Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы исследования коэффициентов излучения

МЕТОДЫ ИССЛЕДОВАНИЯ КОЭФФИЦИЕНТОВ ИЗЛУЧЕНИЯ  [c.348]

Из изложенного выше следует, что коэффициент излучения зависит от природы, теплового состояния тела, а также от состояния его поверхности. Зависимость коэффициента излучения не только от физических свойств и температуры тела, а еще и от состояния его поверхности не позволяет отнести его к ч исто теплофизическим параметрам. Для опытного исследования коэффициента излучения пока еще не существует достаточно разработанных и установившихся экспериментальных методик. Применительно к твердым телам получили распространение следующие методы радиационный, калориметрический и метод регулярного режима. К недостаткам радиационного метода относится неизбежная неточность наводки приемника излучения и некоторое рассеивание лучистой энергии, падающей на спай дифференциальной термопары. Кроме того, форма образца, применяемая в этом случае, является преимущественно плоской. В калориметрическом методе также нельзя применять исследуемые образцы произвольной формы. Их форма должна допускать возможность закладки в них электрических нагревателей. При этом необходимо, чтобы утечки тепла, обусловленные концевыми потерями в образцах, были пренебрежимо малыми. К общим недостаткам обоих методов относится необходимость измерения лучистых тепловых потоков и температуры поверхности исследуемых тел. В методе регулярного режима отпадает необходимость в измерении как лучи стых тепловых потоков, так и температуры поверхности Опыт сводится лишь к определению темпа охлаждения Метод регулярного теплового режима применялся ав тором в относительном и абсолютном вариантах. В обо их случаях образцы исследуемого материала могут иметь произвольную геометрическую форму и малые размеры,  [c.285]


Исследование приведенного коэффициента излучения. Расчетные методы позволяют найти этот коэффициент применительно к излучающим системам простой геометрии, еслп тела, составляющие ее, являются серыми. 360  [c.360]

ИССЛЕДОВАНИЕ УГЛОВОГО КОЭФФИЦИЕНТА ИЗЛУЧЕНИЯ ПО МЕТОДУ СВЕТОВОГО МОДЕЛИРОВАНИЯ  [c.378]

Опытное исследование интегральных коэффициентов излучения твердых тел может быть проведено следующими методами радиационным, калориметрическим, методом регулярного режима и методом непрерывного нагревания с постоянной скоростью. Во всех методах перенос тепла за счет теплопроводности и конвекции должен быть пренебрежимо мал по сравнению с излучением.  [c.385]

В связи с этим приходится так же, как и в дифференциальных методах, ограничиваться заданием приближенных значений неизвестных заранее величин, входящих в интегральные уравнения и являющихся функционалами температурного поля. Наиболее эффективным представляется итерационный способ решения. Задаваясь на основании предварительных оценочных расчетов неизвестным температурным полем в излучающей системе, на основании соответствующих вышеприведенных уравнений определяют приближенное распределение спектральной интенсивности излучения, исходя из которого находят значения всех функционалов, подставляют их в интегральные уравнения и, решая последние, получают первое приближение для температурного поля. Многократно повторяя эту операцию, можно получить решение с лк)-бой степенью точности. Иными словами, здесь имеет место аналогия с определением коэффициентов переноса в дифференциальных методах расчета теплообмена излучением. Таким образом, интегральные уравнения теплообмена излучением в общем случае по существу являются своего рода интегральным приближением, часто используемым для исследований и расчетов радиационного теплообмена, в котором неизвестные функциональные величины определяются ли задаются с той или иной степенью точности.  [c.196]

В основу этого метода кладется зависимость (2-27), ранее использованная для опытного исследования коэффициента теплоотдачи. Рассмотрим регулярное охлаждение двух тел произвольной, но одинаковой геометрической формы и размеров в среде постоянной температуры, для одного из которых коэффициент излучения является величиной известной (эталоном). В условиях малого значения Био (<0,1) для них справедливы следующие соотношения  [c.291]


При исследовании теплопроводности металлов в области высоких температур возникают значительные экспериментальные трудности, связанные с необходимостью учета или устранения теплообмена между боковой поверхностью образца и окружающей средой. Существующие методы определения коэффициента теплопроводности основаны на решении упрощенного уравнения теплового баланса, что ограничивает их применимость при температурах выше 800—900° С, где потери на излучение играют решающую роль. Эти потери удается устранить защитной теплоизоляцией либо учесть путем введения дополнительных поправочных множителей [1].  [c.94]

В таких измерениях применяют следующие методы зондовый [70], метод измерения коэффициента усиления слабого сигнала, прошедшего через различные участки активного элемента [80], а также методы регистрации интенсивности люминесценции с торца активного элемента и интенсивности излучения лазера в режиме свободной генерации. Ниже приводятся результаты таких исследований для наиболее распространенных конструкций излучателей технологических лазеров.  [c.125]

Книга представляет собой руководство по экспериментальным методам оптической квантовой электроники. В ней подробно излагаются методы исследования лазеров (оптических квантовых генераторов) и определения их важнейших параметров энергии и мощности излучения, усиления, длины волны, ширины полосы, временной когерентности, стабильности частоты, шумов и коэффициента модуляции.  [c.4]

Обычно в опытах измеряется относительный коэффициент излучения, так как непосредственное измерение коэффициентов поглощения связано со значительными трудностями. Для опытного исследования интегральных коэффициентов излучения применительно к твердым телам получили распространение следующие методы радиационный, калориметрический, метод регулярного режима, и метод непрерывного нагревания с постоянной скоростью [Л. 173, 189]. Во всех методах перенос тепла за счет конвекции и теплопроводности должен быть пренебрежимо мал по сравнению с излучением.  [c.360]

Исследование электросопротивления тугоплавких металлов при высоких температурах производится наиболее часто на образцах в виде тонких проволок [1—4]. Определение истинной температуры образцов в этих случаях производится по яркостной температуре и известному спектральному коэффициенту излучения, определяемому на другом образце и в другом опыте, например по методу трубки [5].  [c.139]

Разработку численных методов теории многочастотной лазерной локации завершим построением итерационной схемы обращения данных зондирования, связанной с интегральной формой локационного уравнения (2.42). Это уравнение представляет особый интерес в задачах оптического мониторинга тропосферных аэрозолей. Рассматривая в данном случае конкретный оптический метод исследования атмосферы, понятие оптического мониторинга будем связывать, прежде всего, с определением профиля аэрозольного коэффициента ослабления Рех для соответствующей длины волны X. Именно эта оптическая характеристика представляет наибольший интерес в переносе оптического излучения в атмосфере. Уравнение (2.42) в целом уже характеризовалось ранее, поэтому прибегнем к его дискретизации и построим соответствующую алгоритмическую схему его численного решения. Для этого по трассе зондирования, ограниченной точками Zl и выберем систему узлов г , =1,. .Для любой, наперед заданной узло-  [c.142]

Световое моделирование радиационного теплообмена обладает рядом достоинств, способствующих его применению. Во-первых, сам по себе принцип светового моделирования позволяет исследовать процесс радиационного теплообмена в чистом виде и избежать ошибок, вносимых конвекцией и кондукцией, которые существенно осложняют экспериментальное исследование радиационного переноса на тепловых моделях. Во-вторых, световая модель имеет комнатную температуру, что существенно упрощает все операции экспериментирования и измерения по сравнению с излучающей системой, работающей при высоких температурах. В-третьих, применяемые для регистрации световых потоков измерительные средства могут быть изготовлены с большей чувствительностью и точностью, чем измерительные приборы для теплового излучения. И, наконец, метод светового моделирования является очень эффективным способом для определения как локальных, так и средних коэффициентов облученности. Его использование для этой цели дало хорошие результаты [Л. 27, 156].  [c.298]


Обстоятельное исследование возможностей метода зональных балансов применительно к условиям работы топочных камер и металлургических печей было проведено А. С. Невским [38, 39]. Поверхностные зоны подразделялись на такие зоны, для которых заданы температуры, и такие, для которых заданы потоки результирующего излучения. Важной особенностью метода является то обстоятельство, что в нем не выделяется в качестве самостоятельного этап определения разрешающих угловых коэффициентов, учитывающих многократные отражения потоков излучения на граничных поверхностях.  [c.208]

Уже из первых исследований стало ясно, что между длинами волн Кг и имеется смещение, — следовательно, необходимо было добиться очень высокой чистоты изотопа криптона. И хотя содержание в естественной смеси очень большое, однако методом термодиффузии оказалось значительно легче получить высокий процент обогащения именно для крайнего изотопа Кг . Поэтому вместо предложенного на первой сессии излучения Кг в дальнейшем все исследования были выполнены с Кг . Из трех четных изотопов кадмия, излучение которых было исследовано, выбор пал на — тоже исходя из возможности получения более высокого коэффициента обогащения. Кроме излучений этих трех элементов, были также просмотрены излучения всех четно-четных элементов периодической системы. В частности, излучения РЬ , Хе з , Ne2°, Са , Th . Наилучшими по простоте возбуждения спектров в источниках, количеству и расположению линий в видимой области спектра и по ширине линий были признаны излучения изотопов d, Кг и Hg.  [c.46]

Многолучевой интерференционный метод получил большое распространение при исследовании тонких пленок. Этому способствовало то обстоятельство, что в последнее время в различных областях науки и техники получило значительное развитие изготовление тонких пленок и их применения для целого ряда задач — покрытие деталей защитными лаками, многослойные диэлектрические покрытия, использование светоделительных слоев для расщепления электромагнитных волн, просветление оптики, применение пленок в качестве приемников излучения (в болометрах, фотосопротивлениях и т. д.). Особенность этих пленок состоит в том, что интерференционные явления, возникающие в пленках часто оказывают значительное влияние на свойства рабочих поверхностей узлов или деталей, на которые они нанесены. Многолучевые интерференционные методы являются удобными и одними из самых Эффективных средств для исследования толщины, сдвига фазы, коэффициента отражения и преломления пленок [87, 1571.  [c.7]

Ряд интересных особенностей фрикционного взаимодействия связан с характером поведения тонких поверхностных слоев полимерных материалов при фрикционном взаимодействии. По-видимому, наиболее явно роль фрикционного переноса проявляется при трении и изнашивании полимеров и материалов на их основе [25]. Вид и кинетика образования пленок переноса у полимеров определяют их коэффициент трения и интенсивность изнашивания, в особенности в контакте с металлами, когезионная энергия которых значительно выше, чем у полимеров. При исследовании трения и изнашивания полимерных материалов выявлена связь фрикционных характеристик с такими фундаментальными характеристиками материалов, как энергия связи, спектры поглощения электромагнитного излучения и т. д. В этой связи чрезвычайно интересно открытие у полимерных материалов явления аномально низкого трения (Е. А. Духовской, А. А. Силин и др.), возникающего при облучении их поверхностных слоев частицами высокой энергии. Это открытие в явном виде обнаруживает связь основных характеристик фрикционного взаимодействия с энергетическим состоянием поверхностного слоя твердого тела. Указанная связь прослеживается и при обработке по>гр-хностных слоев такими высокоэнергетическими методами, как ионная имплантация, лазерное, электронное и ионное облучение.  [c.30]

Для нахождения распределения температуры используется уравнение, аналогичное (13). В целях упрощения задачи рассматривается случай, когда разность температур на поверхностях достаточно мала, что равноценно 1-му предположению на стр. 18. данного справочника. Решение задачи о распределении температуры и о величине теплового потока ищется методом последовательных приближений, в качестве нулевого приближения взято логарифмическое невозмущенное излучением распределение температуры [такой способ решения эквивалентен записи (20) для плоского слоя]. Аналитическое исследование удается провести только при малых коэффициентах поглощения. При этом для удельного теплового потока в первом приближении получается формула  [c.26]

ИЗ которых создан импульсом излучения рубинового лазера, другой образован непрерывным излучением дуговой ксеноновой лампы. Двухфотонное поглощение обнаруживается по изменению коэффициента поглощения света ксеноновой лампы в образце (кристалл К1) при прохождении через него импульса излучения рубинового лазера. Этот метод позволял исследовать дисперсионные характеристики процесса двухфотонного поглощения в широком диапазоне частот. Результаты такого эксперимента дополняют данные, полученные при исследовании однофотонного поглощения, так как в двухфотонных электрических дипольных переходах начальные и конечные состояния имеют одинаковую четность.  [c.228]

Метод возбуждения колебаний через воздух малоэффективен из-за больших потерь акустической энергии при распространении звука по воздуху, низкой эффективности излучения колебаний в воздух, малого коэффициента прохождения звуковой энергии из воздуха в твердое тело. В связи с разработкой сравнительно эффективных излучателей и приемников, работающих на изгибных колебаниях, метод может оказаться перспективным при исследованиях и контроле тонколистовых материалов (фольг, бумаги и др.).  [c.85]


СПЕКТРОСКОПИЯ (раздел физики, в котором изучают спектры оптические абсорбпионпая изучает спектры поглощения видимого, инфракрасного и ультрафиолетового света акустическая — совокупность методов измерения фазовой скорости и коэффициента поглощения звуковых волн различных частот, распространяемых в веществе вакуумная — спектроскопия коротковолнового ультрафиолетового и мягкого рентгеновского излучения, в которой применяют вакуумные спектральные приборы лазерная изучает полученные с помощью лазерного излучения спектры испускания, поглощения и рассеяния света мессбауэровская — метод изучения электрических и магнитных полей, создаваемых на атомных ядрах их окружением микроволновая — радиоспектроскопия электромагнитных волн сантиметрового и миллиметрового диапазонов длин волн нелинейная — методы исследования строения вещества, основанные на нелинейных оптических явлениях оптико-акустическая — метод анализа вещества, основанный на изучении спектров поглощения света, возникающих  [c.278]

К достоинствам регулярного теплового режима относится его универсальность. Он позволяет производить экспериментальное исследование большого количества различных физических величин коэффициентов темиературо- и теплопроводности, удельной теплоемкости, теплового сопротивления, коэффициентов теплоотдачи, коэффициентов формы различных тел, коэффициентов излучения. Все методы регулярного режима являются самоконтролируемыми. Их можм о применять к телам с внутренним,и источниками тепла, если регуляризацил температурного поля про исходит быстро. Однако в регулярных тепловых режимах трудно расширить методики на область высоких температур.  [c.66]

Первое исследование коэффициента теплопроводности вольфрама, тантала и графита при температурах 1800—2200° С было проведено Уортингом [2]. Позднее Осборн [3], усовершенствовав метод Уортинга, произвел измерения на вольфраме и молибдене в интервале температур 1000—1700°. Коэффициент теплопроводности материала по методу Уортинга подсчитывается на основе предположения о том, что теплопередача вдоль проволоки, нагреваемой электрическим током, в любой точке равна разности между энергией, которая потребляется проволокой, и энергией, которую она теряет за счет излучения, Кришнан и Джайн, изучая распределение температуры вдоль короткой и длинной проволочной нити, провели исследования на платине. Рассмотренные методы требуют очень точного измерения температуры, так как при расчетах используется разность температур в четвертой степени. Кроме того, необходимо знать температурную зависимость величины полной излуча-тельной способности исследуемого материала.  [c.94]

Так, по существу, был получен первый четио-четный элемент, т. е. элемент с четным атомным весом и четным номером в периодической системе Д. И. Менделеева. Выявилось, что зеленая линия ртути 198 не имеет сверхтонкой структуры. Единственная причина, по которой Майкельсон не выбрал длину волн зеленой линии ртути в качестве эталонной, отпала. Встал вопрос о возможности замены красной линии естественного d зеленой линией ртути Начались подробные исследования этого излучения. Следует отметить, что одновременно с описанными выше исследованиями во ВНИИМ в 1940 г. и в начале 1941 г. излучение ртути без сверхтонкой структуры было получено чисто оптическим путем— так называемой интерференционной монохроматизацией (о которой будет сказано несколько ниже). Почти одновременно с этим, в 1942 г., Клаузиус и Диккель в Германии, используя зависимость скорости диффузии газов от атомного веса, применили метод термодиффузии для разделения изотопов криптона. Ими были получены изотопы Кг с атомными весами 84 и 86 при большом коэффициенте обогащения — около 99%. В распоряжение метрологов поступили еще два четно-четных элемента. Предложенная ранее Кёстерсом желто-зеленая линия естественного Кг теперь уже могла быть заменена на ту же линию Кг , не имеющую сверхтонкой структуры.  [c.44]

В табл. 5.1 приведены данные о некоторых из запущенных на орбиту или разрабатываемых в настоящее время зеркальных рентгеновских телескопах высокого разрешения. Первые два телескопа, предназначенные для исследования рентгеновского излучения Солнца, были установлены в 1973 г. на американской орбитальной станции Скайлэб (эксперименты 5-054 и 5-056). Зеркальная система телескопа 5-054 состояла из двух совмещенных пар металлических зеркал параболоид—гиперболоид , изготовленных методом прямой полировки [71]. Объектив телескопа 5-056 был изготовлен из плавленого кварца [77]. Регистрация изображений Солнца в обоих телескопах проводилась на фотопленку. Спектральный диапазон определялся коэффициентами отражения зеркал и фильтрами. В телескопе 5-054 с помощью объективной дифракционной решетки регистрировались также изображения Солнца в различных спектральных линиях. В экспериментах на станции Скайлэб было получено несколько десятков тысяч рентгеновских снимков Солнца в различных стадиях его активности, которые дали огромный материал для исследования происходящих на Солнце физических процессов.  [c.196]

Результаты эксперимента. На рис. 10.5 приведены результаты измерения тепловых потоков, возникающих при разложении образцов твердого БАДЕ при различных скоростях нагревания (масса образца m яв 0,5 мг). На каждой кривой наблюдаются четыре пика. Два из них отражают эндотермический тепловой эффект и не меняют своего температурного положения (111 и 120 °С) с изменением скорости нагревания образца, т.е. обусловлены фазовыми переходами. Два других гораздо больших пика соответствуют экзотермическому тепловому эффекту. Площадь под пиками (теплота) и температура максимума существенно зависят от скорости нагревания. Это свидетельствует о том, что происхождение наблюдаемых пиков связано с процессом термоактивированного разложения. На первый взгляд может показаться, что разложение исследуемого вещества протекает в две стадии, различающиеся кинетическими параметрами (энергией активации и частотным фактором). Но в этом случае невозможно интерпретировать площади двух пиков (т.е. теплоту), высота которых меняется при изменении скорости нагревания. Следует также учесть тот факт, что оптические методы исследования дают только один пик излучения света. Удовлетворительное объяснение наблюдаемого эффекта бьшо дано на основе определения температуры плавления вещества (164°С). Двойной пик возникает в результате изменения теплопроводности и коэффициента теплопередачи между образцом и чашкой для образца в результате образования расплава исследуемого вещества. Улучшение теплового контакта исследуемого вещества с калориметром уменьшает возможность перегревания образца. В результате снижается скорость реакции и, соответственно, тепловой поток. Из рис.  [c.160]

В статье изложена методика и результаты исследования коэффициента теплопроводности и удельного электрического сопротивления во.ш.фрама pi молибдена в интервале температур от 400 до 2300 К. В опытах при температурах 1200—2300° К осуществлено пирометрическое измерение температуры опытных образцов по имитирующему черное тело кольцевому зазору между образцом и компенсирующим тепловые потери экраном. При таком способе измерения температуры геометрические характеристики калориметрической системы определялись на основании зонального метода расчета суммарного эффмггивного излучения.  [c.163]


Для исследования влияния температурного фактора на теилопро-водность частиц искусственного графита был использован метод стационарного режиыа шар в шаре . Установлено, что теплопроводность слоя растет с повышением температуры, причем температурный коэффициент несколько увеличивается при превышении 225° С. Так, для смеси частиц (1-я партия, после многократного использования в качестве движущего слоя) при 7об= 1280 кг/м (а = 0,644) увеличение температуры от 60 до 225° С вызывает повышение от 0,74 до 0,85, а при изменении от 225 до 380° С л л возрастает до 1,05 ккал/м час град. Увеличение теплопроводности слоя с ростом температуры объясняется возрастающей ролью излучения и конвекции в процессе передачи тепла. При уменьшении плотности укладки это влияние радиационной и конвективной составляющих теилопереноса сказывается в несколько меньшей степени. Принимая в определенных температурных границах линейную зависимость получаем  [c.136]

Если при этом весовые коэффициенты в сумме равны единице, то каждый из них может трактоваться как процент влияния соответствующего частотного критерия в общем. Очевидно, изменение набора i будет приводить к изменению оптимума. Это можно истолковать как проявление неявной функциональной зависимости X = X (С), С Сх, g, С и при необходимости использовать эту зависимость в интересах повышения эффективности объемных оптимизационных расчетов, В последний период развиваются новые интересные подходы для решения многокритериальных задач, которые основаны на методах ма тематической теории принятия решений. Рассмотренные в этой главе задачи расчета и синтеза газовых лазеров можно с полной уверенностью отнести к многокритериальным задачам парамеяри-ческой оптимизации, причем в общем случае с нелинейным функ-ционалом. Для оптимизации характеристик газовых лазеров или поиска при заданных характеристиках оптимальных конструктивных решений в этих приборах, в отсутствии разработанных средств математического исследования такого рода задач, необ ходимо исходить из физических соображений. Эти предпосылки по существу заложены в этапы реализации основной структурной схемы разработки газовых лазеров с использованием ЭВМ, изложенной в п. 2.3.Уже на первом этапе (анализ конкретной рассматриваемой задачи) многокритериальная оптимизация характеристик газовых лазеров может быть сведена к однокритериальной. Таким примером может служить задача разработки газового лазера с заданными характеристиками излучения в дальней зоне или расчет характеристик молекулярного усилителя. Именно физические соображения определили основным объектом исследования в обратной задаче расчета газового лазера резонатор с зеркалами, имеющими переменные по апертуре коэффициенты отражения. Затем анализ технологических возможностей привел к основному критерию оптимизации этих зеркал —- минимальному числу колебаний в зависимости R (г). Такой физический подход к оптимизации на сегодняшний день является типичным в задачах квантовой электроники. Однако прикладные задачи уже в настоящее время требуют большого количества принципиально разных газовых лазеров, работающих в различных режимах генерации, спектральных диапазонах и с различными уровнями входной мощности. Не всегда физический подход может обеспечить необходимые упрощения, способные свести задачу к простейшим приемам оптимизации, которые не требуют исследований функционалов (см. выражения (2.155) и (2.156)). Оптимизация выходных характеристик и конструктивных элементов прибора с учетом тенденций, определенных в теории и эксперименте, может осуществляться подбором необходимых данных в небольшом интервале изменений управляемых переменных. Дальнейшее совершенствование оптимизационных задач с использованием ЭВМ, как основных в разработке и исследовании  [c.123]

Метод светового моделирования. Тепловое излучение подчиняется общим законам, которым подчиняются все виды излучения. Поэтому в опытном исследовании углового коэффициента лучистые потоки могут заменять световыми. Световое моделирование обладает большими удобством я простотой. В нем легко устраняют трудности, связанные с измерением лучистых потоков, гароиз водимым при высоких температурах устраняются побочные явления, к которым относятся конвективный перенос тепла и теплопроводность опыты проводятся при низких температурах.  [c.378]


Смотреть страницы где упоминается термин Методы исследования коэффициентов излучения : [c.181]    [c.277]    [c.825]    [c.200]    [c.97]    [c.297]    [c.88]    [c.40]    [c.2]   
Смотреть главы в:

Экспериментальное исследование процессов теплообмена  -> Методы исследования коэффициентов излучения

Экспериментальное исследование процессов теплообмена  -> Методы исследования коэффициентов излучения



ПОИСК



Исследование углового коэффициента излучения по методу светового моделирования

Коэффициент излучения

Методы исследования



© 2025 Mash-xxl.info Реклама на сайте