испытать такое превращение лишь при температурах, меньших некоторого, особого для каждого вещества значения, называемого критической температурой Т . При температурах, больших критической, вещество не превращается в жидкость ни при каких давлениях.  [c.87]

В определениях понятия турбулентность , сформулированных разными авторами, в той или иной степени отражаются рассмотренные выше особенности турбулентного движения. Дж. И. Тейлор и Т. Карман /287, 371/ дают следующее определение турбулентности Турбу-лентность - это неупорядоченное движение, которое в общем случае возникает в жидкостях, газообразных или капельных, когда они обтекают непроницаемые поверхности или же когда соседние друг с другом потоки одной и той же жидкости следуют рядом или проникают одн[н в другой . И. О. Хинце несколько уточняет определение турбулентности /253/ Турбулентное движение жидкости предполагает наличие неупорядоченного течения, в котором различные величины претерпевают хаотическое изменение во времени и по пространственным координатам и при этом могут быть выделены статистически точные их осред-ненные значения . Р. Р. Чуг аев дает такое определение /256/ Движение турбулентное - движение кидкости, при котором частицы жидкости перемешиваются по случайным неопределенно искривленным траекториям, имеющим пространственную форму при этом движение траекторий частиц, проходящих в разные моменты времени через неподвижную точку пространства, имеют различный вид данное движение носит беспорядочный, хаотичный характер и сопровождается постоянным как бы поперечным перемешиванием жидкости, причем это движение характеризуется наличием пульсаций скорости и пульсаций давления . В терминологии АН СССР Гидромеханика /10/ определение турбулентного движения дается так Турбулентное движение - движение жидкости с пульсацией скоростей, приводящей к перемешиванию ее часггиц . Более емким является определение, данное М. Д. Миллионщи-ковым Турбулентный режим - это статистически упорядоченный обмен, вызванный вихревыми образованиями различного масштаба /148/.  [c.13]

Различают следующие виды смазок при обработке металлов давлением металлические, твердые, консистентные, масла, водные смазочно-охлаждающие жидкости, газообразные. При волочении стали применяют металлические, твердые, консистентные и водные смазоч-но-охлаждающие жидкости. Примером применения металлической смазки является меднение, цинкование, кадмирование стали перед волочением, чем увеличивают поверхностную активность применяемой смазки и улучшают условия трения. К твердым смазкам относится кальциевое мыло, мыльный порошок, парафин. Консистентные смазки представляют собой смеси животных, растительных и минеральных масел с загустителями. В качестве загустителей используют мыло, церезин и др. Твердые и консистентные смазки применяют на машинах толстого и грубого волочения. При волочении проволр-ки диаметром <3 мм в качестве смазки используют водные смазочно-охлаждающие жидкости (эмульсии). Широко применяют водные эмульсии масел и мыла, чистого мыла, олеиновой кислоты с кальцинированной содой.  [c.338]


Часто отказы электрооборудования сопровождаются искрением, дугообразованием, которые могут воспла.менить жидкость, газообразные продукты ее испарения или разложения. Важно, чтобы диэлектрическая жидкость, ее пары или газообразные продукты разложения не воспламенялись при отказе электрооборудования о ее сопротивлении воспламенению судят по степени ее негорючести.  [c.65]

ВНИИАвтоген разработал для сварки чугуна газообразные борометиловые флюсы БМ-1 и БМ-2. Эти флюсы представляют собой летучие жидкости. Газообразный флюс дает возможность применять чугунные прутки, изготовленные по упрощенной технологии с добавкой ферросилиция в ковш при разливке, обеспечивает получение плотного наплавленного металла, свободного от газовых и шлаковых включений, значительно ускоряет процесс, так как сварщику не нужно отрывать горелку от ванны для введения очередной порции флюса, дает возможность автоматизировать процесс сварки чугуна.  [c.320]

У газообразного тела (например, у воздуха) силы сцепления между молекулами ничтожны молекулы здесь удалены друг от друга на значительно большие расстояния и находятся в беспрерывном беспорядочном движении. Как и жидкость, газообразное тело не имеет своей формы, а принимает форму сосуда, в котором оно находится. Однако в отличие от жидкости газообразное тело не, имеет своего объема и стремится всегда занять как можно больший объем. Если некоторое количество газа ввести в большое помещение, то очень скоро газ равномерно распределится по всему объему помсшсцкя. Если из баллона выпускать или выкачивать нал0ДЕШ,п 1ся там газ, то остающийся газ всегда будет равномерно заполнять весь баллон.  [c.35]

Ядерные гироскопы. В ядерных К. г. исцользуются в-ва с ядерным парамагнетизмом (вода, органич. жидкости, газообразный гелий, пары ртути). Атомы или молекулы таких в-в в осн. состоянии обладают магн. моментами, обусловленными спинами  [c.276]

Примером простейшей реакции полимеризации может служить уплотнение этилена СНг = СНг в полиэтилены (С2Н4),,. Строение этих смол . ..—СНг—СН2—СНг—СНг—СНг —..., т. е. они состоят из цепеобразных молекул. По мере присоединения новых групп СНг усложняется состав смолы и изменяются ее свойства. Этилен переходит из газообразного состояния, каким является исходный мономер, в вязкую жидкость, а затем, в конечной стадии, в твердое вещество. В этилене водород легко может быть замещен другими атомами или группами атомов (С1, ППг, СООН и др.). При сополимеризации можно получить полимеры, свойства которых лучше свойств полимеров, полученных па основе каждого из мономеров отдельно.  [c.392]

Если на рк-диаграмме построить изотермы, соответствующие уравнению Ван-дер-Ваальса, то они будут иметь вид кривых, изображенных на рис. 4-3. Из рассмотрения этих кривых видно, что при сравнительно низких температурах они имеют в средней части волнообразный характер с максимумом и минимумом. При этом чем выше температура, тем короче становится волнообразная часть изотермы. Прямая ЛВ, пересекающая такого типа изотерму, дает три действительных значения удельного объема в точках А, R пВ, т. е. эти изотермы соответствуют первому случаю решения уравне-нения Ван-дер-Ваальса (три различных действительных корня). Наибольший корень, равный удельному объему в точке В, относится к парообразному (газообразному) состоянию, а наименьший (в точке А) — к o toянию жидкости. Поскольку, как указывалось ранее, уравнение Ван-дер-Ваальса в принципе не может описывать двухфазных состояний, оно указывает (в виде волнообразной кривой) на непрерывный переход из жидкого состояния в парообразное при данной температуре. В действительности, как показывают многочисленные эксперименты, переход из жидкого состояния в парообразное всегда происходит через двухфазные состояния вещества, представляющие смесь жидкости и пара. При этом при данной температуре процесс перехода жидкости в пар происходит также и при неизменном давлении.  [c.42]

Сжижение газов имеет для народного хозяйства весьма важное значение. Чтобы превратить в жидкость какой-либо газ, необходимо его температуру сделать ниже параметров критической точки. Только в этом случае возможно одновременное равновесное сосуществование жидкой и газообразной фаз. Сжижение газов м0Ж110 осуществить при помощи машины, совершающей обратный или холодильный цикл. Теоретически наименьшая механическая работа будет затрачена в обратимом цикле.  [c.337]

Для защиты откачиваемых объемом от попадания рабочих жидкостей вакуумных установок в технике вакуумирования используются вакуумные ловушки, исключающие возможность попадания в откачиваемую полость паров жидкости и масла [65]. Повышение эффективности работы вакуумных охлаждаемых ловушек может быть достигнуто с помощью двухдиффузорной вихревой трубы с конической камерой энергоразделения [31] (рис. 6.14). Вакуумная охлаждаемая ловушка содержит корпус 1 с входным 2 и выходным 3 патрубками и размещенный в корпусе 1 охлаждаемый элемент 4 с каналом 5 для газообразного хладагента, сообщенным с газовым автономным охладителем, содержащим теплообменник-регенератор с линиями прямого 6 и обратного 7 потоков, первая из которых подключена к источнику высокого давления. Газовый автономный охладитель выполнен в  [c.304]

Так, например, при пузырьковом и снарядном режимах течения газосодержание в верхней части горизонтально трубы больше, чем в нижней (рис. 2а, б). Кролш того, переход от снарядного течения к пленочному в горизонтальных трубах осуществляется несколько иначе, чем в вертикальных. Пусть при определенной скорости ввода газовой фазы в горизонтальную трубу там установился снарядный режи.м течения. Будем увеличивать газосодержание потока. Благодаря действию силы тяжести более тяжелая фаза (жидкость) будет стремиться в нижнюю часть трубы, а более легкая (газ) — в верхнюю. Таким образом, возникнут параллельные потоки жидкой и газообразной фаз. Такой режим течения носит название расслоенного. При этом на поверхности жидкости могут возникать поверхностные волны (см. рис. 2, в), вызванные движением газовой фазы. При дальнейшем увеличении скорости подачи газа поверхностные волны могут достигать верхней стенки аппарата. Эти волны распространяются с большой скоростью и смачивают всю поверхность верхней части трубы, на которой остается пленка жидкости. Пленка покрывает поверхность трубы в промежутках между перемычками (рис. 2, г), образованными жидкостью. Режим течения, при котором образуются эти перемычки, носит название волнового режима с перемычками. Если происходит дальнейшее увеличение скорости газа, то газовый поток пробивает жидкие перемычки  [c.6]

Теория упругости и пластичности является разделом механики деформируемого твердого тела (МДТТ). Сама МДТТ является частью механики сплошной среды (МСС). МСС — обширная и разветвленная наука, изучаюш,ая макроскопические движения твердых, жидких и газообразных сред и включающая в себя помимо МДТТ также аналитическую механику системы материальных частиц и абсолютно твердого тела, механику жидкости, газа и плазмы, в том числе аэродинамику, гидродинамику и т. д.  [c.5]

Из полученного значения < п> > пп сразу следует возможность самофокусировки лазерного излучения, предсказанной Г. Г. Аска-рьяном в 1962 г. и вскоре обнаруженной в эксперименте. Действительно, равенство (4.52) показывает, что если через какую-либо среду (твердое тело или жидкость с определенными свойствами ) проходит интенсивный пучок света, то он делает эту среду неоднородной — в ней как бы образуется некий канал, в котором показатель преломления больше, чем в других ее частях. Тогда для лучей, распространяющихся в этом канале под углом, большим предельного, наступает полное внутреннее отражение от оптически менее плотной среды ( см. 2.4) и наблюдается своеобразная фокусировка излучения. Наиболее интересен случай, когда подбором входной диафрагмы для данного вещества удается установить такой диаметр канала 2а, что дифракционное уширение >L/(2a) (см. 6.2) компенсирует указанный эффект и в среде образуется своеобразный оптический волновод, по которому свет распространяется без расходимости. Такой режим называют самоканализацией (самозахватом) светового пучка (рис. 4.21). Весьма эффектны такие опыты при использовании мощных импульсных лазеров, излучение которых образует в стекле тонкие светящиеся нити. Однако в газообразных средах самофокусировка не имеет места, что существенно ограничивает возможность использования этого интересного явления.  [c.169]


Поскольку плотность газообразных продуктов горения мала по сравнинню с плотностью жидкости (pi > рг), то это условие фактически сводится к неравенству  [c.670]

Наряду с полосатыми- спектрами молекул, расположенными в видимой и ультрафиолетовой областях, наблюдаются также и инфракрасные спектры молекул. Опыт показывает, что инфракрасные колебательные спектры газа или пара остаются в большинстве случаев практически неизменными и при исследовании соответствующей жидкости или даже твердого тела. Причину нечувствительности этих спектров к агрегатному состоянию надо, очевидно, искать в том, что силы взаимодействия между атомами (внутримолекулярные силы) значительно больще ван-дер-ваальсовых межмолекулярных сил, обусловливающих переход из газообразного в другие агрегатные состояния. Поэтому колебания атомов внутри молекулы происходят практически одинаково как в изолированных молекулах газа, так и в сближенных молекулах жидкости или твердого тела. Излучение же полосатых спектров в видимой и ультрафиолетовой областях в основном определяется изменением электронной конфигурации молекулы, а эта последняя испытывает в случае жидкости или твердого тела вполне ощутимые воздействия со стороны соседних молекул. Но все же и для инфракрасных спектров некоторые детали, связанные главным образом с вращением молекулы вокруг ее центра тяжести, лучше наблюдаются в газообразном состоянии, ибо свобода вращения молекул в жидкостях и твердых телах в значительной степени стеснена.  [c.748]


Смотреть страницы где упоминается термин Жидкость газообразная : [c.19]    [c.61]    [c.617]    [c.12]    [c.16]    [c.7]    [c.354]    [c.85]    [c.26]   
Гидравлика и гидропривод (1970) -- [ c.9 ]

Технический справочник железнодорожника Том 1 (1951) -- [ c.404 ]



ПОИСК



ГЛАВНЕЙШИЕ ФИЗИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ Жидкости и их главнейшие отличия от твердых и газообразных тел

Газообразные (сжимающиеся) жидкости

Движение жидкостей. Уравнение Бернул1-13. Иртечение газообразных тел из насадок (сопл). Мятие (дросселирование)

ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ И Молекулярная структура и особенности жидкого и газообразного состояний

Предмет механики жидкости и газа. Основные свойства жидкой и газообразной сред

Удаление льда газообразным теплоносителем жидкости



© 2025 Mash-xxl.info Реклама на сайте