Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эмали Применение

Первоначально с помощью ЭВМ в электромеханике решались только отдельные трудоемкие расчетные задачи как исследовательского, так и проектного характера. Это прежде всего задачи анализа переходных и установившихся физических процессов, характеризующих преобразование энергии в ЭМУ. Применение ЭВМ позволило увеличить количество учитываемых факторов, использовать более точные (и, как правило, более сложные) расчетные зависимости и математические модели, повысить точность расчетов и, как следствие, степень адекватности результатов анализа. При этом многократно сократилось время решения задач в сравнении с неавтоматизированным выполнением расчетов. Так, например, поверочный электромагнитный расчет  [c.9]


Следующим важнейшим требованием является универсальность модели по отношению к целому классу объектов проектирования, принадлежащих к определенной предметной области и различаемых по принципу действия, конструктивным особенностям, параметрам и пр. Это дает возможность гибкого использования созданных алгоритмов, уменьшения трудоемкости разработки соответствующих конкретных программ, позволяет сравнить на единой основе различные частные варианты проекта. В практической постановке это предполагает использование обобщенных однотипных математических методов описания объекта (например, для элект(Х)механического преобразования энергии на базе обобщенного ЭМУ), применение разветвленной логической структуры алгоритмов анализа, четкой систематизации и рациональной организации совокупности входных данных для различных вариантов задания.  [c.99]

Гранулы следует высушивать перед загрузкой в мельницу иногда в них определяют содержание влаги, учитывая его при добавлении воды. Дозировка воды должна быть весьма точной. Производить дозировку можно с использованием водомеров или лучше всего по весу. Необходимо уточнять количество воды в зависимости от изменения состава эмали, применения новой партии глины и изменения тонины помола.-  [c.83]

Стеклоэмали, помимо улучшения внешнего вида, эффективно защищают метал-л от коррозии во многих средах. Можно подобрать такой состав эмали, состоящей в основном из щелочных боросиликатов, что она будет устойчива в сильных кислотах, слабых щелочах или в обеих средах. Высокие защитные свойства эмалей обусловлены их практической непроницаемостью для воды и воздуха даже при довольно длительном контакте и стойкостью при обычных и повышенных температурах. Известно о случаях их применения в катодно защищенных емкостях для горячей воды. Наличие пор в покрытиях допустимо при их использовании совместно с катодной защитой, в противном случае покрьггие должно быть сплошным, причем без единого дефекта. Это означает, что эмалированные емкости для пищевых продуктов и химических производств при эксплуатации не должны иметь трещин или других дефектов. Основными недостатками эмалевых покрытий являются чувствительность к механическим воздействиям и растрескивание при термических ударах. (Повреждения иногда поддаются зачеканиванию золотой или танталовой фольгой.)  [c.243]

Применение ЭМУ во внешних устройствах ЭВМ.  [c.307]

Наряду с применением ЭМУ в составе сложных систе.м для выполнения самостоятельных функций их используют в качестве элементов механизмов, которые преобразуют движение якоря ЭМУ в требуемое движение выходного звена механизма.  [c.308]

Непрерывное расширение областей применения и функций, выполняемых электромеханическими устройствами (ЭМУ) в системах генерирования электрической энергии, электроприводах, системах управления, различных приборах, приводит к усложнению задач проектирования этих устройств. Традиционное неавтоматизированное выполнение проектных работ оказывается все менее эффективным. На смену ему приходит автоматизированное проектирование с применением ЭВМ.  [c.4]


Первые опыты в зтом направлении были сделаны в начале 50-х годов, т.е. практически с первых шагов своего развития ЭВМ получили применение в проектировании ЭМУ. По мере совершенствования самих ЭВМ, накопления опыта их применения постепенно расширялся круг задач проектирования, связанных с автоматизацией. Современный этап применения вычислительной техники в проектировании характеризуется системным подходом, т.е. рассмотрением проектируемых объектов как систем взаимосвязанных элементов, подвергающихся всестороннему анализу с учетом реального взаимодействия этих элементов. Проектирование, в свою очередь, ведется с применением систем автоматизированного проектирования (САПР), которые определяются как комплексы средств автоматизации проектирования, связанных с необходимыми подразделениями проектной организации или коллективом специалистов (пользователем системы), выполняющим проектирование.  [c.4]

Во время широкой компьютеризации всех сфер человеческой деятельности подготовка инженеров-проектировщиков будет явно недостаточной, если ограничить ее лишь изучением и освоением пусть и достаточно разнообразных, но частных применений ЭВМ в решении проектных задач, хотя именно такой подход характерен для большинства из опубликованных к настоящему времени работ. Поэтому в данном пособии предпринята попытка дать систематизированное изложение всего круга вопросов создания, развития и применения САПР в конкретном приложении к ЭМУ, что, по мнению авторов, будет способствовать подготовке инженеров-электромехаников в соответствии с современными требованиями.  [c.5]

В гл. 1 анализируются процесс проектирования и общие особенности ЭМУ с позиций создания САПР, дается характеристика направлений и форм применения ЭВМ в проектировании, обсуждаются предпосылки и задачи построения САПР ЭМУ, определяется назначение и состав средств обеспечения САПР.  [c.6]

Гл. 5 имеет ключевое значение. Здесь рассматриваются особенности построения математических моделей преобразования энергии в ЭМУ, удовлетворяющих ряду требований с позиций их применения в САПР, а также основные математические методы оптимизации проектных решений и методы автоматизированного конструирования.  [c.7]

Поскольку математические методы дают только общий подход к решению проектных задач, необходимо конкретизировать формы их применения в виде алгоритмов автоматизированного выполнения основных этапов проектирования. Этому посвящена гл. 6, в которой рассмотрены алгоритмы выбора аналогов проектируемого объекта, разработки эскиза конструкции, параметрической оптимизации, детального анализа процессов в объекте, определения допусков на параметры и моделирования испытаний ЭМУ, автоматизированного формирования проектной документации.  [c.7]

Проектирование ЭМУ различного назначения, как и"любых сложных технических объектов, является трудоемким многоэтапным процессом. В этой связи важно рассмотреть, на чем же основываются возможности совершенствования этого процесса. Здесь прежде всего необходимо выявить основные моменты эволюции роли и места вычислительной техники в труде проектировщиков, рассмотреть процесс проектирования с позиций расширения сферы применения ЭВМ, дать оценку САПР как качественно новой формы объединения творческих способностей разработчиков с возможностями современных ЭВМ.  [c.9]

Однако и второе направление применения ЭВМ в проектировании ЭМУ не является всеобъемлющим. Трудности состоят в необходимости полной формализации решаемых задач. В то же время известно, что только незначительное число задач проектирования ЭМУ поддастся этой процедуре. Так, расчеты, в первую очередь доступные формализации, для объектов электромашиностроения составляют не более 15—25% всех проектных работ. Значительное место в проектировании ЭМУ занимают вопросы конструирования, графические работы, которые с большим трудом поддаются формализации и требуют для своего проведения специальных технических средств.  [c.10]

Следующей особенностью ЭМУ, в значительной мере определяющей круг задач их проектирования, является то, что они в большинстве случаев производятся в крупносерийных или массовых масштабах. Так, в нашей стране ежегодно производится несколько миллионов асинхронных двигателей общепромышленного применения, а годовой выпуск электрических машин для бытовой техники — десятки миллионов экземпляров. Производство и применение разнообразных ЭМУ требует весьма значительных затрат материалов и электроэнергии. К примеру, асинхронные двигатели мощностью до 100 кВт потребляют около 40% всей вырабатываемой в стране электроэнергии. Поэтому в проектировании ЭМУ следует принимать проектные решения, оптимальные по ряду таких важных показателей, как масса используемых активных материалов, расход электроэнергии, затраты на производство и эксплуатацию и пр.  [c.17]


Несмотря на определенные успехи, достигнутые в решении частных задач проектирования ЭМУ с помощью ЭВМ, это не повлекло за собой ожидаемого и столь необходимого коренного улучшения проектного дела применительно к рассматриваемому классу объектов. Действительно, если ЭВМ находят применение в решении только некоторой части проектных задач, то высокие результаты и сокращение времени их получения могут нивелироваться на других неавтоматизированных этапах. Например, для документирования результатов оптимизационных расчетов, полученных на ЭВМ в течение десятков минут, может потребоваться несколько человеко-дней труда техников, выполняющих неавтоматизированные чертежные работы. А выполнение тех же оптимизационных расчетов без учета реально существующего разброса значений параметров объекта приводит к необходимости длительной доработки проекта по результатам испытаний многих опытных и серийных образцов продукции, что увеличивает время и стоимость проектирования. В современных условиях положение усугубляется трудовые ресурсы весьма ограничены и экстенсивный путь рещения проблем проектирования принципиально невозможен. Кроме  [c.19]

Состав средств обеспечения объектных подсистем САПР зависит от класса проектируемых объектов. В качестве примеров таких подсистем можно назвать подсистемы конструирования объектов, их деталей и сборочных единиц, поиска оптимальных проектных решений, анализа энергетических или информационных процессов в объектах, определения допусков на параметры и вероятностного анализа рабочих показателей объектов с учетом технологических и эксплуатационных факторов, технологической подготовки производства. Любая из перечисленных подсистем не даст возможности проектировщику получить рациональные проектные решения, если не будут учитываться особенности математического и графического описания именно данного класса объектов, не будет обобщен опыт их проектирования, не будут предусмотрены перспективные технологические приемы. Вместе с тем весьма желательна всемерная универсальность объектных подсистем в отношении большого класса однотипных объектов. Например, для всего класса ЭМУ могут быть созданы на единой методической основе объектные подсистемы для анализа электромеханических и тепловых процессов, не говоря уже о конструировании деталей или механических расчетах. Именно универсальность объектных подсистем позволяет свести к минимуму дублирование дорогостоящих работ по их созданию и открывает путь к формированию все более широких по назначению отраслевых САПР. Объектные подсистемы могут находить применение как на определенном этапе проектирования, так и на нескольких его этапах, при этом решается ряд типовых задач с соответствующей адаптацией к требованиям каждого этапа. Примерами могут служить подсистема определения допусков на параметры и вероятностного анализа, применяемая на соответствующем этапе, и подсистема поиска оптимальных проектных рещений, которая может служить как для определения рационального типа и конструктивной схемы объекта, так и для параметрической оптимизации.  [c.22]

В нашей стране, в организациях электромашиностроения получили распространение вычислительные машины. Единой системы ЭВМ (ЕС ЭВМ) и Системы малых ЭВМ (СМ ЭВМ). Эти ЭВМ находят применение в действующих и разрабатываемых САПР ЭМУ различного назначения. Приведем краткую характеристику названных систем ЭВМ.  [c.25]

Таким образом, наличие широкого спектра моделей ЭВМ различной производительности, значительного числа разнообразных периферийных устройств, а. также средств их объединения делает рассмотренные системы ЭВМ, наряду с быстро развивающимися персональными ЭВМ, возможной базой технического обеспечения САПР ЭМУ как отвечающие основным требованиям к ЭВМ с позиций их применения в САПР. Однако ЕС ЭВМ и СМ ЭВМ являются средствами вычислительной техники общего назначения и находят применение в различных отраслях народного хозяйства. Задачи автоматизированного проектирования ЭМУ, связанные с обработкой графической информации, требуют наличия в составе комплекса технических средств специализированных периферийных графических устройств.  [c.31]

Для эффективного решения всей совокупности задач автоматизированного проектирования ЭМУ находят применение режимы пакетной обработки и разделения времени.  [c.40]

Специализированный монитор осуществляет автоматическую сборку нужной последовательности модулей и их выполнение. При этом реализуется один из заранее определенных путей преобразования информации, а также автоматизируется обмен данными между модулями. Каждая необходимая последовательность модулей, соответствующая заданию на выполнение определенной проектной процедуры, требует написания своей управляющей программы или усложнения логической структуры единого специализированного монитора. Появление новых заданий, а также изменение состава модулей требует внесения изменений и в состав монитора. Вместе с тем ряд задач проектирования ЭМУ характеризуется вполне обозримым количеством и жестким порядком объединения проектных действий, что делает целесообразным применение рассматриваемого способа управления ПО САПР. Нельзя не отметить и относительную простоту разработки специализированных мониторов, выполняемой, как правило, средствами того же языка программирования, с помощью которого разрабатываются и отдельным модули, а также достаточно высокую степень автоматизации проектных работ.  [c.65]

Организационно-технические проблемы формирования и применения информационного обеспечения САПР ЭМУ  [c.91]

Многообразие различных областей применения ЭМУ приводит к соответствующему многообразию ТЗ на их проектирование, а следо-  [c.93]

Однако это особенно актуально для предельно нагруженных конструкций (например, турбины), где рабочие температуры составляют 500—2000 °С, а механические нагрузки приближаются к пределу прочности материалов. Для большинства же практических применений ЭМУ температуры и механические нагрузки далеки от предельных, влияние напряжений и деформаций на распределение температур мало, и им можно пренебречь. Это позволяет независимо найти температуры в конструкции, а уже вторым шагом определить напряжения и деформации, вызванные этим распределением.  [c.120]


При применении для расчетов ЭВМ построенная сетка используется как топологическое отображение объекта и служит для составления на основе известных законов Кирхгофа для электрической цепи описывающей его системы уравнений — математической модели объекта. Достигаемая при этом однотипность алгоритмов расчета различных процессов значительно упрощает разработку программного обеспечения САПР ЭМУ и облегчает его практическое использование. Наряду с адекватностью, модели отличаются сравнительной простотой и удобством формализации расчета, что позволяет создать надежный и универсальный инструмент исследования.  [c.124]

Универсальность рассмотренного алгоритма, возможность охвата практически всех задач по расчету полей в ЭМУ, получения подробной картины поля и снижения методических ошибок до любых желаемых пределов делают его удобным и надежным средством анализа. Однако, несмотря на существенные упрощения, которые вносит применение теории графов, метод остается все же достаточно сложным. Для инженерных расчетов целесообразны более простые алгоритмы рещения.  [c.125]

Для снижения методической погрешности при использовании моделей средних значений важно осуществить рациональное условное деление конструкции ЭМУ на отдельные элементы, либо увеличить число таких разбиений. Но в последнем случае метод приближается к методу сеток и становится громоздким, в то время как практически важно получение высокой точности расчетов при ограниченной дискретизации. При умелом применении схем замещения методическая ошибка в сравнении с методом сеток составляет обычно не более 5 % даже при ограниченной степени дискретизации. По крайней мере, это заметно меньше, чем погрешности от неточности задания входной информации. При выборе числа разбиений важен и характер решаемой задачи. При грубой оценке показателей поля возможна упрощенная схема замещения с пятью-шестью укрупненными телами (ротора в целом, объединенных обмотки и пакета статора и т.д.). Если необходим анализ изменения осевой нагрузки на подшипники, то особо подробно должны быть представлены тела, входящие в замкнутую размерную цепь их установки, а остальные элементы могут рассматриваться укрупненно. При анализе относительных температурных деформаций требуется наиболее детальная дискретизация ЭМУ, особенно для элементов, имеющих различные коэффициенты линейного расширения. Здесь ТС, например, должна содержать не менее 15—20 тел.  [c.127]

Но главное заключается в том, что, устанавливая строгие связи между характеристиками ЭМУ как системы в целом и составляющими ее компонентами при заданном спектре воздействий, рассмотренная модель представляет собой инструмент системного решения задач как по своей структуре и содержанию (учет совокупности взаимосвязанных влияющих процессов), так и по возможностям применения. Последнее позволяет решать задачи проектирования на всех трех взаимосвязанных уровнях формирования свойств объекта принцип действия и параметры (тип ЭМУ, его конструкция, параметры, режимы регулирования), условия производства, условия эксплуатации. Создание методов системного анализа в электромеханике дает возможность также уже на стадии разработки ЭМУ широко прогнозировать его показатели и управлять процессом их формирования.  [c.142]

Еще более проблематичным представляется применение аналитических методов при отыскании условных экстремумов функции цели, что характерно для реальных задач оптимизации ЭМУ при наличии многочисленных ограничений. Ограничения, накладываемые на область определения функции цели, приводят к возможному несовпадению условных и локальных экстремумов, а поэтому уравнения (5.38) в данном случае вообще нельзя рассматривать в качестве необходимых условий для определения точек экстремума.  [c.149]

Учитывая действие солнечных лучей, влаги, низких температур, а также абразивное воздействие воздушного потока, в качестве покровного слоя внешней поверхности применяют перхлорвиниловые эмали. Применение алкидных или других медленно высыхающих эмалей нерационально, так как окончательную окраску обшивки производят на уже собранных агрегатах крыла, фюзеляжа и т. п., где применение горячей сушки невозможно. Принципальная схема последовательного нанесения окрасочных слоев представлена на фиг. 177.  [c.402]

Для регулирования скорости в автоматах малых и средних размеров в последнее время получил применение электромашинный усилитель (ЭМУ), который представляет собой специальный генератор постоянного тока с двухкаскадным возбуждением (фиг. 399). ЭМУ применен в приводах автоматов типа 1А136, в автомате фасонно-продольного точения типа 1117-25 и др.  [c.410]

Когда цинкованию подвергаются детали, имеющие сложную конфигурацию и большой габарит, а также, когда изоляция мастиками нерациональна, для предохранения отдельных участков от осаждения на них гальванических покрытий применяют перхлорвинилрвые эмали. Применение последних особенно эффек-  [c.41]

Учитывая систематически возрастающую потребность в бытовых швейных машинах. Подольским механическим заводом имени Л 1. И. Калинина в содружестве с институтом Гипромаш разработан и осуществляется проект реконструкции действующего лакоорнаментного цеха на базе новой техники и применения новых материалов (мочевиноформальдегидные и меламиноалкидные эмали). Этим же заводом разработаны новые молотковые эмали, применение которых увеличит производственную, мощность действующего лакоорнаментного цеха почти на 30%.  [c.4]

Несмотря на явные преимущества ЭВМ перед человеком в решении задач анализа, очевидна ограниченность такого подхода к решению проектных задач, когда проектировщику самому приходится просматривать множество вариантов проекта, отличающихся перечнем и значениями входных данных, и выбирать вариант, лучнзий в некотором отношении. Если выполнение расчетов требует небольших затрат времени, то на подготовку данных и анализ результатов времени тратится во много раз больше. Поэтому проектировщики и программисты направили свои усилия на такую автоматизацию проектных оптимизационных расчетов ЭМУ. когда ЭВМ не только проводит необходимые расчетные работы, но и по определенному алгоритму готовит для них данные, анализирует результаты раечетов и выбирает лучший вариант проекта. Для этих целей применяются методы и алгоритмы математического программирования, реализующие целенаправленные эксперименты с математической моделью проектируемого объекта. В результате появляется возможность повысить качество принимаемых проектных решений с одновременным повышением эффективности применения ЭВМ,  [c.10]

Необходимо отметить, что третье направление применения ЭВМ в проектировании является универсальным и охватывает возможности первых двух, оказывая на них существенное влияние. Например, в процессе решения расчетных задач анализа и оптимизации целесообразно готовить входные данные, оценивать полученные результаты, принимать решения о путях продолжения расчетов именно в режиме диалога, ибо это позволяет во много раз сократить время решения, а в ряде случаев упростить алгоритмы оптимизационных расчетов за счет введения неформализуемых критериев предпочтения. Облегчению подготовки данных и интерпретации результатов проектирования в значительной мере способствует графическая форма их представления на устройствах ЭВМ. А органическое объединение расчетных и графических работ, характерное для эскизного конструирования ЭМУ, при автоматизированном их выполнении позволяет повысить производительность труда конструкторов в 7—10 раз. Важность такого и подобных ему эффектов от системного применения ЭВМ в проектировании становится особенно ощутимой, если принять во внимание непомерное затягивание сроков проектирования и освоения производства сложных объектов, приводящее порой к моральному устареванию изделий еще до начала их серийного производства.  [c.11]


Таким образом, повышение качества и эффективности проектирования ЭМУ связано с распшрением круга задач, решаемых с помощью ЭВМ на взаимосвязанных этапах проектирования, с переходом к сквозному автоматизированному проектированию. Не менее важным является определение наиболее целесообразных форм организации вычислительных работ при решении различных задач. Логичным результатом расширяющегося применения математических методов и ЭВМ в проектировании, является создание комплексных систем автоматизированного проектирования.  [c.20]

Отмеченное представляет только одну сторону вопроса системного решения задач. Другая же связана с расширением применения математических моделей ЭМУ на внешнюю область — на стадии производства и эксплуатации объекта с учетом случайного характера существующих воздействий. Это необходимо для оценки влияния различных технологических и эксплуатащюнных факторов на качество функционирования проектируемого изделия и позволяет прогнозировать вероятностный уровень его рабочих показателей с необходимыми в этих условиях точностью и достоверностью. Соответствующие модели и алгоритмы анализа должны при этом адекватно воспроизводить характер формирования случайных значений рабочих свойств изделий в различных условиях производства при учете разбросов параметров в пределах назначенных допусков и обладать способностью имитировать влияние на объект различных эксплуатационных факторов параметров источников питания, температуры, вибраций и пр. Такие модели могут служить одновременно основой для разработки алгоритмов моделирования испытаний ЭМУ при проектировании, что позволяет сократить объем и сроки реальных исследований макетных и опытных образцов проектируемых изделий.  [c.98]

Необходимость изучения процессов различной физической природы и последующего совместного применения их результатов заставляет искать и единую методическую основу для анализа и построения частных моделей ЭМУ. Такая возможность основывается на формальной аналогии математического описания явлений, отличных по своей физической сущности. Математический изоморфизм различных физических систем позволяет, кроме того, одни явления изучать с помощью других. При использовании аналогии с процессами в электрических системах (электроаналогии) удается, как показано далее, положить в основу всех интересуемых исследов ший хорошо разработанные, удобные и наглядные методы анализа электротехнических задач — аппарат теории электрических цепей. Это и позволяет создать однотипный и универсальный инструмент исследования электромагнитных, тепловых, магнитных и деформационных процессов в ЭМУ.  [c.98]

Вместе с тем понято, что разные задачи и даже этапы проектирования (например, моделирование испытаний в сравнении с анализом выполнимости ТЗ) требуют разного уровня адекватности модели объекта, а следовательно, и ее изменения. Следствием указанного является требование адаптируемости модели - ее способности принимать ту конфигурацию, которая необходима для конкретного применения. Соответственно должна быть предусмотрена и возможность использования моделей разного уровня. Например, при описании электрюмеханическо-го преобразования энергии предусматривается переход от уравнений обобщенного ЭМУ к схеме замещения, соответствующей конкретному его типу, а в дальнейшем и к модели в терминах первичных параметров (геометрические размеры, обмоточные данные, свойства материалов и пр.) (рис. 1.4). Аналогично при применении конечно-разностной  [c.99]

Точные аналитические решения задач теплопередачи, магнитного поля или деформаций трудно выполнимы даже для простейших идеализированных случаев. Из-за слож юсти и неоднородности ЭМУ как объекта исследования тем более оправдано применение приближенных методов анализа. Для большинства практических постановок задачи существуют и объективные предпосылки для упрощения методик.  [c.120]

С другой стороны, применение метода конечных разностей наиболее оправдано там, где велика неравномерность распределения температуры по объему тел, а необходимость ее определения диктуется характером задачи (например, при анализе температурных деформаций в ЭМУ гироскопии [7 ). В большинстве практических задач для ЭМУ чаше вполне достаточно определения с требуемой точностью средних значений показателей тешювого и магнитных полей или деформаций отдельных элементов.  [c.125]

ТС является простым, универсальным и удобным в реализации средством, широко известным в практике и хорошо зарекомендовавшим себя при тепловых исследованиях, в частности в злектромеханике. На тех же принципах строится и МС, которая также получила достаточно заметное применение при магнитных расчетах в ЭМУ. На аналогичной основе с использованием теории сопротивления материалов при более грубых, чем в теории упругости, допущениях могут быть построены и ДС [34]. Как и в ТС, в ДС центр массы выделенного тела также условно сосредоточивается в его геометрическом центре, но его взаимосвязи представляются по-иному. Так как при деформационных расчетах выделенного тела относительно других тел системы имеется смещение его центра масс в осевом и радиальном направлениях, электрический аналог тела в ДС (в отличие от ТС) в общем случае дол-  [c.126]

Математическая модель в приращениях удобна щш случая малых изменений параметров Днапример, на уровне несимметрии, при вероятностном моделирювании объекта и пр.). Рассмотрим для конкретности построение такой модели для стационарного теплового режима ЭМУ. В этом случае диагональные элементы матрицы тепловых проводимостей Ст содержат лишь полные собственные проводимости и (5.24) представляется системой алгебраических уравнений, в общем случае — нелинейных. При линеаризации, что часто приемлемо, для решения системы сравнительно невысокого порядка может быть применен наряду с другими известными аналитическими методами метод обратных матриц. В этом случае решение (5.24) относительно искомых температур тел может быть представлено в виде  [c.127]

Поэтому уже на стадии разработки ЭМУ настоятельно необходимо получение статистической оценки показателей его функциональной пригодности. Применение методов вероятностного анализа позволяет распространить возможности разработанных моделей физических процессов в ЭМУ на уровнеь технологических и эксплуатационных задач, обеспечивая новое качество исследования, отвечающее требованиям системного подхода к решению задач. Это требует построения стохастической математической модели ЭМУ, которая адекватно воспроизводила бы проявление случайных отклонений перечисленных факторов.  [c.131]

Представляя собой совокупность рассмотренных средств методического обеспечения, реализующих системную математическую модель ЭМУ, совместно с необходимыми обслуживающими средствами (авто-матизащгей подготовки данных, обработкой результатов и пр.), необходимо рассматривать этот комплекс как гибкий инструмент исследования и проектирования. В зависимости от характера решаемых задач необходимо предусмотреть использование моделей различных версий и уровней. В практической постановке задачи системного анализа не обязательно нуждаются в привлечении полного комплексного описания процессов в объекте и часто могут быть обеспечены применением лишь части из рассмотренных моделей. Наконец, многие можно решать и на уровне отдельных частных моделей.  [c.142]


Смотреть страницы где упоминается термин Эмали Применение : [c.151]    [c.34]    [c.7]    [c.12]    [c.68]   
Машиностроение Энциклопедический справочник Раздел 2 Том 4 (1947) -- [ c.418 ]



ПОИСК



Способы получения эмалей и их применение

Эмали

Эмали, рекомендации по применению



© 2025 Mash-xxl.info Реклама на сайте