Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамика коррозионных процессов

Таким образом, в идеале предельно допустимой с точки зрения термодинамики коррозионного процесса концентрацией кислорода в воде при показателе pH = 9 следует считать 28 Ю мг/л. Концентрация ионов железа в этих условиях составит [Ре ] = = 5 10" г-ион/л и [Ре ] = 10 г-ион/л.  [c.59]

Термодинамика коррозионных процессов 13, 14 Технеций 316  [c.358]

Термодинамика коррозионных процессов  [c.187]

Г л а а а III. Термодинамика коррозионных процессов и электродные потенциалы............................28  [c.5]


Термодинамика коррозионных процессов и электродные потенциалы  [c.28]

Даны современные представления о термодинамике и кинетике окисления металлов, механизме образования и законах роста различных пленок, рассмотрены механизм и различные виды электрохимической коррозии, описаны важнейшие методы исследования коррозионных процессов.  [c.2]

Наконец, одним из практических методов защиты металлов от коррозии является создание условий, уменьшающих или полностью исключающих возможность протекания коррозионного процесса (применение защитных газовых атмосфер, обескислороживание воды, катодная защита), которые могут быть рассчитаны с помощью термодинамики.  [c.11]

Хотя термодинамика дает возможность определить, насколько изучаемая система отдалена от состояния равновесия [числитель правой части уравнения (1)1, однако она в большинстве случаев не дает ответа на весьма важный и с теоретической, и с практической стороны вопрос с какой скоростью будет протекать термодинамически возможный коррозионный процесс Рассмотрением этого вопроса, а также установлением влияния различных факторов на скорость коррозии и характер коррозионного разрушения металлов занимается кинетика (учение о скоростях) коррозионных процессов.  [c.11]

Для оценки возможности возникновения и интенсивности коррозионного процесса применяют законы химической термодинамики. Поскольку при окислительно-восстановительных коррозионных реакциях совершается работа химического процесса, то фактором, характеризующим интенсивность процесса, может служить величина одной из термодинамических функций [196].  [c.63]

Здесь рассматриваются только причины выхода из строя компрессорных машин из-за чисто коррозионного воздействия или совместно с механическими напряжениями (коррозионно-механического). Коррозия металлов — это самопроизвольный процесс разрушения их при воздействии окружающей среды. Причина коррозии — термодинамическая неустойчивость металла в данной среде, когда переход из металлического состояния в химическое соединение происходит с уменьшением свободной энергии. Для предотвращения этого естественного с точки зрения термодинамики процесса приходится прилагать большие усилия, расходовать огромные средства, но тем ие менее полностью защитить металлы от коррозии пока ие всегда удается. Ведь с помощью различных способов защиты лишь удерживают металл в состоянии неустойчивого равновесия с окружающей средой (исключение составляют благородные металлы). Стоит только несколько изменить агрессивность среды, ослабить степень защиты или ухудшить качество металла, как это равновесие нарушится и начнется коррозионный процесс.  [c.6]


Термодинамика электродных процессов. Термодинамическое условие возможности протекания коррозионного процесса.  [c.118]

Однако термодинамика не дает исчерпывающего ответа об интенсивности (скорости) коррозионного процесса, который является главенствующим при рассмотрении влияния коррозионной среды на прочностные свойства стали.  [c.7]

Термодинамика и кинематика коррозионных процессов [6, 8]  [c.13]

Таким образом, термодинамика дает не только сведения о возможности или невозможности протекания коррозионного процесса, но и количественную оценку его движущих сил. Суждение о степени термодинамической нестабильности различных металлов в растворах электролитов, т. е. суждение о возможности или невозможности протекания электрохимической коррозии металла может быть приближенно сделано также по величине стандартного электродного потенциала металлов [7] (см. табл. 2).  [c.14]

Таким образом, термодинамика дает исчерпывающие сведения о возможности или невозможности протекания коррозионного процесса в данных условиях. На основании термодинамических расчетов по уменьшению свободной энергии коррозионного процесса или для электрохимической коррозии по значению э. д. с. коррозионного процесса можно также количественно оценить движущую силу коррозионного процесса.  [c.11]

Рассмотрены методы определения коррозии металлов и их сплавов в расплавленных солях весовой, аналитический, стационарных потенциалов и поляризационных кривых, а также коррозия металлов под воздействием газов (кислорода, хлористого водорода), растворенных в расплавленных солях. Обсуждаются процессы бестокового переноса металла катионами низших валентностей. Значительное внимание уделено термодинамике и кинетике коррозионных процессов. Приводятся данные по пассивации металлов и защите их от коррозии при высоких температура в расплавах.  [c.213]

Как видно из табл. 12, коррозия подавляющего большинства металлов — процесс термодинамически неизбежный, и приходится удивляться не тому, что он происходит, а скорее тому, что этот процесс, приводящий к образованию, например, термодинамически устойчивых окисных соединений, в ряде случаев удается очень сильно затормозить. Однако, как известно, термодинамика не может дать ответ на вопрос о скорости реакции — для этого необходимо обратиться к изучению кинетики электродных коррозионных процессов.  [c.121]

До сих пор коррозионные гальванические микро- и макропары мы рассматривали преимущественно с точки зрения законов термодинамики. Однако этого недостаточно для решения многих вопросов. Во-первых, при термодинамических расчетах трудно предусмотреть сложное влияние среды, которая зачастую играет решающую роль в определении степени коррозии металла. Во-вторых, с помощью термодинамики принципиально невозможно вычислить скорость коррозионных процессов, определяющих долговечность конкретных сооружений и сроки их ремонта. В-третьих, коррозия металлов почти повсеместно сопровождается сложными побочными и вторичными процессами, сказывающимися иногда чрезвычайно сильно на скорости развития основной химической реакции, тогда как термодинамические данные пригодны (и то с рядом ограничений) для расчета основ-  [c.125]

Термодинамика и кинетика коррозионных процессов 9  [c.6]

ТЕРМОДИНАМИКА И КИНЕТИКА КОРРОЗИОННЫХ ПРОЦЕССОВ  [c.9]

Первопричиной коррозии металлов является их термодинамическая неустойчивость в различных средах при данных внешних условиях. Термодинамика дает исчерпывающие сведения о возможности или невозможности самопроизвольного протекания коррозионного процесса при определенных условиях. В связи с этим соответствующие термодинамические расчеты представляют определенный интерес.  [c.13]

Хотя термодинамика дает возможность определить, насколько изучаемая система отдалена от состояния равновесия, однако она не дает ответа на весьма важный н с теоретической, и с практической стороны вопрос с какой скоростью будет протекать термодинамически возможный коррозионный процесс. Рассмотрением этого  [c.13]


Термодинамика дает лишь сведения о возможности коррозионного процесса, ничего не говоря о его фактической скорости. Для того, чтобы определить скорость термодинамических процессов, надо знать их кинетику.  [c.11]

Термодинамика и кинетика коррозионных процессов. ...........И  [c.3]

Последние четыре главы, объединенные автором в отдельную часть, посвящены вопросам количественной оценки коррозионных процессов и представляют несомненный теоретический и практический интерес. В них излагаются методы измерения кинетики окисления и коррозии в электролитах, теоретическое исследование роста пленок, поляризационные измерения толщины пленок, распределение потенциала в электролитических ячейках, определение скоростей коррозии, применение термодинамики к проблемам коррозии, статическая обработка экспериментальных результатов и пр.  [c.7]

Коррозия с точки зрения химической термодинамики. Только что изложенный метод подхода к вопросу коррозии может заинтересовать металлургов он напоминает нам, что коррозия может происходить только тогда, когда в ее итоге снижается свободная энергия. Последние достижения в области химической термодинамики сделали возможным построение диаграмм, определяющих условия, при которых коррозионный процесс невозможен (при отсутствии подачи энергии извне), а также условия, когда коррозия возможна и в действительности обычно происходит. Из этих диаграмм видно также, при каких условиях возможно образование защитных пленок, часто препятствующих коррозии. Разработкой этого графического метода определения термодинамических областей мы целиком обязаны Пурбэ благодаря его трудам мы получили новый интересный метод подхода к вопросу коррозии металлов. Этот метод рассматривается в главе XXI, но читателю полезно ознакомиться также с его книгой [11 ].  [c.26]

Основная причина коррозии металлов и сплавов — их термодинамическая неустойчивость. Термодинамика дает нам информацию о возможности самопроизвольного протекания коррозионного процесса при данных внешних условиях. Термодинамическая стабильность химиче-  [c.70]

Курс состоит из трех основных частей химическая коррозия, электрохимическая коррозия и методы защиты металлов от коррозии. Кроме того, большое внимание уделено термодинамике, кинетике и механизмам электродных реакций на металлах, а также локальным коррозионным процессам. Основные научные положения проиллюстрированы па конкретных видах коррозии и способах защиты от пее.  [c.7]

Коррозия является процессом химического или электрохимического взаимодействия металлов с коррозионной средой. Для установления механизма и общих закономерностей этого взаимодействия и разработки методов борьбы с ним необходимо знание свойств металлов и коррозионных сред, а также основных закономерностей химических и электрохимических процессов. Поэтому научной базой для учения о коррозии и защите металлов являются металловедение и физическая химия, в первую очередь такие ее разделы, как термодинамика и кинетика гетерогенных химических и электрохимических процессов.  [c.10]

При коррозии с водородной деполяризацией процесс окисления металла протекает со сравнительно большой скоростью. В кислотах активно растворяется большинство металлов (кроме ртути, серебра, золота и платины). Можно показать, что чисто термодинамически вероятность коррозионного разрушения металлов в кислых средах возрастает с уменьшением концентрации ионов металла в среде и с увеличением концентрации ионов водорода. Следует подчеркнуть, что термодинамика рассматривает вопрос только о возможности процесса (в том числе и коррозионного) при отсутствии сопротивления ему, поэтому термодинамические расчеты не определяют кинетику коррозии.  [c.21]

Наука о коррозии и защите металлов изучает взаимодействие металлов и сплавов на их основе с коррозионно-активной средой, раскрывая механизм этого взаимодействия, его общие закономерности. Являясь процессом химического или электрохимического взаимодействия металла с коррозионной средой, она базируется на материаловедении и физической химии, в первую очередь на таких ее разделах, как термодинамика и кинетика гетерогенных химических и электрохимических процессов. Конечной ее целью является разработка практических мероприятий, обеспечивающих долговечную и надежную работу различного вида технологического оборудования и конструкций в самых разнообразных условиях эксплуатации.  [c.4]

Понимание процессов взаимодействия коррозионной среды и металла, особенно деформируемого, дает нам второе начало термодинамики.  [c.7]

Обзор литературы по коррозии металлов в солевых расплавах показывает, что эта проблема еще далека от сколько-нибудь удовлетворительного Р ешения. По многим важным вопросам, касающимся природы процессов, их термодинамики и кинетики, среди исследователей нет единого мнения. Недостаточно разработана экспериментальная часть коррозионных испытаний. Некоторые исследователи проводят эксперименты в таких условиях, которые не позволяют сделать однозначные выводы относительно процессов , лежащих в основе наблюдаемых эффектов.  [c.197]

Возможность и интенсивность каждого коррозионного процесса может быть количественно оценена на основании законов химической термодинамики. При реализации окислительновосстановительных коррозионных реакций (см. табл. 1) совершается работа химического процесса. Фактором емкости служит количество преобразованных веществ (металл и компоненты-окислители), а факторами интенсивности — величина изменения одной из термодинамических функций U, Н, F, G (термодинамические потенциалы). Наиболее широко используется для подобных расчетов изобарно-изотермический потенциал G (функция Гиббса). Путем несложных расчетов при использовании стандартных табличных значений А G/, 298, образования реагирующих веществ, с последующим введением  [c.121]


С точки зрения термодинамики титан является очень неустойчивым металлом (его нормальный потенциал равен —1,63 в), а высокая коррозионная устойчивость титана в большинстве химических сред объясняется образованием на его поверхности заш,итных окисных пленок, исключаюш их непосредственный контакт металла с электролитом. Вследствие этого было интересно исследовать электрохимическое и коррозионное поведение титана в условиях поляризации его переменным током различной частоты, когда в катодный полупериод тока может происходить частичное или полное разрушение пассивного состояния, а в анодный полупериод — его возникновение. Подобные исследования кроме чисто научного интереса представляют, несомненно, и определенную практическую ценность, поскольку титан и его сплавы начинают все шире внедряться в технику как новый конструкционный материал с особыми свойствами и разносторонняя характеристика его коррозионных свойств в различных условиях становится необходимой. Помимо этого, можно полагать, что изучение электрохимических и коррозионных процессов путем наложения на исследуемый электрод переменного тока различной частоты и амплитуды при дальнейшем совершенствовании может явиться наиболее подходяш,им методом для исследования скоростей электродных процессов, а следовательно, и методом изучения механизма электрохимической коррозии и пассивности металлов. Цель настояш,ей работы — выяснение основных факторов, определяющих скорость коррозии титана под действием переменного тока, а также установление механизма образования и разрушения пассивирующих слоев, возникающих на поверхности титана  [c.83]

Роль термодинамики при изучении коррозионных процессов этим не исчерпывается. Термодинамические потенциалы могут быть использованы для количественной оценки движущих сил физико-химических, в том числ и коррозионных процессов, а также для расчета скоростей этих процессов в случаях, когда имеется возможность расчета не только движущих, но и тормозящих сил процессов.  [c.13]

Коррозия является физико-химическим процессом и закономерности ее протекания определяются общими законами термодинамики и 1синетики гетерогенных систем. Различают внутренние и внешние факторы коррозии. Внутренние факторы характеризуют влияние на вид и скорость коррозии природы металла (состав, структура и т.д.). Внешние факторы определяют влияние состава коррозионной среды и условий протекания коррозии (температура, давление и т.д.).  [c.13]


Смотреть страницы где упоминается термин Термодинамика коррозионных процессов : [c.454]    [c.24]    [c.187]    [c.13]    [c.4]    [c.174]   
Смотреть главы в:

Коррозия и защита от коррозии Том 2  -> Термодинамика коррозионных процессов


Коррозия и борьба с ней (1989) -- [ c.29 ]

Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.13 , c.14 ]



ПОИСК



Процесс Термодинамика

Процессы коррозионные

Термодинамика

Термодинамика и кинетика коррозионных процессов

Термодинамика и кинетика коррозионных процессов в расплавленных солях



© 2025 Mash-xxl.info Реклама на сайте