Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение жидкости в трубе при изменении ее температуры

Рис. 8-4. Изменение распределения температуры при движении жидкости в трубе. Рис. 8-4. Изменение <a href="/info/249037">распределения температуры</a> при <a href="/info/25893">движении жидкости</a> в трубе.

По мере движения жидкости вдоль трубы наблюдается прогрев или охлаждение пристенных слоев, если температура жидкости отлична от температуры трубы. В начале трубы центральное ядро жидкости еще имеет температуру, равную температуре на входе, это ядро в теплообмене не участвует, все изменение температуры сосредоточивается в пристенном слое. Таким образом, у поверхности трубы в ее начальной части образуется тепловой пограничный слой, толщина которого по мере удаления от входа увеличивается. На некотором расстоянии от входа, равном /н.т, тепловой пограничный слой заполняет  [c.203]

Рассмотрим развитие процесса теплообмена вдоль трубы. Пусть во входном сечении температура жидкости постоянна и по величине отличается от температуры стенки трубы. По мере движения потока между жидкостью и стенкой происходит процесс теплообмена и температура жидкости постепенно изменяется. Вначале вблизи от входного сечения изменение температуры происходит лишь в тонком слое около поверхности. Затем по мере удаления от входного сечения вся большая часть потока вовлекается в процесс теплообмена. Таким образом, развитие процесса теплообмена внутри труб вначале происходит качественно так же, как и при ламинарном пограничном слое на пластине (см. 3-1). Около поверхности трубы образуется тепловой пограничный слой, толщина которого постепенно увеличивается в направлении движения потока. На некотором расстоянии от начального сечения трубы /н т тепловые пограничные слои смыкаются, и в процессе теплообмена участвует далее весь поток жидкости. Расстояние /н.т может быть приближенно оценено по зависимости  [c.76]

Рис. 3-14. Изменение распределения температур по сечению и длине при движении жидкости в трубе. Рис. 3-14. Изменение <a href="/info/249037">распределения температур</a> по сечению и длине при <a href="/info/25893">движении жидкости</a> в трубе.
При значительном изменении температуры по сечению и длине трубы в разных точках потока оказываются различными плотности жидкости или газа. Вследствие этого в жидкости возникают подъемные силы, под действием которых на вынужденное движение теплоносителя накладывается свободное движение. В итоге изменяются картина движения жидкости и интенсивность теплоотдачи. Так, в вертикальных трубах при совпадении направления течения жидкости с направлением подъемной силы (течение снизу вверх при нагреве жидкости, течение сверху вниз при охлаждении) скорость течения жидкости у стенки увеличивается, как это показано на рис. 3-20. В итоге интенсивность теплоотдачи увеличивается по сравнению со случаем, когда влияние свободной конвекции отсутствует, что, например, имеет место в условиях невесомости.  [c.81]


Гидросистема привода представляется как последовательное-соединения труб, местных сопротивлений и гидроцилиндров [1, 72], поэтому модель содержит уравнения движения механической части (а), (б), (в), (г) уравнения связи между давлениями и расходами в гидросети (д), (е), (ж), (з), (м) уравнения и условия, списывающие перемещения подвижных элементов гидросистемы (р) (с) логическое условие разрыва кинематической цепи в зазоре (и) описание вспомогательных переменных (к), (л), (н), (о), (п). Жидкость считается сосредоточенной в сечениях н и е , высокочастотные процессы не рассматриваются, изменение температуры не-учитывается. Объемный модуль упругости смеси масла с воздухом  [c.63]

При движении по трубе двухфазной среды — воды и пара поверхность трубы, воспринимающая тепло, может попеременно омываться то водой, то паром. При соприкосновении металла с водой вследствие большого коэффициента теплоотдачи от жидкости к стенке температура его понижается и, наоборот, при омывании металла насыщенным или перегретым паром температура его повышается, что и приводит к возникновению периодически меняющихся температурных напряжений. Период колебания температуры стенки, т. е. время изменения температуры от максимума до минимума и вновь до максимума, может быть различным — от секунд до десятков минут.  [c.14]

Приведенные соображения, по-видимому, довольно правильно отображают качественную сторону механизма теплообмена при ламинарном движении жидкости в трубах. Однако, естественно, возникает вопрос, в какой мере принятое допущение о постоянстве физических параметров жидкости (и в первую очередь допущение о постоянстве ее вязкости) может повлиять на количественные результаты. С физической точки зрения представляется очевидным, что при обычном законе изменения вязкости уменьшение ее с температурой должно способствовать сглаживанию диссипативного эффекта. Некоторые количественные оценки можно получить (по крайней мере в отношении предельного значения Ми(оо)), если воспользоваться приведенным в 15] обобщенным на случай переменной вязкости диссипативным критерием  [c.63]

Для приближенного расчета движения жидкости или газа по тру бам можно отвлечься от весьма сложных деталей этого движения (об этом будет сказано в заключительных главах) и удовольствоваться следующей упрощенной схемой. Примем поток за одномерный, т. е. будем пренебрегать изменением величины и направления скорости, а также изменениями других элементов потока (давления, плотности, температуры и др.) по сечению, перпендикулярному к оси потока будем лишь учитывать изменение средних по сечениям величин и, р, р, 7" и др. в зависимости от координаты х, определяющей положение сечения вдоль оси трубы. Площадь сечения А будем считать заданной функцией х. Отвлечемся от сил трения внутри жидкости и жидкости о стенку, а также от теплопроводности иными словами, как повсюду в настоящей главе, будем считать жидкость идеальной.  [c.198]

С изменением температуры стенки трубы коэффициент теплоотдачи при вынужденном движении однофазной жидкости  [c.217]

Как и при омывании пластины, теплоотдача при течении жидкости в трубе неодинакова по длине. По мере движения жидкости вдоль трубы наблюдается пропрев или охлаждение пристенных слоев. При этом в начале трубы центральное ядро жидкости еще имеет д емпера-туру, равную температуре на входе, это ядро в теплообмене не участвует, се изменение температуры сосредоточивается в пристенных слоях. Таким образом, у поверхности трубы в ее начальной части образуется тепловой пограничный слоя, толщина которого по мере  [c.192]

Вертикальная труба. На рис. 13-11 показано изменение структуры и температуры двухфазного потока, а также изменение температуры стенки по длине вертикальной трубы при движении потока снизу вверх. Наблюдаются три основные области с разной структурой потока жидкости область подогрева (экономайзер-ный участок) (до сечения трубы, где Тс = Тл), область кипения (испарительный участок) (от сечения, где Тс-Ти, /,к<гн, до сечения, где Тс>Т ,  [c.299]


Различие температур в сечении трубы вызывает дополнительно изменение распределения скоростей движения жидкости за счет возникновения подъемной силы и естественной конвекции.  [c.55]

Теплоотдача при турбулентном режиме. При турбулентном режиме движения передача тепла внутри жидкости в основном осуществляется за счет перемешивания, которое происходит настолько интенсивно, что Б подавляющей части поперечного сечения трубы температура жидкости практически постоянна. Резкое изменение температуры имеет место лишь в пограничном слое. При таком распределении температуры естественная конвекция отсутствует и теплоотдача полностью определяется вынужденным движением жидкости.  [c.57]

Профиль температуры (см. рис. 12-2) изменяется при переходе от сечения 1 к сечению 2. Изменение это связано с теплоотдачей, которая происходит на участке трубы между этими сечениями. По трубе движется жидкость, температура которой выше, чем температура стенки. На рис. 12-2 изображен профиль избыточной температуры б (г, x)=t r, х)—t . На стенке температура жидкости принимает температуру стенки, поэтому избыточная температура 0(го, х) равна нулю. Наиболее высокая температура жидкости —на оси трубы. Если представить, что движение жидкости осуществляется в виде скольжения друг по другу коаксиальных цилиндров, то теплота от внутренних, более нагретых слоев к наружным переносится теплопроводностью (микрочастицами, переходящими из слоя в слой). Здесь уместно отметить, что тот же обмен микрочастицами 220  [c.220]

При больших значениях температурного напора и существенном изменении температуры по длине трубы плотность жидкости может меняться и может возникать свободное движение жидкости, приводящее к изменению коэффициента теплоотдачи. Такое изменение не учитывается формулой (12-53). Этот вопрос будет рассмотрен в параграфе, посвященном свободной конвекции.  [c.278]

Уравнение (5-47) имеет тот же вид, что и уравнение теплопроводности для нестационарного поля температуры в твердом теле с внутренними источниками тепла, мощность которых изменяется во времени. Если геометрическая форма потока в трубе и геометрическая форма тела одинаковы, законы изменения во времени градиента давления и мощности внутренних источников тепла совпадают, начальные и граничные условия в обеих задачах идентичны, то решение задачи теплопроводности можно одновременно рассматривать и как решение соответствующей задачи о движении жидкости в трубе. Поскольку в теории теплопроводности известны решения ряда подходящих задач (Л. 41], то эти решения непосредственно или после некоторой переработки (например, в случае несоответствия начальных условий) можно использовать и для расчета нестационарных течений в трубах.  [c.71]

Итак, рассматривается течение жидкости и теплообмен в вертикальной трубе при постоянной плотности теплового потока на стенке и однородном тепловыделении в потоке за счет действия внутренних источников. Физические свойства жидкости, исключая плотность, считаются постоянными. Изменение плотности в зависимости от температуры предполагается линейным и учитывается лишь в том члене уравнения движения, который выражает подъемную силу. Таким образом, движение жидкости в данном случае представляет собой результат взаимодействия вынужденной и свободной конвекции. При этом профили скорости и температуры будут осесимметричными.  [c.333]

До сих пор мы рассматривали нестационарные процессы конвективного теплообмена при чисто вынужденном движении жидкости. Однако не лишены интереса некоторые результаты, относящиеся к случаю совместного действия вынужденной и свободной конвекции. В [Л. 17] изучалось нестационарное течение и теплообмен в плоской, а в [Л. 18] — в круглой вертикальных трубах при нагревании жидкости, текущей снизу вверх, или охлаждение жидкости, текущей сверху вниз. Анализ был проведен для полностью развитого (стабилизированного) течения и теплообмена при линейном изменении температуры стенки по длине и равномерном тепловыделении в потоке. Первоначальное стационарное состояние нарушается вследствие произвольного изменения во времени температуры стенки, градиента давления и мощности внутренних, источников тепла.  [c.391]

Развитое турбулентное движение устанавливается лишь при Re Ю . При этом процесс перемешивания частиц жидкости протекает настолько интенсивно, что по сечению турбулентного ядра потока температура практически остается постоянной. Резкое изменение температуры наблюдается лишь внутри пограничного слоя (см. рис. 14.2). Естественно, что при подобном распределении температуры развитие свободной конвекции становится невозможным и процесс теплоотдачи полностью определяется только факторами вынужденного движения. В результате анализа и обобщения опытных исследований, проведенных с различными жидкостями (кроме жидких металлов) в широком диапазоне изменения их параметров для прямых гладких труб, рекомендуется следующая формула [2, 10]  [c.247]

Приближенный анализ течения газа или жидкости в трубах и каналах может быть выполнен методами гидравлики. При этом поток характеризуется средними по живому сечению канала скоростью, температурой, давлением и плотностью, изменяющимися в направлении движения. При изучении течения в каналах и трубах методами гидравлики исследуются изменения средних характеристик вдоль потока, что позволяет рассматривать реальное сложное течение как одномерное. В дальнейшем, рассматривая течение газа через вентилируемые аппараты, будем считать их установившимися и применим для их изучения методы гидравлики.  [c.63]


В книге излагаются основы теории и методы расчета тепломассообмена и трения в каналах переменного сечения, трубах и на поверхностях тел, обтекаемых несжимаемой жидкостью и газом с большими скоростями и высокими температурами, при изменении давления в направлении движения. Рассмотрено обтекание жидкостью и газом непроницаемых и пористых поверхностей при наличии поперечного потока вещества через последние в условиях образования ламинарного и турбулентного пограничных слоев.  [c.135]

Все сказанное выше о режимах движения строго справедливо только для такого перемещения, которое совершается при одинаковой и неизменной температуре среды, т. е. для так называемого изотермического движения. Если же движение протекает с изменением температуры среды, т. е. если оно является неизотермическим, то длина участка стабилизации и характр изменения скоростей оказываются другими, отличными от изображенных на фиг. 14. 4 и 14.6. Неизотермическое движение появляется с возникновением теплообмена, причем характер движения определяется направлением и интенсивностью теплового потока. Так, например, если от ламинарного потока капельной жидкости отводится теплота, то параболический закон распределения скоростей в трубе, представленный кривой  [c.290]

При постепенном закрывании крана явление повторяется в обратном порядке. Однако переход от турбулентного режима к ламинарному происходит при скорости, меньшей той, при которой наблюдается переход от ламинарного движения к турбулентному. Скорость потока, при которой происходит смена режима движения жидкости, называется критической. Рейнольдсом было обнаружено существование двух критических скоростей одной — при переходе ламинарного режима движения в турбулентный рел<им, она называется верхней критической скоростью 1>в.кр, другой — при переходе турбулентного режима движения в ламинарный режим, она называется нижней критической скоростью Он.кр. Опытным пз тем доказано, что значение верхней критической скорости зависит от внещних условий опыта постоянства температуры, уровня вибрации установки и т. д. Нижняя критическая скорость в широком диапазоне изменения внешних условий остается практически неизменной. В опытах было показано, что нижняя критическая скорость для потока в цилиндрической трубе круглого сечения пропорциональна кинематической вязкости V и обратно пропорциональна диаметру трубы с  [c.112]

Во многих современных технических устройствах имеет место обтекание жидкостью или газом тел с криволинейной поверхностью, движение жидкостей или газов в каналах переменного сечения и в трубах. Очень часто температура потока отличается от температуры обтекаемой поверхности, и поэтол1у такие течения сопровождаются теплообменом между -потоком и поверхностью твердого тела. Для того чтобы правильно запроектировать такие устройства и обеспечить их надежную работу, необходимо определить трение и тепловой поток на стенке. В случае повышения давления в направлении течения особый интерес представляет выяснение вопроса, происходит или не происходит отрт>1в потока от поверхности тела, и если происходит, то в каком имеиио месте. Прогресс современной техники выдвинул много новых вопросов, в частности определение характеристик потоков при больп1их скоростях, когда диссипация энергии вызывает сильные температурные изменения выяснение влияния отсасывания или вдува л<идкости сквозь поверхность тела и т. д.  [c.3]

До сих пор предполагалось, что движение жидкости носит изотермический характер (рис. 1-19, кривая 1), т. е. что температура жидкости во всех точках потока одинакова. В условиях теплообмена движение жидкости является неизотермическим, так как температура жидкости изменяется по сечению и по длине трубы. С изменением температуры изменяется вязкость ж1идкости, что оказывает влияние на картину распределения скоростей в сечении трубы, причем это влияние различно в зависимости от направления теплового потока (рис. 1-19). При охлаждении жидкости ее температура у стенки ниже, а вязкость выше, чем в середине сечения трубы, поэтому скорость течения жидкости у стенки меньше, а в середине сечения — больше в сравнении с изотермическим режимом (кривая 2). При нагревании жидкости имеет место обратная картина скорость течения жидкости у стенки выше, а в среднем сечении ниже в сравнении с изотермическим режимом (кривая 3). Таким образом, при наличии теплообмена параболическое распределение скоростей в условиях ламинарного течения жидкости нарушается.  [c.55]

Экспериментальное исследование выполнено при нестационарном охлаждении вертикальных трубопроводов различного диаметра жидким азотом при подъемном и опускном движении в условиях как естественного распада жидкой струи на капли, так и предварительного распыла жидкости. Экспериментальная установка, режимные параметры, методика эксперимента и первичной обработки опытных данных такие же, как и при исследовании стержневого режима пленочного кипения, рассмотренном в 7.4. Исключение составляет массовый расход жидкости и температура стенки, которые при дисперсном режиме изменялись в диапазоне 0,01 —1,0 дм с и 300—1000 К соответственно. Предварительный распыл жидкого азота на входе в экспериментальные участки (трубы из стали 1Х18Н9Т с внутренним диаметром 12 мм и 57 мм, длиной 80 и 26 калибров соответственно) осуществлялся с помощью струйных форсунок с радиальной подачей жидкости. В трубе диаметром 57 мм средний начальный размер жидких капель определяли по кривым спектрального распределения капель по размерам. Кривые получены после обработки результатов фотосъемки. При подъемном движении в трубе диаметром 12 мм начальный средний размер капель принимали в предположении, что для заданного значения начального паросодержания. Го = 0,01 достигаются условия е = е,ф, в случае опускного движения без распыла — из вариантных расчетов при изменении бо в пределах от 1 до 3 мм.  [c.233]

В случае движения в длинных трубах необходимо учитывать изменение температуры жидкости по длине, так как при этом будет изменяться по длине температурный напор, а следовательно, и вклад в теплообмен, обусловленный свободной конвекцией. Чтобы учесть эти обстоятельства, Мартинелли и Болтер применяют анализ, подобный рассмотренному, к элементарным участкам трубы, а затем производят  [c.321]

При неодинаковой температуре в сечении возникает естественная конвекция и создается подъемная сила. Это влияет па п[)офиль скорости, причем характер изменения профиля скорости зависит от того как расположена труба, вертикально или горизонтально, и совпадают ли направления свободного и вынужденного движений или они противоположны. Для вертикальной трубы в случае совпадения направлений свободного и вынужденного течений (при охлаждении капельной жидкости и подаче ее сверху или нагреве жидкости и подаче ее снизу) у стенки трубы скорость возрастает, а в центре уменьшается (рис. 1.7, а). В случае противоположно направленных свободного и вынужденного течений (при охлаждении капельной жидкости и подаче ее снизу или нагревании жидкости и подаче ее сверху) скорость у стенки трубы становится меньше, а в центре больше (рис. 1.7, 6).  [c.21]


Приведенные выше закономерности справедливы лишь для изотермического движения, когда температура жидкости, а следовательно, ее вязкость и плотность во всех точках потока сохран (ют одну и ту же величину. При наличии же теплообмена температура жидкости меняется как по сечению трубы, так и по ее длине, Изменение темпе натуры по сечению приводит к изменению плотности жидкости и ее вязкости и, как следствие этого, к изменению профиля скоростей и гидравлических согротивлений.  [c.196]

Прямые скачки уплотнения в газах. Выше было показано, что непрерывное двил<ение сжимаемой жидкости, в котором удовлетворяются условия неразрывности и адиабатичности и уравнение количества движения для невязкой жидкости, является изэнтропическим. Замечено, однако, что при движении реальных жидкостей в трубах могут происходить резкие изменения давления, плотности, температуры и скорости, конечные по величине. Такие разрывы параметров течения, называемые ударными волнами, не могут быть объяснены IB рамках теории изэнтропичеокого движения. Рассмотрим одномерный контрольный объем, включающий в себя стационарный разрыв (скачок уплотнения), нормальный к направлению движения потока (рис. 14-23). Характеристики течения до скачка уплотнения обозначим индексом 1, а течения за скачком уплот-  [c.363]


Смотреть страницы где упоминается термин Движение жидкости в трубе при изменении ее температуры : [c.82]    [c.85]    [c.206]    [c.283]    [c.102]    [c.38]    [c.128]   
Смотреть главы в:

Гидравлический привод  -> Движение жидкости в трубе при изменении ее температуры



ПОИСК



Движение жидкости в трубах

Изменение движения

Изменение температуры

Температура жидкости



© 2025 Mash-xxl.info Реклама на сайте