Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Циклы токарной обработки

Удаляемый материал. Это часть заготовки, удаляемая при обработке установленным инструментом в заданном цикле токарной обработки. Для таких циклов, как сверление и контурное точение, удаляемым материалом могут быть  [c.108]

Циклы токарной обработки  [c.119]

ТЕХНОЛОГИЧЕСКИЕ ЦИКЛЫ ТОКАРНОЙ ОБРАБОТКИ  [c.180]

Как и в любом процессе механообработки, в процессе токарной обработки участвуют последовательности, операции и циклы.  [c.121]

В работе [91] показано, что характер зависимости Ъ/В от числа циклов нагружения при усталостных испытаниях стали в условиях изгиба с вращением зависит от режима предварительной токарной обработки образцов. В одних случаях Ъ/В с увеличением-N монотонно уменьшается, в других — падает на начальной ста-  [c.36]


Движения суппорта — дискретный процесс, требующий, с одной стороны, направляющих возвратно поступательного движения, которые неизбежно изнашиваются, с другой — наличия устройств управления циклом обработки (ручного или автоматического). Все эти обстоятельства хорошо известны, но они всегда рассматривались как неотъемлемые свойства токарной обработки как таковой. Мысль о том, чтобы, сохранив все положительные свойства токарной обработки, попытаться избавиться от всего комплекса недостатков, казалась противоестественной.  [c.86]

Для условий обработки на токарных полуавтоматах пока не предложено надежных схем автоматической компенсации износа резца. Применительно к токарным полуавтоматам задача эта может быть решена различными способами. Один из них — устройство, передвигающее резец после каждого рабочего цикла станка или серии циклов на определенную величину в нужном направлении. Величина этого передвижения определяется в данных конкретных условиях обработки из точностных диаграмм, причем конструкция механизма должна допускать регулировку величины компенсации в известных пределах. Такая компенсация особенно необходима в тех случаях, когда выход размера из поля допуска не влечет за собой потерю работоспособности резца, что часто имеет место при токарной обработке, когда допускаемая величина износа резца позволяет произвести несколько подналадок. Решение этой проблемы связано с рядом серьезных трудностей. При обычно применяемых методах наладки и допускаемом износе резца, обычно превышающем критерии нормального затупления, вследствие передерживания резца на станке, имеет место значительный разброс кривых а 1) по полю допуска, при больших колебаниях интенсивности износа.  [c.49]

Многие детали современных машин работают в различных коррозионных средах при большом числе перемен напряжений. Влияние методов и режимов обработки на коррозионно-усталостную прочность значительно сильнее, чем это же влияние на выносливость стали на воздухе. Предел выносливости образцов диаметром 20 мм определяли на базе 5- 10 циклов. Сравнительному испытанию были подвергнуты образцы, изготовленные токарной обработкой (шероховатость поверхности образцов соответствовала 5-му классу чистоты поверхности по ГОСТу 2789— 59) и шлифованные (9-й класс чистоты поверхности). Выносливость стальных образцов, изготовленных точением, меньше выносливости шлифованных образцов.  [c.404]


Если по старому технологическому процессу при токарной обработке с одного кольца снималось 170—175 г, то по новому технологическому процессу — только 19 г, что обеспечивает экономию материала при проектном выпуске до 800 тыс. руб. в год. Если при старом технологическом процессе цикл обработки токарных многошпиндельных автоматов составляет около 40 сек, то при новом технологическом процессе — только 4 сек, в течение которых изготовляют два кольца.  [c.58]

Анализ работоспособности автоматов, работающих по прогрессивным технологическим процессам, показывает, что такая технология, резко повышая требования к надежности, оказывает самое существенное влияние на развитие конструктивных форм автоматов, встраиваемых в автоматические линии. Расчеты показывают, что при обычной токарной обработке подшипниковых колец, когда продолжительность обработки на многошпиндельных автоматах составляет 20—30 сек, а холостые хода 3—4 сек, требуемая надежность работы автооператоров находится в пределах кщ = 50—70, частота отказов через 50—70 циклов бесперебойной работы является допустимой. Однако, если бы такую надежность имели автооператоры токарных многошпиндельных автоматов в автоматическом цехе карданных подшипников, работающих с циклом в 4 сек, в течение которого выдается два кольца, то только из-за неполадок автооператора имели бы до 90 остановок в час. В этом случае прогрессивная технология, положенная в основу машины (заготовка с минимальными припусками), привела к тому, что требования к надежности одних и тех же механизмов повысились в 15—20 раз. Поэтому все ранее существовавшие конструктивные решения механизмов автоматической загрузки, несмотря на полную идентичность выполняемых операций загрузки—выгрузки, были бы непригодными.  [c.107]

В целях получения высокой точности и класса чистоты поверхности обработка разделяется на черновую и чистовую. Соответственно, на станке устанавливаются черновой и чистовой резцовые блоки. Возможность разделения обработки на черновую и чистовую создает условия получения высокой точности обрабатываемой детали за один цикл без каких-либо дополнительных приемов и операций, которые обычно имеют место при токарной обработке.  [c.181]

В эксплуатации автоматических линий важную роль играет рациональный способ удаления стружки. Для транспортирования стружки применяют различные виды конвейеров, а также транспортируют ее с помощью потока СОЖ. Существуют автоматические линии, в том числе переналаживаемые, на которых транспортирование заготовок выполняют роботы. На рис. 32 показана переналаживаемая линия, предназначенная для обработки двух модификаций поворотных кулаков (/к — массой 8 кг Пк — массой 12 кг) грузовых автомобилей (производительностью 50 щт/ч), поступающих после токарной обработки на другой автоматической линии. Подаваемые конвейером Т заготовки оператор устанавливает на позицию I агрегатного станка С1 для сверления и развертывания базового отверстия, проверяет их на контрольном стенде /П и укладывает в вращающийся накопитель Н1. Робот Р1 забирает заготовку из накопителя Н1, подает ее на позицию продувки Я1, поворачивая при этом для полной очистки от стружки, и перемещает в вертикальном положении над позицией II фрезерного станка С2 с двумя фрезерными головками. На столе станка установлено два приспособления первое для базирования и крепления заготовки во время фрезерования от позиции II до позиции III, а второе — для базирования и крепления заготовки во время фрезерования от позиции III до позиции IV. При отводе стола в исходную позицию II подается приспособление без заготовки, робот Р опускается, продувает приспособление, позиционирует заготовку на приспособлении и дает команду на ее крепление, после чего отводится и дает команду на начало рабочего цикла. Устройство, смонтированное на позиции III, опускается, продувает приспособление, снимает обработанную заготовку, после чего стол возвращается в исходное положение (позиция II) и устанавливает заготовку во втором приспособлении, которое вместе со столом перемещается на позицию IV, завершая фрезерование. Робот Р2 снимает заготовку с позиции IV, подает ее на установку П2 для продувки и устанавливает в вертикальном положении на позицию V фрезерного станка СЗ, рабочий цикл которого аналогичен  [c.468]


На одношпиндельных токарно-револьверных автоматах (рис. 6.26, д) обрабатывают заготовки небольших размеров (диаметром 8. .. 31 мм), но сложных форм. Автоматы работают по замкнутому технологическому циклу параллельной обработки поверхностей. Движения (резания, установочные, вспомогательные) рабочих органов автомата осуществляют от кулачкового распределительного вала. Автоматизация движений обеспечивает высокую производительность. Автоматы используют для изготовления больших партий деталей.  [c.347]

На сопротивление усталости образцов при токарной обработке могут оказывать существенное влияние режимы течения (подача, глубина резания, скорость резания, износ резца и т. д.) [15 40, 48, 82]. Особенно резкое влияние режимы точения оказывают на выносливость. титановых сплавов (табл. 3, 4, 5) [40]. Испытания на усталость производили на машине НУ на базе 5-10 циклов.  [c.146]

Характерной чертой токарной обработки является значительное разнообразие конфигураций обрабатываемых на станке деталей из разнообразных заготовок и в связи с этим необходимость применения различных технологических циклов. Наиболее широко применяемыми являются следующие циклы.  [c.180]

Основное требование, предъявляемое к рабочим перемещениям,— равномерная скорость их в процессе резания при обработке одной поверхности. При копировальном цикле это требование относится к результирующей (геометрической сумме) ведущего и следящего движений. Величина рабочей подачи, как и во всех случаях токарной обработки, должна соответствовать условиям выполняемой работы.  [c.181]

ТЕХНОЛОГИЧЕСКИЕ ЦИКЛЫ ТОКАРНО-РЕВОЛЬВЕРНОЙ ОБРАБОТКИ  [c.219]

Обработка деталей на полуавтоматах. Токарные станки-полуавтоматы предназначены для токарной обработки деталей из штучных заготовок обычно крупных размеров. Установка заготовки, пуск станка и снятие готовой детали производится вручную. Весь остальной цикл обработки осуществляется автоматически без участия рабочего. Одношпиндельные многорезцовые полуавтоматы разделяются на центровые и патронные. Центровые полуавтоматы предназначены для обработки заготовок, установленных в центрах. На этих станках производится обработка деталей типа валов, а также обрабатываются наружные поверхности вращения и торцы у деталей типа втулок, фланцев и зубчатых колес. Детали этого типа устанавливают на центровые оправки с базированием по обработанному отверстию.  [c.151]

На рис. 82 показана схема наладки для обработки детали заднего моста автомобиля на восьмишпиндельном токарном полуавтомате мод. 1282. Заготовку устанавливают в загрузочной позиции 1. В течение рабочего цикла, рассчитанного по максимальному времени, затрачиваемому на наиболее продолжительный переход, производится обработка деталей в позициях 2—8, где выполняются все переходы токарной обработки. Во время обработки детали стол неподвижен. Шпиндели в позициях 2—8 вращаются. Шпиндель в позиции 1 неподвижен. После окончания рабочего цикла суппорты отходят от детали, шпиндели перестают вращаться, и стол поворачивается на 45°. Позиция 8 с готовой деталью переходит в позицию 1.  [c.152]

В продолжении рабочего цикла производится обработка деталей на позициях 2, 3, 4, 5 и 6, где выполняются все переходы токарной операции.  [c.169]

При токарной обработке цилиндрических (ступенчатых) и фасонных поверхностей возможно сочетание управления по прямоугольному циклу с применением копировальных устройств для тех участков обрабатываемой поверхности, где прямоугольного цикла недостаточно. Системы цифрового программного управления станков с прямоугольными циклами получили широкое развитие в станкостроении Чехословацкой Социалистической Республики.  [c.388]

На фиг. 359 приведен типовой пример применения цифрового программного управления с прямоугольным циклом токарно-револьверного станка модели КРК 25 для обработки детали с внешними цилиндрическими ступенчатыми участками обрабатываемой поверхности и ступенчатым отверстием, а на фиг. 360 — пример применения двухмерного копирования для обработки конической шестерни. Цифровое управление прямоугольными циклами револьверного станка модели КРК 25 выполнено по схеме, показанной на фиг. 361.  [c.388]

Второй технологический цикл — основные формообразующие операции. В этом цикле инструменту придается форма, близкая к окончательной. Съем материала достигает 50—70% от первоначального объема заготовки. Трудоемкость основных формообразующих операций составляет от 0,25 до 0,5 от общей трудоемкости изготовления инструмента. В этом цикле можно выделить четыре основные вида операций токарная обработка для инструментов всех классов, кроме класса Пластины фрезерная обработка — для инструментов класса Пластины фрезерная обработка, включающая фрезерование стружечных канавок, пазов под ножи сборных инструментов и гнезд под пластинки твердого сплава, когда инструментам придается характерный для них зубчатый профиль, а для инструментов класса Пластины — почти окончательная форма фрезерная обработка, долбление и протягивание элементов крепления инструментов (лапок, поводков, квадратов, рифлений, шпоночных пазов, лысок и т. п.).  [c.324]

Гидравлические суппорты предназначены для токарной обработки деталей, имеющих цилиндрические ступенчатые, конические и фасонные поверхности. С помощью таких суппортов цикл обработки отдельных деталей становится полуавтоматическим, на ряде деталей можно повысить производительность труда более чем в три раза.  [c.25]

Циклы токарной обработки резцом продольно-поперечная обточка, обточка с проходами в задашзом направлении, по ограни-чершому контуру, многопроходная обточка по контуру, продольнопоперечная обточка с проходом по контуру, обточка с проходами в заданном направлении и с проходом по контуру.  [c.119]


На Московском электромашиностроительном заводе Динамо им. С. М. Кирова работает автоматизированный участок, предназначенный для токарной обработки тяжелых валов электродвигателей в условиях малосерийного и серийного производства (размер партии — 25—200 шт.). Участок обеспечивает полный цикл токарной обработки ступенчатых валов диаметром 8—130 и длиной 700—1500 мм (масса — 40—160 кг) в качестве заготовок используется резаный прокат (сталь 45). Для валов характерно наличие конических поверхностей, галтелей, резьбовых шеек на концах.  [c.31]

В начале 60-х годов Шаумян все чаш е начал приходить к выводу, что при достигнутом уровне технологических процессов, при современных конструкциях станков и инструментов возможности повьшхения производительности токарного оборудования практически достигли предела. Благодаря внедрению твердосплавного инструмента взамен быстрорежущ его были в основном исчерпаны возможности повышения режимов обработки. Дальнейшая дифференциация и концентрация операций и увеличение рабочих позиций автоматов ограничивались надежностью механизмов и устройств. Холостые ходы цикла в многошпиндельных автоматах были доведены до минимума внедрение инструмента с настройкой на размер вне станка позволило существенно сократить время его смены и регулировки, но и здесь возможности были в основном реализованы. Неизбежно напрашивался вывод о необходимости поиска новых путей, новых методов и процессов токарной обработки, которые позволили бы создавать нетрадиционные конструкции и компоновки станков, обеспечивающих качественно иной, революционный рост их производительности. Таким искомым путем стала идея трансформации углов резания в процессе обработки.  [c.84]

Для токарной обработки вала-фланца, показанного на рис. 1.5, автоматическая линия может быть спроектирована с широким варьированием числа рабочих позиций q (см. п. 1.3). Суммарная длительность несовмеш,енных переходов обработки вала на линии составляет = 3,65 мин. Время холостых ходов цикла, независимо от степени дифференциации технологического процесса tx = 0,25 мин, ожидаемые внецикловые потери по инструменту и оборудованию соответственно S j = 0,12 мин/шт к. tf = 0,02 мин/шт.  [c.99]

Токарная операция 03 выполняется на специальном многорезцовом гидрокопировальном горизонтальном токарном автомате ЕМ473-8Л03Н2. Обрабатываемая деталь базируется в центрах передний центр плавающий, вращение обрабатываемой детали осуществляется специальным патроном. Инструмент — резцы с неперетачи-ваемыми пластинками (ГОСТ 19062—80 и ГОСТ 19052—80) из твердого сплава Т5КЮ. Токарная обработка проводится с трех суппортов по заданному циклу. Цикл работы левого копировального суппорта . ускоренный подвод каретки и суппорта, обтачивание  [c.139]

В серийном производстве основным типом станка для токарной обработки зубчатых колёс являлся до последнего времени универсальнотокарный станок, так как многорезцовые одношпиндельные или многошпиндельные полуавтоматы, оправдывающие себя в массовом производстве, были неудобны в переналадке, отнимавшей много времени из-за необходимости смены кривых на барабанах подачи. Применение специальных механизмов в станке, ускоряющих переналадку многорезцовых полуавтоматов на разные детали, осуществляемую без смены кривых (постоянные кривые), позволило внедрить многорезцовую обработку и в серийное производство. Кроме этого, многорезцовые станки в настоящее время работают по полуавтоматическому циклу, что даёт возможность одному рабочему обслуживать несколько станков (новые многорезцовые полуавтоматы завода Красный пролетарий" типов 1730 и 1720). Патронные горизонтальные многошпиндельные полуавтоматы также не требуют смены кривых (полуавтоматы завода им. Орджоникидзе типов 1225п).  [c.176]

Типы и назначение токарных станкоа-полуавтоматов. Токарные станки-полуавтоматы предназначаются для токарной обработки штучных заготовок, обычно довольно крупных размеров. Установка заготовки, пуск станка и снятие обработанного изделия производятся вручную, а весь остальной цикл обработки и останов станка по окончании цикла производятся автоматически.  [c.64]

При оценке влияния метода окончательной обработки рабочих поверхностей деталей на предел выносливости следует иметь в виду, что предел выносливости часто зависит от предществующей финишной обработки. Окончательная обработка поверхности механическим полированием, обдувкой дробью и обкаткой роликами полностью ликвидирует влияние на усталостную прочность предществующих видов обработки при одинаковой микрогеометрии финишной обработки. Многие детали современных машин работают в различных коррозионных средах при больших циклах перемен напряжений. Влияние методов и режимов обработки на коррозионную усталостную прочность значительно сильнее, чем это же влияние на выносливость стали на воздухе (рис. II). Предел усталости а 1 образцов диаметром 20 мм определялся на базе 50-10 циклов. Сравнительному испытанию были подвергнуты образцы после токарной обработки, чистота поверхности которых соответствовала V 5 (ГОСТ 2789—59) и после шлифования с чистотой поверхности, соответствующей V 9. Выносливость в воздухе стальных  [c.411]

Станок предназначен для токарной обработки наружных и внутренних поверхностей заготовок типа тел вращения со ступенчатым или криволинейным профилем, а также для нарезания резьб. Обработка происходит за один или несколько проходов в замкнутом полуавтоматическом цикле. Установка заготовок осуществляется в патроне, а длинномерных заготовок — в центрах. Станок разработан на базе токарного станка 16К20 и имеет традиционную для токарных станков компоновку.  [c.80]

Результаты этих исследований 18] показаны на диаграмме фиг. 78, на которой даны пределы усталости a i кПмм (на базе 50 10 циклов) нормализованной стали 45 в воздухе и соленой воде (3%-ный раствор Na l), в зависимости от скоросги резания v м/мин и подачи S мм/об, примененных при токарной обработке образцов диаметром 20 мм. На этой же диаграмме приведена также зависимость предела усталости образцов той же стали, шлифованных после токарной обработки при соответствующих режимах резания, которая показывает влияние режимов резания той обработки, которая предшествовала финишной. Чистота поверхности токарно-обработанных образцов была равна 5-му классу, шлифованных — 9-му.  [c.147]

Простейший цикл токарного станка состоит из следующих движений быстрый продольный подвод инструмента, рабочая подача, быстрый поперечный отвод инструмента, быстрое возвращение суппорта в исходное положение, быстрый подвод инструмента в поперечном направлении, остановка. В более сложных циклах количество различных элементов будет еще более значительным. Для автоматизации рабочего цикла необходимо механизировать B ei вспомогательные движения цикла и механизировать управление, т. е. обеспечить заданную последовательность всех движений рабочего цикла. Это достигается применением магазинных и бункерных загрузочных устройств, различных патронов и оправок для закрепления деталей с пневматическим или гидравлическим приводом, применением поворотных и других устройств. В частности, пра обработке ступенчатых валиков на токарном станке хорошие результаты дает применение механических, гидравлических и электрических копировальных суппортов. >  [c.83]


Высокой жесткостью и виброустойчивостью обладает новая компоновка токарного станка 16К20ФЗС5 е ЧПУ. Станок предназначен для токарной обработки наружных и внутренних поверхностей деталей типа тел вращения со ступенчатыми и криволинейными профилями различной сложности за один или несколько проходов в автоматическом цикле, имеет автоматическую смену инструмента с помощью шестипозиционной резцовой головки. Главной особенностью станка является нормализация основных узлов (см. рис. 77). Главный привод включает автоматическую коробку скоростей и редуктор. Передачи винт—гайка качения совместно с беззазорными редукторами служат составными частями приводов поперечной и продольной подач.  [c.118]

При применении цифрового программного управления с прямоугольным циклом работы станка можно осуществлять токарную обработку деталей сложной конфигурации сравнительно небольшим числом режущих инструдгентов. Этим облегчается наладка, так как отпадает необходимость в установке упоров. Автоматизация токарных, револьверных и фрезерных станков с применением цифрового программного управления по прямоугольным циклам обработки деталей найдет широкое применение в мелкосерийном производстве.  [c.391]

Автоматическая линия модели МР-107. Для токарной обработки ступенчатых валов с цилиндрическими, коническими и фасонными шейками, изготовленная заводом им. С. Орджоникидзе (фиг. 415), состоит из двух токарных гидрокопировальных полуавтоматов 3 к 7 модели 1712 и специального перегружателя 5 заготовок с первого станка на второй. Цикл работы линии полностью автоматизирован, включая подачу заготовок из цепного транспортера магазина 8 специальным загрузочным устройством 9 на линии центрой станка 7, зажим и разжим заготовки в патроне, обработку, передачу ее со станка на станок и выдачу обточенной загот.овки в тару 1 для годных деталей или в тару 2 для бракованных, в зависимости от команды измерительных операторов 4 и 6.  [c.452]

Дифференцируя общий объем обработки вала на число позиций (станков) больше четырех, получаем сокращение длительности рабочих ходов цикла. В качестве примера на рис. 1Х-21, а приведена технологическая схема обработки по позициям при шестипозиционном q = 6) варианте линии — для каждой из позиций I—VI показаны обрабатываемые поверхности. Так, на позиции / производится фрезерование и зацентровка торцов, на позиции // — черновая токарная обработка шеек № 4, 5, 6 и т. д. На рис. IX-21, б показана технологическая схема обработки при десятипозиционном q = 10) варианте линии (позиции I—X). Как видно, на позиции / также производится фрезерование и зацентровка (эта обработка не лимитирует цикл, ipi + ip2 = 0,40 мин), а на позиции // производится только черновая обточка шеек № 5 и 6, а шейка № 4 обрабатывается на позиции III. Максимальное число позиций определяется невозможностью дробления Длины обработки шейки №3 (см. рис. IX-20) при чистовой обточке <7п,ах = 13. Таким образом, для обработки вала, приведенного на рис. IX-20, даже при простейшем структурном построении однопоточной обработки (ру = 1) и жесткой межагрегатной связи (Пу = 1) автоматическую линию можно построить по 10 структурным вариантам, с числом позиций q — А, Ъ, б, 7, 8 и т. д. Чем больше число позиций (степень дифференциации технологического процесса), тем меньше время рабочих ходов линии — при = 4 /р = 1,70 мин при <7 = 13 /ртах = 0,35 мин (рис. 1Х-21,е).  [c.375]


Смотреть страницы где упоминается термин Циклы токарной обработки : [c.100]    [c.71]    [c.189]    [c.90]    [c.479]    [c.159]    [c.324]    [c.40]   
Смотреть главы в:

Информационная поддержка наукоемких изделий. CALS-технологии  -> Циклы токарной обработки



ПОИСК



Автоматизация металлорежущих станков простых циклов обработки на токарных станках

Автоматизация металлорежущих станков— Объекты сложных циклов обработки на токарных станках

Результаты экспериментальных исследований и автоматизация циклов обработки на токарно-револьверных станках путем применения систем программного управления

ТОКАРНЫЕ Управление циклом обработки — Автоматизация

ТОКАРНЫЕ Циклы обработки простые — Управление с помощью пневматики

ТОКАРНЫЕ Циклы обработки сложные — Автоматизация

Токарная обработка



© 2025 Mash-xxl.info Реклама на сайте