Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Направление изменения величин в ударной волне

НАПРАВЛЕНИЕ ИЗМЕНЕНИЯ ВЕЛИЧИН В УДАРНОЙ ВОЛНЕ 463  [c.463]

Направление изменения величин в ударной волне  [c.463]

Рассмотрим свойства ударной адиабаты в окрестности точки (р1, VI). Это позволит сделать окончательные выводы о направлении изменения величин в ударной волне произвольной интенсивности.  [c.79]

Таким образом, направление изменения величин в релятивистской ударной волне слабой интенсивности подчиняется (при условии (135,10)) тем же неравенствам, что и в нерелятивистском случае. Обобщение этого результата на ударные волны произвольной интенсивности оказывается возможным произвести способом, вполне аналогичным примененному в 87 ).  [c.702]


Изменение скорости фронта ударной волны за это время (12 мксек) происходит с 2000 до 1500 м сек, а изменение скорости фронта запаздывающего кавитационного потока с 4000 до 110 м сек. При этом следует иметь в виду, что направление скорости фронта запаздывающего потока может изменяться на обратное, когда вследствие инерционности потока давление внутри кавитационной полости становится ниже атмосферного. Таким образом, инерционность потока жидкости приводит к пульсации кавитационной полости. Период этой пульсации измеряется величинами порядка 10 м/сек. Это важное для процесса штампования обстоятельство, так как если не принять специальных мер, то при давлении, незначительно превышающем давление, необходимое для формования детали, на последней могут получиться вмятины из-за действия описанной пульсации давления в кавитационной полости.  [c.273]

Следует отметить, что в общем случае не существует решения пространственной задачи о взаимодействии плоской ударной волны с возмущениями. В самом деле, пусть возмущение падает на ударную волну со стороны сжатого газа. При малых углах падения падающей плоской волне будет соответствовать отраженная волна. Однако начиная с определенного угла па- дения суммарное возмущение представляет собой совокупность двух падающих волн, которые определенным образом зависят друг от друга. В пространственном случае это дает связь между плоскими волнами, на которые разлагается падающее возмущение. Таким образом, мы имеем некоторое условие, которое налагается на вид падающего возмущения. Если это условие не выполнено, то задача об отражении акустической волны от фронта ударной волны в линейной постановке, вообще говоря, не имеет решения. Физический смысл этого состоит следующем. Если изменения величин за фронтом падающей акустической волны в направлении ее распространения малы по сравнению с изменениями в поперечном направлении, то возмущенное течение за фронтом ударной волны уже нельзя представить в виде суперпозиции падающей и отраженной акустических волн. Должно произойти ветвление ударной волны.  [c.63]

Эффективность воздействия внешнего излучения на сверхзвуковые струи при увеличении l/h падает. Это иллюстрируется зависимостями на рис.7.6 для плоской струи (ро = 3,4 атм, / = 18,7 кГц). Этот вывод согласуется с данными работы [7.11], согласно которой воздействие поперечного акустического облучения сверхзвуковой струи становится особенно ощутимым при акустическом облучении кромки сопла. В этой же работе указывается, что при воздействии на сверхзвуковую струю пилообразных звуковых волн ее ударно-волновая структура может разрушиться, что приводит к значительным изменениям в излучении шума. Так, показано, что при этом (М = 2, п = 0,8, fs = 8,5 кГц и /а = 11,8 кГц) в направлении максимального излучения в области частот вблизи максимума спектра излучаемой акустической мощности наблюдается снижение широкополосного шума на величину до 10 дБ.  [c.183]


Здесь и — скорость фронта ударной волны, а величина [ ф]= = (+) — (-) есть скачок соответствующей переменной при переходе через фронт волны, причем знак минус относится к значению переменной непосредственно вверх по потоку -за фронтом, а знак плюс —к значению непосредственно перед фронтом волны. Эти соотношения связывают значения переменных, определяющих поле напряжений и деформаций, перед ударной волной с их значениями за ударной волной и со скоростью распространения разрыва. Они должны быть дополнены еще одним соотношением, которое в рассматриваемой задаче определяет изменение свойств поля вдоль характеристики на плоскости t, X. Эта характеристика соответствует траектории звуковой волны, распространяющейся в положительном направлении вдоль оси X, так что это дополнительное уравнение отражает влияние нелинейности свойств материала на ударную волну. Уравнение характеристики выводится из системы основных дифференциальных уравнений (8), (9) и может быть записано в следующей дифференциальной форме  [c.156]

В заключение заметим, что г монотонно убывает (по абсолютной величине монотонно возрастает), когда Z движется по верхней части кривой Гюгонио в направлении от точки Z . Кроме того, в силу соотношения (56.4) при уменьшении г величина 5 увеличивается. Таким образом, при заданном термодинамическом состоянии перед фронтом ударной волны большим значениям / отвечают при переходе через разрыв большие изменения энтропии. Например, приращение энтропии на отошедшей ударной волне, возникающей при полете со сверхзвуковой скоростью, достигает максимума на центральной линии тока и монотонно убывает при удалении от этой линии вдоль фронта.  [c.186]

Вытекающее из этих рассмотрений поведение величин и и Л показано на рис. 3, где дан график зависимости (19) и стрелками обозначено направление изменения этих величин от фронта ударной волны к центру для случаев 7 < 7 и 7 > 7. При 7 = 7 в области за фронтом величины и 2 постоянны анализ этого решения предоставляется читателю.  [c.212]

По мере распространения в направлении преграды интенсивность ударной волны убывает из-за радиального течения приблизительно обратно пропорционально пройденному расстоянию. Через время t = 0.054 мс с начала истечения ударная волна достигает преграды и скачком повышает давление на ней до величины р = 0.185 (120 МПа). Затем на преграду начинает натекать струя, и давление на преграде увеличивается. Максимальное давление около р = 0.9 (580 МПа) наблюдается через время = 0.156 мс, которое соответствует времени установления параметров на преграде, рассчитанному по начальной скорости истечения струи = 2Цщ). График изменения давления в обших чертах повторяет график изменения скорости истечения струи с соответствующим запаздыванием по времени. После сгорания пороха давление быстро уменьшается, стабилизируясь на заключительной стадии. Пульсации давления и скорости потока на этой стадии истечения связаны с отражением волн от границы раздела пороховые газы - вода.  [c.36]

Колебательный процесс изменения давления и скорости потока в том или ином сечении трубопровода при гидравлическом ударе состоит из четырех фаз. Их последовательность на участке трубопровода от затвора до резервуара, из которого питался трубопровод до перекрытия (рис. 42, а), такова. В момент перекрытия потока у затвора полностью гасится скорость потока V, а это по,теореме импульсов вызывает мгновенное возрастание давления на величину руд в соответствии с формулой (34). Волна ударного давления +Руд распространяется в направлении резервуара и достигает его через время На, где /— длина этого участка трубопровода. К моменту времени /[ (отсчет времени ведется от момента мгновенного закрытия) давление распространяется на весь участок длиной I, а скорость v во всех его сечениях  [c.101]

Эта работа положила начало крупному циклу исследований Г.А. Любимова по магнитной гидродинамике. Магнитная гидродинамика (МГД) была в то время молодой и быстро развивающейся наукой. Она включала в себя механику, электродинамику, статистическую физику и многое другое. В этой области рождались новые идеи и понятия, культура и язык, которые в дальнейшем оказали влияние на всю механику сплошных сред. Работа в этой области магнитной гидродинамики послужила Григорию Александровичу (и многим другим ученым его поколения) замечательной школой, давшей заряд на всю дальнейшую жизнь. Г.А. Любимову принадлежат исследования МГД-разрывов и их структуры, в частности, первые пионерские работы по ионизирующим ударным и детонационным волнам. Специфика этих волн заключается в том, что электрическое поле перед ними генерируется процессами внутри их структуры, а не является заданным. Эти работы получили в дальнейшем существенное развитие. Григорий Александрович показал, что внутри структуры МГД-ударных волн в плазме, когда существенны токи Холла, магнитное поле прецессирует, прежде чем принимает окончательное предельное значение. Он также исследовал изменение величин в МГД-волнах, подобных волнам Прандля-Майера в газовой динамике. Это исследование породило также целое направление.  [c.6]


Для расчетов процессов импульсной штамповки листовых заготовок в закрытые матрицы рассмотрим простую модель контактного взаимодействия деформируемой пластины с жесткой преградой. Описанная в 3.2 конечно-разностная модель динамики балки или цилиндрического изгиба пластин представляет собой дискретную систему связанных материальных точек (узлов). Если полагать, что время контактного взаимодействия каждой отдельной узловой массы Шг меньше, чем расчетный интервал шага по времени At для явной схемы расчета, то моделирование контактного взаимодействия можно представить как мгновенное изменение скорости узловой массы в интервале At. При этом ее можно считать свободной и корректировать нормальную составляющую скорости к преграде по направлению и величине в соответствии с заданным коэффициентом восстановления. Это соответствует использованию теории стереомеханического удара [48] для системы материальных точек, реакция внутренних связей между которыми возникает ва время, большее, чем время формирования ударного импульса в отдельной узловой точке-массе. Данное предположение приближенно выполняется для достаточно тонких пластин и их дискретного представления, когда длина звеньев As суш,ественно больше удвоенной толщины. Тогда время единичного контактного взаимодействия оценивается двойным пробегом волны сжатия и растяжения по толщине пластины, а время формирования внутренних сил при взаимодействии соседних узловых точек в процессе деформирования определяется временем пробега упругой волны по длине звена As.  [c.66]

Рассмотрим теперь задачу о распаде произвольного разрыва в нелинейной постановке, считая, однако, что изменение величин в волнах, входящих в решение, невелики и для ударных волн можно пользоваться результатами 1.7. В нелинейной постановке появляется различие между ударными волнами и волнами Римана (в линейном решении и та, и другая представляются разрывами). В решении задачи могут присутствовать только расширяющиеся со временем (неопрокидывающиеся) волны Римана, в которых дс1дх > О, поскольку в рассматриваемом случае с = x/t. Это требование определяет на кривой, представляющей волну Римана в пространстве и,, вполне определенное направление изменения величин. Как показано в 1.7, состояния за эволюционными ударными волнами лежат на отрезке ударной адиабаты, расположенном по одну сторону от начальной точки. Ударная адиабата касается в начальной точке интегральной кривой волны Римана и имеет с ней одинаковую кривизну, причем эволюционный отрезок ударной адиабаты является продолжением части интегральной кривой волны Римана, соответствующей неопрокидывающимся волнам, начинающимся в начальной точке. Изменение функций щ в т-я волне (ударной или неопрокидывающейся волне Римана) представляется изменением щ от точки, изображающей состояние перед волной (при больших х), до некоторой точки, лежащей на рассмотренной выше составной кривой тп-й волны.  [c.64]

Таким образом, сверхзвуковой поток, прежде чем попасть в межлопаточный канал, проходит через бесконечную систему ударных волн с постепенно увеличивающейся интенсивностью в области между соседними ударными волнами поток разгоняется до все больших скоростей (по мере приближения его к фронту решетки). Перед участком ударной волны, расположенным у входа в межлопаточный канал, газ движется поступательно с числом Маха, равным Мта1- На этом участке происходит наиболее интенсивное торможение потока, в результате которого на выходе из межлопаточного канала устанавливается дозвуковое течение. При этом величина потерь полного давления в различных элементарных струйках, прошедших через систему ударных волн, будет различна, так как интенсивность волн падает слева направо. Следовательно, при рассматриваемом обтекании решетки идеальным невязким потоком газа в достаточно удаленном от входа сечении межлопаточного канала, где статическое давление, а значит, и направление скорости уже постоянны по его ширине, величина скорости останется переменной. С целью упрощения задачи будем предполагать, что в результате турбулентного обмена между струйками поток внутри межлопаточных каналов полностью выравнивается и в соответствии с этим за решеткой устанавливается равномерный по шагу поток с постоянными статическим и полным давлениями, причем направление этого потока совпадает с направлением пластин (угол отставания б равен нулю). Важно отметить, что сделанное здесь предположение о выравнивании потока в межлопаточных каналах существенно отличается от сделанного в предыдущем параграфе предположения о выравнивании потока в сечении далеко за решеткой. В этом последнем случае мы только несколько завышаем потери по сравнению с теми потерями, которые имеются в невязком потоке газа, оставляя при этом неизменным течение в самой решетке, а следовательно, неизменным и силовое воздействие потока на нее. Иное дело при выравнивании потока в лопаточных каналах, при котором вследствие изменения течения в самой решетке происходит не только увеличение потерь, но и изменение величины равнодействующей по сравнению с ее значением в идеальном — невязком потоке газа ). Конечно, можно предположить, что выравнивание пото-  [c.90]

Все существующие феноменологические модели связи электрического сигнала на электродах короткозамкнутого конденсатора с диэлектрическим слоем при прохождении волны нагрузки с параметрами нагрузки предполагают поляризацию диэлектрика на фронте волны с изменением диэлектрической проницаемости и проводимости (или без изменения последней) I связанную с поляризацией неравновеспость состояния вещества за фронтом волны. За фронтом идет процесс распада поляризации по одному или нескольким механизмам с соответствующими временами релаксации [109, 157, 311, 374]. Для большинства исследованных материалов в диапазоне давления до ЫО кгс/см2 величина ударной поляризации в 10 —10 раз лченьше предельной величины поляризации, соответствующей развороту всех диполей полярного диэлектрика в одном направлении. В связи с этим следует ожидать, что при наложении сильного электрического поля поляризация диэлектрика значительно более высокая, чем при прохождении ударной волны. Вместе с тем вклад ударной поляризации в поляризованном электрическим полем диэлектрике резко уменьшается. Эти соображения позволяют принять, что процессы ударной поляризации в диэлектрике при сильном внешнем электрическом поле можно не учитывать при анализе работы диэлектрического датчика давления.  [c.173]


Прямые скачки уплотнения в газах. Выше было показано, что непрерывное двил<ение сжимаемой жидкости, в котором удовлетворяются условия неразрывности и адиабатичности и уравнение количества движения для невязкой жидкости, является изэнтропическим. Замечено, однако, что при движении реальных жидкостей в трубах могут происходить резкие изменения давления, плотности, температуры и скорости, конечные по величине. Такие разрывы параметров течения, называемые ударными волнами, не могут быть объяснены IB рамках теории изэнтропичеокого движения. Рассмотрим одномерный контрольный объем, включающий в себя стационарный разрыв (скачок уплотнения), нормальный к направлению движения потока (рис. 14-23). Характеристики течения до скачка уплотнения обозначим индексом 1, а течения за скачком уплот-  [c.363]

Отсоединенная ударная волна возникает также, если тело имеет тупой нос или кромку. Из фиг- 22 видно, что в случае присоединенной ударной волны скачкообразное изменение направления теоретически возможно представить двумя векторами, именно векторами АС или АО. Для острой кромки или конуса, по причинам теоретически пока не ясным, изменение обычно происходит от АВ к АО. т. е. происходит скачок, сопровождающийся меньшим изменением величины скорости. Максимум угла отклонения вектора скорости зависит от числа Маха и приближаегся к нулю, когда М->1 таким образом, когда скорость движущегося тела проходит через скорость звука, сначала всегда возникает отсоединенная ударная волна. Теоре-  [c.53]

Влияние взаимодействия ударной волны с тепловыми флуктуациями на изменение атомной структуры исследовалось также в [39]. В этой работе рассматривалась термализованная решетка с плотной упаковкой атомов. Использовался парный потенциал взаимодействия типа Леннард — Джонса. Авторы рассмотрели два случая, отличающиеся (почти в 2 раза) интенсивностью инициированной ударной волны. В первом случае (малая интенсивность) произошло одноосное поджатие материала, структурные изменения при этом не наблюдались. Во втором — взаимодействие ударной волны с термическими флуктуациями, а точнее, с сетками флуктуаций (поскольку использовались периодические граничные условия в направлении, нормальном распространению ударной волны), приводит к возникновению больших сдвиговых напряжений и, как следствие, к структурным изменениям, определяющим пластическое поведение решетки. Рассчитанная зависимость девиатора напряжений от величины одноосной деформации показала также, что  [c.224]

При пересечении скачка происходит резкое изменение направления линий гребней и величины волновых чисел в области, удаленной от стенки, волны расположены более плотно. Эксперименты Фейра с одномерными неустановившимися цугами волн показывают, что в области скачка нет ярко выраженного эффекта турбулентного рассеяния или собирания воды есть только переходная область, в которой линии гребней проделывают любопытный извив и выходят на другую ее сторону с изменением направления и плотности расположения. Возможно, однако, что полученное в данной работе решение неприменимо в области за скачком. В случае газовой динамики простой волновой подход к решению посредством каустики дает неправильный результат для ударной волны решение в этом случае должно находиться из условий на скачке.  [c.213]

Процессы коррозии дополняются явлениями кавитации, идущими параллельно. Кавитацией называется явление парообразования и выделения воздуха, обусловленное понижением давления в жидкости при нормальной температуре. В текущей жидкости в точках наибольшей скорости, где давление наименьшее, возникают кавитационные полости (пузырьки), которые затем, попадая в области потока с низкими скоростями и высокими давлениями, лопаются и разрушаются. Схема развития кавитации в потоке жидкости, обтекающей препятствие (по И. Пирсолу), показана на рис. 119. Жидкость, текущая слева направо, обтекая тело Л, получает ускорение. В самом узком месте потока достигается максимум скорости V и минимум давления. Если давление р в набегающем потоке достаточно велико, то минимальное значение давления на теле будет больше давления насыщенных паров. С уменьшением величины р начинается кавитация, которая распространяется вниз по потоку. При разрушении пузырька, происходящем в течение микросекунд, внутри него возникают высокие давления. Непрерывный процесс образования и разрушения пузырьков может вызывать ударные волны (до 400 МПа) в окружающей пузырьки жидкости. Ударные волны являются причиной разрушения (эрозии) соприкасающихся поверхностей деталей (втулок, рубашек, блока). Повышенная газонасыщен-ность воды способствует возникновению и усилению эрозии. По исследованиям, проведенным в ЦНИДИ, кавитационная эрозия вызывается также высокочастотными вибрациями втулки цилиндра вследствие ударов поршня по втулке при изменении направления сил его бокового давления.  [c.207]


Смотреть страницы где упоминается термин Направление изменения величин в ударной волне : [c.123]    [c.178]    [c.11]   
Смотреть главы в:

Теоретическая физика. Т.4. Гидродинамика  -> Направление изменения величин в ударной волне

Механика сплошных сред Изд.2  -> Направление изменения величин в ударной волне



ПОИСК



Волны ударные



© 2025 Mash-xxl.info Реклама на сайте