Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термическая усталость термического оборудования

ТЕРМИЧЕСКАЯ УСТАЛОСТЬ ТЕРМИЧЕСКОГО ОБОРУДОВАНИЯ  [c.64]

I Многочисленные случаи возникновения термоусталостных трещин можно встретить в элементах стационарных и нестационарных атомных установок [21], котельных агрегатов и паропроводов [83], деталях технологического оборудование [70, 80], элементах горячего тракта авиационных [13, 49, 71], судовых и стационарных [31, 74] газовых турбин. Известны [13, 71], например, случаи малоциклового разрушения дисков газовых турбин в связи со значительными градиентами температур между ободом и центром диска (500—600° С) и цикличностью процесса упругопластического деформирования в зонах концентрации. Вследствие повреждений от термической усталости доля отказов рабочих и сопловых лопаток в общем объеме деталей газовой турбины, как показывает статистическая информация, составляет 70% [49]. Следует в связи с этим подчеркнуть, что и при разработке программ ускоренных испытаний авиадвигателей [42, 53] фактор термоусталостного повреждения лопаток принимают одним из основных.  [c.15]


Повреждения от термической усталости, проявляющиеся преимущественно в виде формоизменения или коробления с сеткой трещин в элементах технологического оборудования, свойственны некоторым технологическим операциям прокатка (валки горячей прокатки, детали тракта горячего дутья, оправка для прошивки трубной заготовки и др.), литье (кристаллизаторы, чаши шлаковозов, металлические литейные формы), что существенно снижает качество продукции и препятствует интенсификации технологического процесса [15, 70, 80].  [c.15]

МЕТОДЫ И ОБОРУДОВАНИЕ, ПРИМЕНЯЕМЫЕ ПРИ ИСПЫТАНИЯХ НА ТЕРМИЧЕСКУЮ УСТАЛОСТЬ  [c.17]

Способ 8 на рис. 11-1 (установка электродов в сверления) обычно применяют на толстостенных элементах оборудования, когда нет опасности прошить стенку насквозь. Сверления в наименьшей степени способствуют концентрации напряжений и поэтому рекомендуются рядом авторов к применению на паропроводах, барабанах парогенераторов и в других случаях, когда существует опасение, что прорези или наплавки могут стать зародышем трещин термической усталости. Заметим, что -прямых указаний на появление подобных трещин в литературе не приводилось.  [c.223]

Подавляющее большинство элементов энергооборудования работает в условиях сложнонапряженного состояния (объемного для толстостенных и плоского для тонкостенных конструкций), обусловленного в основном внутренним давлением рабочей среды. Напряженное состояние конструктивных элементов сложной конфигурации при теплосменах также в общем случае имеет неодноосный характер. При этом в отличие от напряженного состояния, вызванного внутренним давлением среды с постоянным соотношением главных напряжений, при теплосменах имеет место широкое варьирование соотношения компонент напряжений в зависимости от преобладающего для данного элемента вида термоциклического нагружения (растяжение, сжатие, кручение, изгиб). Для деталей стационарного теплоэнергетического оборудования расчетные условия выбирают на основании длительной их работы в области повышенных температур при ползучести, обусловленной статическими напряжениями от внутреннего давления. Эксплуатация стационарных теплосиловых установок характеризуется относительно невысокими абсолютными рабочими температурами (Тр < 650° С) с небольшим располагаемым градиентом АТ и высокими статическими напряжениями растяжения от внутреннего давления, особенно в зонах концентрации напряжений. Следовательно, термическая усталость металла вместе с ползучестью при-  [c.19]


Как видно из анализа повреждений теплоэнергетического оборудования, весьма важное значение имеет наличие окислительной среды (вода, пар, конденсат), обусловливающей явление корро-зионно-термической усталости. Воздействие окислительной среды заключается главным образом в ее специфическом влиянии на кинетику возникновения и роста термоусталостных трещин. При этом основное воздействие окружающей среды, так же как и термических напряжений, сосредоточено в поверхностных слоях детали. Коррозионно-усталостные процессы, характерные для элементов теплосилового оборудования, интенсифицируются при асимметричном цикле нагружения, наличии дефектов в защитной окисной пленки на поверхности металла, остановах и т. д.  [c.20]

Оборудование и метод испытания на термическую усталость при сложнонапряженном состоянии. При выборе метода испытаний материала на термическую усталость при сложнонапряженном состоянии необходимо учитывать реальную напряженность в нем и необходимость получения количественной оценки сопротивления материалов в этих условиях. Кроме того, испытания должны быть сравнительно простыми для проведения их в обычной лаборатории горячих механических испытаний без использования сложного теплотехнического оборудования. Исходя из этого был выбран метод испытания на термическую усталость при растяжении и сжатии с кручением.  [c.58]

Оборудование и метод испытания на термическую усталость в различных окружающих средах. Для массовых исследований коррозионно-термической усталости (процессов возникновения и развития термоусталостных трещин) необходимо универсальное испытательное оборудование, позволяющее производить теплосмены с охлаждением в различных окислительных, нейтральных, восстановительных средах. Оригинальная герметизированная автоматически действующая установка с расположенными вне рабочего объема нагревательными элементами и системой электромагнитного привода позволяет одновременно испытывать большое число образцов и использовать в качестве охлаждающего агента самые разнообразные вещества (жидкие металлические расплавы, соли, масла, воду, эмульсии и т. п.). Установка выполнена в двух вариантах по способу нагрева и охлаждения образцов (газ—жидкость и жидкость—жидкость).  [c.62]

Заканчивая рассмотрение структурных аспектов термоциклической долговечности, можно сформулировать следующие основные физические представления о механизме упрочнения и разупрочнения при термической усталости металла элементов теплоэнергетического оборудования.  [c.123]

При сопоставлении сопротивления термической усталости различных материалов необходимо учитывать свойства окружающей среды, оказывающей существенное влияние на процессы возникновения и кинетику распространения термоусталостных повреждений. При лабораторных испытаниях образцов часто это условие трудно выполнить, так как это связано с применением специализированного испытательного оборудования.  [c.138]

Так как с повышением предела текучести уменьшается доля пластической составляющей при заданной стесненной деформации, то можно выявить общую закономерность сопротивления материалов термической усталости. В области малых чисел циклов до разрушения (при большой величине стесненной деформации за цикл) преимущество имеют высокопластичные циклически упрочняющиеся материалы, а в области больших долговечностей (при малой величине стесненной деформации за цикл) — высокопрочные материалы. Во всем практически важном для теплоэнергетического оборудования диапазоне температур преимущество должны иметь высокопластичные материалы. Указанная закономерность хорошо подтверждается многочисленными экспериментальными данными.  [c.141]

Примером термически высоконагруженного оборудования является металлургическое оборудование [13, 110]. Повреждения от термической усталости проявляются преимущественно в виде формоизменения и коробления, а также в виде сетки трещин на поверхностях контакта элементов с горячим металлом. Опыт эксплуатации оборудования для литья, горячей прокатки, горячей штамповки, разлива металла при доменном производстве показал, что повреждения существенно снижают качество продукции, эффективность и производительность технологической операции и препятствуют интенсификации технологического процесса [99, ПО]. На рис. 1.11 показаны изменение давлений 1 и температуры 2 точки поверхности ролика установки непрерывной разливки стали [99], а также распределение интенсивностей полной деформации вдоль окружности валка, рассчитанные с помощью метода конечного элемента (МКЭ) [132].  [c.20]


Иногда термическую усталость с наложением циклического изменения внешних сил на температурный цикл называют термомеханической усталостью, считая, что при этом добавляются механические напряжения. Усталость такого типа рассматривают отдельно от термической усталости без нагружения дополнитель- ными внешними силами в случае применения машины Коффина с постоянным коэффициентом стеснения деформации. Однако подобное разделение не имеет смысла, если учесть данное выше определение термических напряжений и методику современных испытаний на усталость. Особенности испытаний на усталость в том и другом случае просто описываются различием степени стеснения деформации. Ниже описываются некоторые особенности [7 ] оборудования для испытаний на термическую усталость и методики проведения экспериментов.  [c.247]

Повреждения при термической усталости обусловлены циклическим характером изменения напряжений и частично релаксацией переменных остаточных напряжений, возникающих при изменении температуры. Релаксирующие напряжения вносят заметный вклад в повреждаемость материала при стационарной работе оборудования.  [c.264]

Основным фактором, ограничивающим скорость изменения нагрузки блока, является термическая усталость деталей турбины под воздействием многократных изменений температуры в проточной части при изменении нагрузки. Допустимые напряжения в деталях турбины или соответствующие им скорости изменения нагрузки, в пределах которых обеспечивается надежность оборудования в течение расчетного срока службы блока, зависят от предполагаемого числа циклов (имеется в виду изменение нагрузки и ее возврат к исходному уровню). При числе циклов более 30 за сутки, что отвечает условиям регулирования внеплановых изменений нагрузки, термические напряжения не должны превышать для блоков сверхкритического давления значений, которые соответствуют изменению мощности в пределах 7% без ограничения скорости. Последующее изменение нагрузки в. том же направлении должно производиться со скоростью 0,3% в минуту. Для блоков докритического давления эти предельные значения составляют соответственно 10 и 0,5% в, минуту.  [c.158]

При выборе материала для высокотемпературного оборудования необходимо учитывать влияние термоциклирования. Как отмечалось выше, колебания температуры могут влиять как на термическую усталость, так и на защитные свойства пленок, образовавшихся иод действием окислительной среды в период эксплуатации, предшествующий резким колебаниям температуры.  [c.73]

Термической усталости подвержены многие детали оборудования и различный инструмент валки горячей прокатки, штампы для горячей штамповки, пресс-формы для литья под давлением, хоботы завалочных машин, контейнеры для прессования профилей и т. п. С проблемой термической усталости чаще всего приходится сталкиваться при решении задач, связанных с наплавкой прокатных валков и штампов для горячей обработки металлов. Здесь в качестве наплавленного металла традиционным является применение штамповых сталей для горячей обработки, которые в соответствии с классификацией МИС относятся к типу Н (табл. 13-4). Такие детали, как прокатные валки, штампы и другой инструмент для горячей обработки, испытывают не только тепловые удары, которые приводят к трещинам термической усталости, но подвергаются одновременно и износу истиранием. Скорость распространения трещин в глубь металла и скорость истирания могут быть разными. Поэтому на изношенной поверхности детали отразится результат действия процесса, протекающего с большей скоростью, т. е. сетка трещин, либо задиры и риски. Различные типы наплавленного металла обладают разной склонностью к образованию трещин термической усталости и сопротивлением износу.  [c.702]

Явления малоцикловой усталости могут быть обусловлены внешними механическими воздействиями (давление, нагрузка и т. д.) или термическими эффектами вследствие появления температурных градиентов, различия физико-механических свойств материалов и т. д. при повторном изменении режимов работы оборудования. Малоцикловые разрушения, когда процесс формирования предельных повреждений определяется в основном действием циклических температурных напряжений, называют разрушениями от термической малоцикловой усталости. Это частный случай неизотермического малоциклового разрушения, которое может возникать в результате как механического неизотермического, так и термоусталостного малоциклового нагружения.  [c.4]

В связи с изложенными факторами проводят эксплуатационный контроль температурного режима, термических перемещений и со стояния металла. Эксплуатационный контроль металла включает наблюдение за ростом остаточной деформации, изменениями структуры и механических свойств, состоянием сварных соединений и сохранением сплошности металла в местах конструктивных и эксплуатационных концентраций напряжения. Возможности эксплуатационного контроля металла должны быть предусмотрены при проектировании, монтаже, ремонтах и эксплуатации теплосилового оборудования. При длительной эксплуатации при высоких температурах я давлении свойства металла паропроводов и котлов изменяются, что проявляется в развитии процесса ползучести, окалинообразования, усталости, коррозии, эрозионного износа, а также в снижении работоспособности. Эксплуатационный контроль металла котлов и трубопроводов проводят в соответствии с требованиями Инструкции по контролю за металлом котлов, турбин и трубопроводов И 34-70-013—84 Минэнерго.  [c.210]


Если имеются щелочная коррозия и переменные термические напряжения в металле (например, при неустойчивом расслоении пароводяной смеси в трубах радиационной части прямоточных котлов, когда верхняя часть труб охлаждается попеременно водой и паром), металл повреждается с образованием трещин интеркристаллитного характера. Такое повреждение металла получило название коррозионная усталость. Распространенным видом коррозии можно считать кислородную коррозию. Свободный кислород, содержащийся в воде, электрохимически взаимодействует с металлом и вызывает его разрушение. Характерными признаками кислородной коррозии являются язвины на металле труб. Наиболее подвержены этому типу коррозии внутренние поверхности труб экономайзеров. Дегазация или деаэрация воды снижает содержание кислорода и других газов в питательной воде и скорость коррозии. Повышение скорости воды в трубах водяных экономайзеров также способствует снижению скорости кислородной коррозии за счет снижения продолжительности контакта кислорода с поверхностью металла. Коррозия оборудования идет и в периоды, когда оборудование находится в ремонте или в резерве. Такая коррозия называется стояночной. На поверхности металла неработающего оборудования образуется пленка влаги, поглощающей из воздуха кислород, который взаимодействует с металлом (металл ржавеет). Под слоем накипи или шлама образуются язвины в металле. Для предотвращения стояночной коррозии применяются различные способы консервации котла, целью которых является предотвращение возможности проникновения атмосферного воздуха внутрь барабанов и поверхностей нагрева котлов.  [c.114]

Процесс упрочнения является финишной операцией, поэтому выполняется после механической и термической обработки детали. Вид (характер) упрочнения каждой конкретной детали выбирается, исходя из ее конструктивно-технологических и эксплуатационных характеристик с учетом технологических и технико-экономических показателей процесса, назначаемого из числа существующих или специально разработанных для широкофюзеляжных самолетов. При этом в качестве одного из основных условий требуется обеспечить высококачественное упрочнение большого количества силовых деталей при минимальном количестве применяемых способов упрочнения и типоразмеров оборудования. Эффективность выбранных режимов упрочнения предварительно оценивается по результатам испытаний стандартных образцов на малоцикловую усталость при растяжении асимметричным циклом нагружения, а также (при необходимости) по результатам испытаний образцов на сопротивление износу, коррозии под напряжением и других испытаний, В дальнейшем эффективность упрочнения окончательно оценивается по результатам испытания агрегатов на ресурс н надежность.  [c.229]

Термическая усталость — это разрушение материала под дейст-виел1 циклических изменений температуры, которые возбуждают переменные температурные напряжения. Однократное изменение температуры с высокой скоростью носит название теплового удара. При тепловом ударе, так же как при термоциклировании, возникшие температурные поля и обусловленные ими температурные напряжения могут привести к разрушению образца. Термическую усталость относят к разновидности малоцикловой низкочастотной усталости. Вопросы разрушения металлургического оборудования при термической усталости рассмотрены в работах М. А. Тылкина [40, 218, 219].  [c.128]

Разрушение от знакопеременных термоциклических нагру-, зок — термическая усталость —наблюдается в чистом виде лишь, в тех деталях, которые нагружены незначительной дополнительной механической нагрузкой (двухопорные сопловые лопатки газотурбинных установок, ковши для разлива металла, тормозные элементы колес и т. п.). Повреждающее действие этого вида нагружения в значительно большей мере проявляется в сочетании с внутренним давлением (котлы и трубопроводы энергетического оборудования), центробежными усилиями и вибронагрузками (рабочие лопатки газотурбинных установок), внешними нагрузками (валки прокатных станов) и другими видами усилий. При этом термоциклическое повреждение поверхностных слоев деталей обычно является причиной возникновения первых очагов разрушения, инициирующих дальнейшее развитие трещин от действия статических или циклических усилий.  [c.3]

На основании первых анализов термоусталостных повреждений элементов котлотурбинного оборудования и результатов лабораторных испытаний на термическую усталость образцов из перлитных и аустенитных сталей было определено, что в перлитных сталях, работающих в воде или водяном паре, термоусталостные трещины имеют полостевидную форму с округлыми окончаниями и характерными признаками коррозии, в то время как в сталях с аустенитнои структурой образуются тонкие и глубокие, чаще всего транскристаллитные острые трещины. Различия в форме термоусталостных трещин были объяснены характерной особенностью ферритно-перлитной и аустенитной структур и главным образом различием комплекса теплофизических характеристик стали с а- и -у-решеткой. В результате изучения характера трещин коррозионно-термической усталости в широком диапазоне температур были выявлены новые закономерности и показано, что Б зависимости от условий испытаний может иметь место та или иная форма трещин как в аустенитной, так и в перлитной стали.  [c.129]

ОЗШ-6 ЮХЗЗНПМЗСГ Наплавка кузнечно-штамповочной оснастки холодного и горячего деформирования металлов, быстроизнашиваемых деталей металлургического, станочного и другого оборудования, работающего в тяжелых условиях термической усталости (до 950 °С) и больших давлений. 52...60 HR (32 33)  [c.183]

Предлагаемая книга посвящена проблеме термической усталосте, т.е процессу появления поверхностных трещин и их постеленного развития вплоть до полного разрушения изделий, работающих в условиях циклических нагревов и охлаждений, сопровождающихся созданием больших градиентов температур по сечению детали. На основе обобщения литературных сведений, данных эксплуатации разнообразногб технологического и энергетического оборудования в ПНР, а также используя собственные производственные и лабораторные исследования, автор сделал попытку установить общие закономерности влияния многочисленных факторов (условий службы, химического состава, структуры и физико-механических свойств материалов) на српротивлен термической усталости конкретных изделий (стальных форм для литья чугунных труб, инструмента горячей и холодной штамповки, прокатных валков, деталей термического оборудования, роторов турбин и др.). При этом приведены практические рекомендации по выбору материалов, термической, химико-терми-ческой и других видов обработки с целью повышения сопротивления усталости изделий, работающих в условиях циклических термических нагрузок. Дано также описание основных методов исследования структуры и свойств материалов при термической усталости.  [c.6]


Трещины термической усталости. Разрушение деталей после многократного воздействия периодически изменяющегося во времени уровня термических напряжений представляет собой явление термической усталости. Разрушение при термической усталости наступает при значительных знакопеременных пластических деформациях при общем числе тепло-смен (циклов), характерном для повторностатических нагружений. Термическая усталость является особенно серьезной проблемой, например, в газовом хозяйстве, где температура деталей изменяется с большой скоростью, в самолетных конструкциях, подвергающихся кинетическому нагреву при эксплуатации электростанций (когда термические напряжения возникают при пуске и останове агрегатов) и металлургического оборудования (изложниц, прокатных валков, штампов), где поверхность металла повторно нагревается и охлаждается.  [c.162]

Надежность криогенных систем, работаюпщх в условиях многократного подъема и сброса давления, зависит от сопротивления конструкционных материалов усталостному разрушению (рис. 13.13). База испыганий выбирается в зависимости от условий эксплуатации оборудования. Металл криогенных установок, подвергаемых многократному захолажи-ванию, испытьшается на сопротивление термической усталости. Надежность криогенных систем, работающих в условиях многократного подъема и сброса давления, зависит от сопротивления конструкционных материалов усталостному разрушению.  [c.624]

Перечислены в полном объеме основные доминирующие механизмы, связанные со старением каждой единицы оборудования, к которым могут относиться мало- или многоцикловая усталость радиационное охрупчивание текучесть ползучесть термическая релаксация напряжений термическая усталость тепловой удар коррозия под напряжением коррозионная усталость эррозия износ.  [c.308]

Один из основных видов коррозионного разрушения газонефтепромыслового оборудовармя — статическая водородная усталость (СВУ), т.е. снижение длительной прочности стали в результате водородного охрупчивания в условиях статического нагружения металла. Предел статической водородной усталости, соответствующий максимальному напряжению, при котором не наблюдается коррозионного растрескивания, зависит от многих взаимосвязанных факторов химического состава, термической обработки и механических свойств стали, уровня приложенных напряжений, количества поглощенного водорода, состояния поверхности и др. Влияние этих факторов не только взаимосвязано, но в некоторых случаях и противоположно. Поэтому нельзя рассматривать предельные напряжения, при которых не происходит сероводородного растрескивания, как абсолютные значения дог скаемыч напряжений. которые могут быть использованы при проектировании оборудования их следует рассматривать как сравнительные величины при сопоставлении стойкости различных металлов.  [c.35]

Так как при эксплуатации теплоэнергетического оборудования в условиях многократных резких изменений температуры часто раньше расчетного срока службы (100 тыс. ч) возникают специфические преждевременные усталостные повреждения, то обусловливающие их явления термической и малоцикловой усталости являются важными процессами, определющими в ряде случаев надежность работы этого оборудования.  [c.4]

Необходимо учитывать, что для нитроцементованных зубчатых колес опасно даже частичное обезуглероживание поверхности при повторном нагреве под закалку в атмосфере воздуха или при переносе изделий из закалочной печи в бак. При этом резко ухудшаются механические свойства, в особенности снижаются сопротивление усталости и ударная вязкость, даже при наличии оптимальной суммарной концентрации углерода и азота. Таким образом, даже при химико-термической обработке колес с использованием наиболее прогрессивного оборудования в поверхностной зоне цементованного или нитроцементованного слоя могут образоваться дефектные и немартенситные структуры. В результате снижается сопротивление усталости и контактная выносливость зубчатых колес. Для предотвращения образования указанных дефектов в периферийных зонах цементованного и нитроцементованного слоя на расстоянии до 0,2 мм от поверхности используются различные способы. Такие способы базируются на рациональном выборе системы легирования сталей и на совершенствовании режимов насыщения зубчатых колес углеродом и азотом. Однако на сопротивление усталости зубчатых колес весьма существенное влияние оказывает и интенсивность охлаждения изделий при закалке.  [c.441]


Смотреть страницы где упоминается термин Термическая усталость термического оборудования : [c.138]    [c.139]    [c.280]    [c.376]    [c.234]   
Смотреть главы в:

Термическая усталость металлов  -> Термическая усталость термического оборудования



ПОИСК



Методы и оборудование, применяемые при испытаниях на термическую усталость

Усталость

Усталость и термическая усталость

Усталость термическая



© 2025 Mash-xxl.info Реклама на сайте