Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электронные состояния и электронные спектры молекул

Электронные состояния и электронные спектры молекул  [c.242]

Изложенная схема процессов сильно упрощена, и существует целый ряд факторов, в той или иной мере затрудняющих развитие генерации. 1< числу мешающих факторов относится, например, фотохимическое разложение молекул красителя при высоких значениях освещенности, нагревание раствора, приводящее к безызлучательному затуханию возбужденного электронного состояния, и многие другие. Однако все эти препятствия устраняются специальными методами ), и генерацию удается осуществить с большим числом разных красителей (их насчитывается сейчас около 100) в импульсном и непрерывном режимах, в широкой области спектра (от 350,0 до 1000,0 нм) и с применением в качестве источников возбуждающего излучения ксеноновых газоразрядных ламп и лазеров.  [c.817]


Согласно классической механике энергия какой-либо системы, в том числе атома и молекулы, может иметь любые значения. Для изолированной системы значение энергии определяется начальными условиями, которые, по классической теории, произвольны. Согласно современной квантовой теории возможные значения энергии системы атомов полностью определяются ее внутренними свойствами, т. е. числом и свойствами атомов, ядер и электронов, а также характером их взаимодействия. При этом начальные условия не влияют на возможные значения энергии данной атомной системы. Они показывают лишь количество атомов или молекул в начальный момент времени в том или ином состоянии с определенным значением энергии. Значения энергии, которые могут быть реализованы в данной системе, принято называть уровнями энергии (энергетическими уровнями). Совокупность всех возможных значений энергии, или уровней энергии, носит название энергетического спектра.  [c.224]

В качестве простого примера влияния вращения молекулы на ее спектр можно рассмотреть молекулу метана. Она имеет тетраэдрическую равновесную геометрию в основном электронном состоянии, и для классификации колебательных состояний применяется точечная группа Та. Проводя рассмотрение на основе точечной группы симметрии, можно показать, что молекула метана не имеет электрического дипольного момента и разрешенного в электрическом дипольном приближении вращательного спектра. Однако центробежное искажение вращающейся молекулы может привести к появлению отличного от пуля электрического дипольного момента, поэтому молекула метана будет иметь вращательный спектр ). Группа молекулярной симметрии метана позволяет понять, какие ровибронные состояния могут взаимодействовать в результате центробежного искажения молекулы, и определить, какие вращательные переходы могут появляться в спектре.  [c.13]

Как отмечалось ранее (см. раздел I, 2), волновые числа являются обратной величиной длины волны в вакууме. Поэтому для точного определения электронных, колебательных и вращательных состояний молекул в см ло полосатым спектрам необходимо длины волн приводить к вакууму (см. Приложение П1), так как лин]1и стандартного спектра железа в области 2000—10 ООО А, имеющиеся в атласах и таблицах, даются для атмосферного давления воздуха. В случае ПК-спектров все стандартные длины волн уже приведены к вакууму.  [c.143]


Возникновение спектров при изменении энергетического состояния молекулы. Единицы измерения в спектроскопии. Области спектра (щкала магнитных колебаний), которые соответствуют изменениям различных энергетических состояний молекулы. Правила отбора для переходов между энергетическими состояниями. Вращательные, колебательные и электронные спектры поглощения и испускания. Спектры резонансной флюоресценции и комбинационного рассеяния.  [c.266]

При поглощении или испускании видимого или ультрафиолетового излучения изменяется электронная энергия молекулы. Такой переход обычно сопровождается изменением колебательных и вращательных состояний. Возникающий при этом электронный спектр имеет сложную полосато-линейчатую структуру. Если поглощение или испускание света приводит к изменению колебательной и вращательной энергии молекулы (АЕе=0), то возникает полосато-линейчатый колебательный спектр, расположенный в инфракрасной области (ИК-спектр). Переходы с изменением только вращательной энергии (Д е=0, АЕ —О) дают более простой линейчатый спектр в далекой инфракрасной, а также микроволновой областях.  [c.10]

Вопрос о влиянии молекулярных взаимодействий на электронные спектры молекул принципиально может быть решен путем расчета изменения потенциальных кривых комбинирующих состояний. Располагая такими данными, можно вычислить новые частоты переходов (спектральные сдвиги), интегралы наложения волновых функций и распределение вероятностей перехода (интенсивность и форму полос). К сожалению, такой общий подход, позволяющий решить одновременно полный комплекс вопросов об изменении электронных полос в растворах, практически не используется, во-первых, из-за отсутствия достаточно строгой теории электронно-колеба-тельных спектров вообще, во-вторых, из-за недостатка данных о физико-оптических параметрах возбужденных молекул.  [c.93]

Понятие квантового выхода фотолюминесценции приобретает эвристический смысл только в тех случаях, когда спектр испускания не зависит от частоты возбуждающего света. С подобной ситуацией мы сталкиваемся в сложных системах, в которых спектр испускания возникает при переходах только с самого нижнего из возбуждённых электронных состояний и не зависит от запаса колебательной энергии, полученной при возбуждении. В таких системах вероятности внутримолекулярных неоптических переходов значительно превосходят вероятности соответствующих оптических переходов, быстро происходит процесс внутримолекулярного перераспределения энергии и перед актом испускания света молекула оказывается в состоянии 2 (см. рис. 1.2, а), практически независимо от способа возбуждения.  [c.28]

СОСТОЯНИИ. Согласно Франку - Кондону, возбуждение поглощением света или электронным ударом происходит так, что мгновенные кинетическая энергия и конфигурация ядер не изменяются во время изменения электронного состояния. Поэтому в спектрах поглощения или в спектрах источников, где возбуждение вызывается главным образом электронными ударами, можно ожидать, что системы полос, соответствующие переходам из состояний, для которых конфигурация ядер заметно отличается от их конфигурации при нормальном состоянии, будут слабы. В пламени, где возбуждение обусловлено главным образом столкновениями между атомами и молекулами, эти системы могут быть относительно интенсивными.  [c.224]

Для того чтобы вычислить сумму состояний, нужно иметь сведения, относящиеся к энергетическим уровням молекул в системе. Данные по термическим энергетическим уровням вращения и колебания могут быть получены из рамановских, инфракрасных и ультрафиолетовых спектров. Ультрафиолетовый спектр и спектр рентгеновских лучей дают сведения об электронных энергетических уровнях. Так как спектроскопическое определение энергетических уровней исключительно точно, то предпочитают эти данные. Для некоторых классов соединений, в частности углеводородов, такие данные используют для вычисления термодинамических функций в известных температурных пределах.  [c.114]


Соотношение (16.7) справедливо для всех систем, для которых распределение по подуровням возбужденного состояния не зависит от частоты возбуждающего света и вообще от способа возбуждения. Кроме того, для выполнения соотношения (16.7) необходимо выполнение ряда дополнительных условий — отсутствие в системе поглощающих, но не люминесцирующих примесей, отсутствие невозбуждающего поглощения и т. д. Следует отметить, что соотношение (16.7) применимо не только для электронно-колебательных спектров сложных молекул, но и для любых других систем, состоящих из двух подсистем быстрой и медленной. Необходимо только, чтобы время перераспределения энергии внутри медленной подсистемы значительно превосходило длительность возбужденного состояния быстрой подсистемы, как это имеет место у сложных молекул, где рассматриваются переходы между колебательными подуровнями нижнего и первого возбужденного электронных состояний. В сложных молекулах между актами поглощения и испускания света происходит довольно быстрое перераспределение энергии по колебательным степеням свободы, в результате чего перед актом испускания устанавливается равновесное (температурное) распределение по колебательным уровням возбужденной молекулы. В то же время подобное равновесие электронных состояний не имеет места — в возбужденном электронном состоянии имеется значительный избыток молекул.  [c.368]

Установлено и объяснено соответствие между уровнями энергии, состояниями и электронными спектрами ТПА, находящихся в транс-конфигурации, и молекул с более простым остовом (транс-стильбен, трансазобензол, бензилиденанилин). Установлена малая степень копланарности ТПА в сравнении с этими соединениями.  [c.51]

Эта книга по существу является первой фундаментальной монографией, посвященной электронным состояниям и электронно-колебательно-вращательным спектрам многоатомных молекул. 15 ней впервые систематически изложены основные результаты теории, причем важнейшие вопросы рассмотрены весьма детально и иллюстрированы примерами, графиками, диаграммами и таблицами автором глубоко проанализирован огромный объем экспериментальных данных и обобщен1д закономерности, касающиеся электронных состояний и спектров многоатомных молекул.  [c.5]

Большой интерес представляют глава IV, посвященная потенциальным функциям многоатомных молекул в основном и возбужденных электронных состояниях, и глава V, содержащая критический анализ огромного количества экспериментальных данных по электронным спектрам и молекулярным постоянным большого числа многоатомных молекул. Эта последняя глава содержит цельп" ряд ценных таблиц, в которых приведены значения молекулярных постоянных многих молекул, рекомендуемые автором на основании критического анализа литературных данных, в том числе и многих собственных работ.  [c.5]

В таблицы включены лишь молекулы, спектры которых исследованы в газовой фазе. Для молекул, имеющих только непрерывные спектры поглощения, в общем случае не приводится детальный перечень электронных состояний, а даются лишь ссылки на одну или две последние работы. То же самое относится и к нескольким другим молекулам, сведения о которых весьма ограничены. Во всех остальных случаях в таблицах систематизированы все известные электронные состояния молекул (обозначенные, как указано в вводной части гл. V), за исключением самых высоких ридберговских состояний, для которых приведены сериальные формулы. Для каждого состояния в таблицу включены следующие данные точечная группа симметрии, энергия возбуждения То, отсчитываемая от нижнего состояния (а не значение Те, как в томе I для двухатомных молекул),частоты колебаний Vj, вращательные постоянные А о, Во, Со и геометрические параметры (межатомные расстояния и углы). В тех случаях, когда это было возможным, для трех- и четырехатомных молекул дополнительно приведена электронная конфигурация, соответствующая каждому состоянию. И наконец, таблицы содержат сведения о наблюдаемых электронных переходах и областях длин волн, в которых они расположены, а также ссылки на соответствующие литературные источники. При обозначении электронных переходов (в соответствии с правилами, принятыми на основании международного соглашения) верхнее состояние всегда записывается первым вне зависимости от того, наблюдается ли данный переход Б поглощении (<—) или в испускании (— ).  [c.593]

Генерацию в УФ (0,2—0,4 мкм) области спектра получают на переходах между электронными состояниями устойчивых молекул, а также на переходах с возбуждённого устойчивого верхнего в нижнее неустойчивое электронное состояние неустойчивых молекул типа димеров инертных газов или димеров атом инертного газа — атом галогена (атомы могут объединяться в такие молекулы только в возбуждён-лом состоянии, см. Эксимерные лазеры). Возбуждение активной среды осуществляется в импульсном электрич. разряде или с помощью пучка быстрых эл-нов. Эти Г. л. используются в физ., хим. и биол. исследованиях, ф Справочник по лазерам, пер. с англ., под ред. А. М. Прохорова, т. 1, М., 1978 К а р-л о л Н. В., К о н е в Ю. Б., Мощные молекулярные лазеры. М., 1976 Г о р д и е ц Б. Ф., Осипов А. И., Ш е л е п и н Л. А., Кинетические процессы в газах и молекулярные лазеры. М., 1980.  [c.105]

В качестве еще одного примера рассмотрим спектры поглощения и люминесценции молекулы красителя родамина 6G. Молекулярные оптические спектры обусловлены значительно более сложной картиной переходов, нежели спектры атомов или ионов. В этом случае начальное и конечное состояния представляют собой не отдельные электронные уровни, а совокупности колебательных и вращательных уровней, каждая из которых соответствует определенному электронному состоянию молекулы. Чем сложнее молекула, тем богаче указанная совокупность колебательно-вращательных состояний, тем плотнее расположены уровни в этой совокупности. Все это объясняет, почему спектры поглощения н люминесценции молекул красителей обычно не обнаруживают тонкой структуры и характеризуются большой шириной (порядка 0,1 мкм). Вид этих спектров для молекулы родамина 6G приведен на рис. 8.5, а (1—спектр поглощения, 2 — спектр люминесценции). Рисунок хорошо ИЛЛЮСТ- fy 1  [c.193]


Наиболее распространенные процессы излучения и поглощения света в среде атомных и молекулярных частиц обусловлены переходами между их электронными состояниями и могут быть подразделены на три типа 1) свободно-свободные переходы (тормозное излучение и поглощение света при рассеяние электронов на атомах и ионах, сплошной спектр) 2) связанно-свободные переходы (фотоионизация атомов и молекул и фоторекомбинация электронов на ионах и нейтральных частицах, сплошной спектр) и 3) связанно-связанные (дискретные) переходы (линейчатый спектр атомов и полосатый спектр молекул).  [c.794]

В 1937—38 Дж. Ванье (G. Wannier) и Н. Мотт (N. Mott) ввели представление об Э. как о перемещающихся по кристаллу связанных состояниях электрона и дырки, к-рые могут находиться на разл. узлах кристаллич. решётки (3. большого радиуса), экситон Френкеля можно представить как предельный случай, когда связанные электрон и дырка сидят на одном и том же узле (3. малого радиуса). Ванье—Мотта экситон чаще всего наблюдается в полупроводниках и диэлектриках. В молекулярных кристаллах, в к-рых силы взаимодействия между отд, молекулами значительно меньше взаимодействия между атомами и электронами внутри молекулы, Э. представляет собой элементарное возбуждение электронной системы отд. молекулы, к-рое распространяется по кристаллу в виде волны. Молекулярные экситоны определяют спектр поглощения и излучения молекулярных кристаллов,  [c.501]

Анализ более сложных спектральных траекторий с помощью двухфотонного коррелятора. Проведем теперь теоретический анализ более сложной спектральной траектории (см. рис. 7.4). На этом примере тоже можно проследить связь, существующую между двух- и однофотонными методами регистравдш. Поскольку спектральная линия здесь прь ает между четьфьмя П03ИЩ1ЯМИ, то, очевидно, мы должны рассмотреть двухфотонный коррелятор примесной молекулы, взаимодействующей с двумя ДУС. У двух ДУС имеется четыре квантовых состояния в каждом электронном состоянии хромофора. Следовательно, спектр поглощения такого хромофора будет состоять из четьфех линий. В этом случае в формулу (21.4) для двухфотонного коррелятора вместо формулы (21.6) мы должны подставить следующую  [c.290]

Электронные спектры молекул зависят от состояния вещества. При переходе из газовой фазы в конденсированную (жидкость, раствор), а также при замене растворителя происходит смещение спектральных полос и изменение их абсолютной интенсивности и формы. Это явление изучается систематически уже несколько десятков лет. Сдвиг полос поглощения в пределах видимой области сопровождается изменением цвета соединения (явление сольватохромии). Смещение спектра поглощения в сторону меньших частот называют положительной, а в сторону больших частот — отрицательной сольватохромией.  [c.80]

Молекула NO2 в основном электронном состоянии является нелинейной симметричной молекулой (точечная группа Сги) и относится к типу асимметричных волчков. Все три невырожденные основные частоты NO2 активны и в спектре комбинационного рассеяния и в инфракрасном спектре. Молекула NO2 имеет число симметрии 2, равновесное межатомное расстояние Гм о= 11,97 нм и ZONO = 134°15, значение молекулярных постоянных NO2 в ос-новно.м электронном состоянии приведены в работе [13]. Склонность молекул NO2 к взаимодействию друг с другом, а также их парамагнетизм обусловлены наличием в каждой из них при атоме азота одного неспаренного электрона. Сочетание двух таких электронов и создает связь N—N в молекуле N2O4. Неустойчивость последней является следствием непрочности этой связи.  [c.10]

Следует подчеркнуть, что гибридизация атомных орбит — способ приближенного описания участия валентных орбит одного атома в образовании локализованных молекулярных орбит. Степень удовлетворительности такого описания зависит от того, насколько сильно в действительности взаимодействуют локализованные орбиты, однако провести ясную границу не представляется возможным. Картина локализованных связей может оказаться удовлетворительной при рассмотрении свойств молекул, зависящих от результирующего поведения всех ее электронов (дли ны связей, их энергии и дипольные моменты и т. п.). Для свойств же, существенно связанных с состояни ями отдельных электронов (потенциалы ионизации, электронные спектры и т. п.), картина локализованных связей может оказаться непригодной с самого начала (даже в насыщенных органич. соединениях).  [c.584]

Если молекула принадлежит к точечной группе оол. т. е. имеет центр симметрии, то чередующиеся вращательные уровни имеют различные статистические веса, как и в случае двухатомной молекулы, имеющей одинаковые ядра. При равенстве спинов всех ядер нулю (исключение возможно лишь для одного ядра, находящегося в центре симметрии) антисимметричные вращательные уровни отсутствуют вовсе, т. е. для электронных состояний отсутствуют нечетные вращательные уровни ). Это имеет место в случае молекул С0.2 и С3О2, так как они являются линейными и симметричными (точечная группа Ооо/с)- Если одна или несколько пар ядер, не находящихся в центре, имеют спин 1 рО, то присутствуют все вращательные уровни, однако четные и нечетные уровни будут обладать различными статистическими весами. Если имеется только одна пара одинаковых ядер со спином 1 0 (только этот случай до сих пор и изучался экспериментально), то легко видеть, что так же как и в случае двухатомных молекул (Молекулярные спектры I, гл. 1И, 2), отношения статистических весов симметричных и антисимметричных вращательных уровней будет равно (/-(-1)// или //(/- -/), в зависимости от того, подчиняются ли ядра статистике Бозе или статистике Ферми. Можно  [c.28]

В предшествующем тексте и в таблицах приложения I рассмотрена классификация электронных состояний только для стандартных (геометрических) точечных групп. Необходимо учитывать, что молекулы, в которых переход из одной равновесной конфигурации в другую является возможным (нежесткие молекулы см. стр. 13), могут относиться к другим группам симметрии, более высокого порядка. Типы нескольких из этих групп рассмотрены Майерсом и Уилсоном [922 J, Лонге-Хиггинсом [767], Хоугеном [575] и Стоуном [1169]. Нам не целесообразно останавливаться на этом вопросе, так как в электронных спектрах многоатомных молекул, по крайней мере до сих пор, были достаточно изучены только такие нежесткие молекулы, у которых группа симметрии изоморфна с одной из стандартных точечных групп. Хорошим примером служит молекула NH , для которой, как уже упоминалось, точечная группа, учитывающая инверсию, изоморфна с группой />зй, т. е. колебательные состояния (разд. 2) можно классифицировать по типам этой точечной группы.  [c.19]

В первом приближении вращение в каждом электронном состоянии многоатомной молекулы можно рассматривать независимо от колебательного и электронного движений, т. е. так же, как оно рассматривалось в основном электронном состоянии нри описании чисто вращательных спектров в гл. I тома II [23]. Однако в многоатомных молекулах взаимодействие с колебательным и электронным движениями имеет очень больише значение, даже больнгее, чем в двухатомных молекулах, и может приводить к корен-  [c.71]


В гл. I рассматривались типы электронных состояний и относящиеся к ним колебательные и вращательные уровни для различных классов многоатомных молекул. Чтобы сравнить теоретические результаты с экспериментальными данными, необходимо теперь остановиться на переходах менл-ду этими уровнями. Точно так же, как и в случае двухатомных молекул, переходы с колебательных и вращательных уровней одного электронного состояния многоатомной молекулы на уровни другого состояния приводят к появлению системы полос. Однако структура такой системы полос для многоатомны. с молекул в общем случае значительно сложнее, чем для двухатомных. Большинство систем полос многоатомных молекул наблюдалось в спектрах поглощения, однако несколько систем наблюдалось и в спектрах испускания.  [c.128]

Анализ полос электронных спектров молекул типа сильно асимметричного волчка проводится, конечно, точно так нге, как и полос инфракрасных спектров (см. [23], стр. 514 и след.). Более подробные сведения о различных методах анализа можно найти в книге Аллена и Кросса [1]. Там же описаны и методы определения вращательных постоянных в верхнем и нижнем состояниях. Если для нескольких значений J онределены энергии всех уровней, то вычисление вращательных постоянных А, В, С, а. также некоторых постоянных центробежного растяжения лучше всего производить с помощью соотношений (1,163).  [c.264]

Единственным примером полос электронных спектров молекул типа сильно асимметричного волчка (причем таких молекул, которые ни в одном из состояний не являются линейными или почти линейными, как NH2 и СНг), которые были полностью разрешены и проанализированы, могут служить полосы НаО и ВгО около 1250 А (Джонс [631]). Они приведены па фиг. 112. Если структуру полос НзО не удалось полностью разрешить из-за предиссоциации (гл. IV), то для структуры полос ВзО получено довольно полное разрешение. Анализ этих полос в значительной степени был облегчен тем, что-из инфракрасного спектра было известно расположение вращате.льных уровней нижнего состояния. На фиг. 112 отмечены некоторые подполосы. Поскольку для всех подполос А Ас принимает четные значения, а АКа — нечетные, полосу следует отнести к типу С, т. е. в этом случае момент перехода перпендикулярен плоскости молекулы. Средр инфракрасных полос Н2О нет ни одной полосы такого типа.  [c.265]

В первых двух главах мы принимали как само собой разумеющееся существование различных стабильных электронных состояний многоатомных молекул и рассмотрели тины электронных состояний, их колебательные и вращательные уровни, а также структуру спектров, возникающих в результате переходов между этими уровнями. Теперь же рассмотрим следующую проблему какие электроппые состояния могут быть у данной молекулы согласно теории. Другими словами, попытаемся на основании квантовой теории установить все многообразие электронных состояний, их взаимное расположение и стабильность аналогично тому, как это сделано в гл. VI книги Спектры и строение двухатомных молекул [22].  [c.276]

В области, расположенной между системой полос с максимумом при 1970 А и началом интенсивных ридберговских серий при 1375 A, в спектре S2 наблюдаются следующие особенности а) одиночная диффузная полоса с двумя интенсивными максимумами при 1815 A б) слабая прогрессия с частотой 830 в) очень узкая группа четких нолос, образующих, вероятно, секвенцию (О—О, 1—1,. . . ) но деформационному колебанию при 1595 А г) очень интенсивная и сложная система, расположенная в области между 1535 и 1450 А. Две узкие грунны полос, очевидно, соответствуют верхним электронным состояниям, в которых структура молекулы очень близка структуре основного состояния, так же как и в случае верхних состояний ридберговских полос. Более детальное исследование этих переходов на приборах с высоким разрешением, несомненно, должно дать весьма интересную информацию.  [c.515]

Результаты проведенного выше обсуждения особенностей электронных спектров трехатомных молекул, не содержащих атомов водорода, суммированы в табл. 64, в которой приведены значения колебательных и вращательных постоянных в различных электронных состояниях. Эта таблица содержит также данные для ряда других трехатом-ных молекул, которые не рассматривались в тексте.  [c.523]

Обычно спектр испускания флуоресценции представляет собой зеркальное отражение спектра поглощения, точнее, того поглощения, которое соответствует переходу из 5 в 51. Это особенно наглядно в случае перилена (см. рис. 1.2). Симметричная природа этих спектров определяется тем, что и поглощение, и испускание обусловлены одними и теми же переходами, а также сходством колебательных энергетических уровней состояний и Для многих молекул различное распределение электронов в состояниях и 51 существенно не влияет на эти уровни энергии. Согласно принципу Франка - Кондона, все электронные переходы происходят без и> мепения межъядерного расстояния. В результате, если данная вероятность перехода (фактор Франка - Кондона) между нулевым и вторым колебательными уровнями максимальна при поглощении, соответствующий переход будет наиболее вероятен также и в испускании (рис. 1.5).  [c.16]


Смотреть страницы где упоминается термин Электронные состояния и электронные спектры молекул : [c.324]    [c.11]    [c.167]    [c.226]    [c.817]    [c.152]    [c.10]    [c.127]    [c.350]    [c.56]    [c.428]    [c.507]    [c.529]    [c.317]    [c.138]    [c.357]   
Смотреть главы в:

Оптика. Т.2  -> Электронные состояния и электронные спектры молекул



ПОИСК



Г-состояния, F-состояния электронные

Правила отбора.— Зеемановские компоненты.— Спектры магнитного вращения.— Расщепление Штарка ПРИНЦИПЫ ПОСТРОЕНИЯ ЭЛЕКТРОННЫХ ОКОЛОЧЕН. ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ UСТАБИЛЬНОСТЬ ЭЛЕКТРОННЫХ СОСТОЯНИЙ МОЛЕКУЛ Корреляция электронных состояний

Состояние электронов

Спектр молекулы

Спектры электронные

Т-спектр состояния

Электронные состояния

Электронные состояния молекул



© 2025 Mash-xxl.info Реклама на сайте