Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критическая температура роста состояния

Критическая температура роста зерна 6- -290 — Определение фазового состояния 6 — 291  [c.275]

В зависимости от химического состава сталей критическая температура роста зерна при нагреве изменяется. Различным сталям соответствует определенная критическая температура роста зерна. Нагрев выше этой критической температуры приводит к перегреву сталей, хрупкому состоянию их при деформации вследствие ослаблений межкристаллитных связей.  [c.69]


Проведенными работами было показано, что рост зерна при иагреве хромистой стали зависит от величины зерна в исходном СОСТОЯНИЙ. Так, у мелкозернистой хромистой стали (зерно № 6) при нагреве до 1150—1200° интенсивного роста зерна не наблюдается, а у крупнозернистой — критическая температура роста зерна наступает уже при 1100° [3].  [c.70]

Степень неоднородности свойств обрабатываемого металла в процессе деформации. Чем однороднее металл по всем точках деформируемого тела, тем меньше дополнительных напряжений будет возникать в процессе обработки. Отсюда следует, что обработку надо производить при максимально рав-но.мерной температуре металла, если возможно, при однородном его состоянии, в условиях полной рекристаллизации (если обработка производится с нагревом), при минимальной величине зерна (ниже критической температуры роста зерна) и т. д.  [c.168]

Влияние усталости на критическую температуру хрупкости стали ВСт.Зсп в зоне термомеханического старения показано на рис. 29, б. В этом случае критическая температура хрупкости Г р зоны старения после сварки в исходном состоянии выше основного материала ВСт.Зсп более чем на 10°С. В процессе работы на усталость Г р основного металла и зоны старения повышаются до 20°С. При использовании результатов исследований [77, 103] следует учитывать, что усталость накапливалась при высокой частоте — 20 Гц, что редко встречается в технике. Повреждаемость металла при малых частотах нагружения может быть выше, так как накопление усталостных повреждений при реальных частотах (до 1000 Гц) развивается более интенсивно. Большинство исследователей считают, что повышение частоты нагружения до 1000 Гц не влияет на предел выносливости, но дальнейшее повышение вызывает рост сопротивления усталости так, при частоте 20.Гц предел выносливости повышается на 40%.  [c.80]

При выборе конструкционных материалов для оболочек твэлов, корпуса, технологических каналов атомных реакторов основным критерием в большинстве случаев являются их механические свойства. И это понятно, поскольку при облучении материала нейтронами до интегральной дозы 2-10 см каждый атом решетки испытывает более 100 смещений. При этом существенно изменяются структура и физико-механические свойства материалов. Облучение вызывает повышение пределов текучести и прочности, снижение ресурса пластичности, увеличение критической температуры перехода из хрупкого в вязкое состояние, размерные изменения за счет радиационного роста, ползучести и распухания. Вследствие ядерных реакций в материалах образуется большое количество газообразных примесей (гелий, водород), наличие которых в объеме приводит к возникновению таких явлений, как водородная хрупкость, гелиевое охрупчивание, газовое распухание. Существенное влияние на механические свойства материалов оказывают негазовые продукты ядерных превращений, которые могут выделяться в количествах, больших предела растворимости, и тем самым изменять фазовое состояние материалов [1, 2].  [c.54]


По мере роста давления различие между удельными объемами кипящей жидкости v и сухого насыщенного пара v" уменьшается, и, наконец, при некотором давлении они становятся равными. Такое состояние вещества называется критическим, а соответствующая точка на диаграмме (точка К на рис. 1-1) носит название критической. Параметры вещества в этом состоянии называются критическими критическое давление рк, критическая температура Гк, критический удельный объем v . В критической точке теплота -парообразования г равняется нулю, все свойства обеих фаз становятся тождественными, и эта точка является верхней границей двухфазной области, где возможно равновесное сосуществование жидкости и пара.  [c.8]

Динамика роста достигнутой критической температуры перехода в сверхпроводящее состояние за период с 1911 по 2002 гг. показана на рис. 8.16.  [c.586]

Железомарганцевые сплавы в интервале концентраций от 13 до 60% Мп обладают антиферромагнетизмом, т. е. магнитоупорядоченным состоянием с суммарным магнитным моментом, равным нулю. Мессбауэровская методика в сочетании с рентгеновской позволила установить связь инварного эффекта с локальной намагниченностью подре-шеток [2]. Несоответствие между изменением физических свойств и характером изменения критической температуры Нееля (уменьшение магнитной восприимчивости несмотря на непрерывный рост Т ) может быть обусловлено изме-  [c.88]

Чем медленнее охлаждение, тем ближе кривая PQ R S будет приближаться к равновесной кривой. Если сплав, с которого получена кривая PQ R S, снова подвергнуть нагреванию, то кривая электросопротивления при нагревании будет приближаться к пунктирной кривой S R"Q точка, отвечающая критической температуре, может даже оказаться несколько выше. Хотя после охлаждения (кривая PQ S ) общая степень порядка меньше, чем равновесная при температурах в области точки S, при нагревании наклон кривой никогда не бывает меньше наклона линии S U. По-видимому, сплав не претерпевает изменений в направлении к равновесному состоянию. Причины этого явления обсуждали Сайкс и Эванс [38] в терминах теории роста отдельных упорядоченных доменов.  [c.127]

Критическая температура углекислоты +31° С, поэтому при температуре выше +31° С углекислота переходит в газообразное состояние, что приводит к быстрому росту давления в баллоне. Так, например, при температуре 50—55° С давление в баллоне достигает 160 кгс/см . Поэтому баллоны имеют предохранительные устройства, обеспечивающие саморазряд баллона, если давление достигнет величины порядка 180 кгс/см .  [c.118]

Зародышами фазы могут быть только такие образования, для которых г б [291]. Поэтому с приближением к критической температуре минимально возможный размер зародыша растет соответственно росту б. В то же время Гк при заданной температуре уменьшается по мере вторжения в область метастабильных состояний. Напомним, что достижимым перегревам жидкостей при давлениях от  [c.290]

При исследовании цилиндрических образцов (склеенных из пластинок, верхняя и нижняя грани которых вырезаны по концентрическим цилиндрическим поверхностям) оказалось, что первая критическая точка появляется у них при более низкой температуре (60° С вместо 73° С). Примерно на 10° С сдвигается в зону более низких температур и вторая критическая точка. Рост напряжений при высоких температурах в цилиндрических образцах идет медленнее, чем в прямоугольных, но после охлаждения до комнатной температуры напряженное состояние тех и других образцов будет примерно одинаковым, так как напряжения в цилиндрических образцах при охлаждении изменяются интенсивнее. Так, третья критическая точка в них соответствует более высокой температуре (80° С вместо 70° С). Характер распределения напряжений при повторении циклов нагрев—охлаждение сохраняется для всех образцов.  [c.82]

Вблизи критической точки индивидуальных веществ или вблизи критической температуры расслоения или смешения бинарных растворов наблюдается громадное увеличение интенсивности рассеянного света преимущественно в направлении распространения возбуждающего света [78]. Явление это носит название критической опалесценции. Смолуховский объяснил это явление сильным ростом локальных флуктуаций плотности при приближении к критическому состоянию.  [c.54]


При температурах ниже критической изотермы имеют между пограничными кривыми горизонтальные участки, размер которых уменьшается с ростом температуры и становится бесконечно малым при достижении критической температуры. Точки на этих горизонтальных участках соответствуют состояниям смеси пара и воды.  [c.134]

Температура Т , при которой равновероятно как твердое, так и жидкое состояние, — равновесная или теоретическая температура кристаллизации. Затвердевание металла при этой температуре еще не происходит. Для кристаллизации необходимо образование зародышей и их рост в результате присоединения частиц контактирующей с ними жидкости. Это достигается при температуре ниже критической, т. е. при переохлаждении.  [c.435]

Кинетика диффузионного превращения. Диффузионное превращение происходит по механизму образование зародыша и рост новой фазы . Этот тип превращения подчиняется тем же общим закономерностям, что и процессы кристаллизации жидкости (см. гл. 12). Существуют некоторые особенности, связанные с твердым состоянием исходной и образующейся фаз и относительно низкой температурой превращений. Образование зародышей критических размеров сопровождается увеличением свободной энергии системы, равным /з поверхностной энергии зародышей (остальные две трети компенсируются уменьшением объемной свободной энергии). Возникновение зародышей обеспечивается в результате флуктуационного повышения энергии в отдельных группах атомов. При превращении в сплавах образуются фазы, отличающиеся по составу от исходной, поэтому для образования зародыша необходимо также наличие флуктуации концентрации. Последнее затрудняет образование зародышей новой фазы, особенно если ее состав сильно отличается от исходной. Другой фактор, затрудняющий образование зародыша новой фазы, связан с упругой деформацией фаз, которая обусловлена различием удельных объемов исходной и образующейся фаз. Энергия упругой деформации увеличивает свободную энергию и, подобно поверхностной энергии, вносит положительный вклад в баланс энергии. Критический размер зародышей и работа их образования уменьшаются с увеличением степени переохлаждения (или перегрева) по отношению к равновесной температуре Гр, а также при уменьшении поверхностной энергии зародыша.  [c.493]

Чистый кобальт имеет малую коррозионную стойкость в воде критических параметров. Однако ряд его сплавов достаточно устойчив в деаэрированной воде при температурах до 350° С, например, сплав с концентрацией 35—55% кобальта, 11—33% хрома, 5—16% вольфрама и с небольшим количеством кремния, марганца, никеля и железа. Контакт с другими металлами на скорость коррозии сплавов кобальта влияет слабо. Состояние поверхности практически на нее не влияет. Сплавы с низким содержанием кобальта устойчивы в воде лишь до температуры 120° С [111,244]. При температуре 260° С стеллиты достаточно устойчивы в деаэрированной воде. В потоке воды скорость коррозии несколько возрастает и поверхность стеллитов покрывается пленкой серо-коричневого цвета. С ростом концентрации кислорода до 0,2—0,6 мг/л скорость коррозии стеллита возрастает в 4—10 раз.  [c.227]

С ростом температуры, вообще говоря, увеличивается и теплоемкость с (имеется в виду ее значение с внутренней стороны нижней пограничной кривой), причем в области состояний, заметно отстоящих от критического, у многих веществ изменяется весьма вяло.  [c.28]

Центральный вопрос кинетики конденсации — это вопрос о скорости образования зародышей критического размера и их дальнейшем росте. Увеличение размеров капелек, достигших и перешагнувших критический барьер, ведет к разрушению метастабильного состояния системы, а следовательно, к изменению параметров пара и отклонению распределения зародышей по размерам от равновесных значений. В то же время закономерности, описывающие результаты флуктуации плотности, получены исходя из того условия, что температура, давление и число молекул паровой фазы сохраняются стабильными. Для того, чтобы полученные соотношения могли быть использованы в условиях нестационарного распределения, требуется ввести соглашения, сводящие действительный процесс к искусственной квазистационарной схеме. Принимается, что капельки с числом молекул, несколько превышающим критическое, удаляются по мере их образования из системы и заменяются эквивалентным количеством отдельных молекул в такой системе состояние пара сохраняется стабильным.  [c.130]

Для определения оптимальных температур нагрева при получений аустенита необходимо сопоставить данные о росте зерна с диаграммой состояния Fe — F g (рис. 8.3). Рост зерна аустенита происходит особенно интенсивно у точек и Однако значительное повышение температуры приводит к существенному росту зерна и ухудшению свойств стали, поэтому допускается минимальный перегрев (выше критических температур), не более чем на 20—30° С. Оптимальные температуры нагрева для доэвтектоидной стали  [c.92]

Значения Гкр1 и Гкрг заметно повышаются с увеличением размеров сечений и при росте площади на 3 порядка (от небольших образцов материала до крупногабаритных деталей) их прирост составляет 100—120°, т. е. область критического состояния достигает для малоуглеродистых сталей положительных значений температуры. При этом Рис. 1.11. Зависимость смещений более существенно выра- критической температуры от тео-жено влияние роста раз- ретического коэффициента кон- центрации напряжении  [c.19]

Во всех случаях слой образуется в два этапа зарождение и рост зародышей. Из N случайных частиц Na остаются закрепленными на подложке, адгезия остальных частиц не происходит. Коэффициент сцепления оценивается величиной а . Можно оценить критическую температуру, при которой происходит сцепление (Тс). Если Т > Т , то я=г 0. Чем типы кристаллических решеток пленки и подложки ближе, тем больше величина Т . Необходимо создавать такие условия нанесения пленок (путем подбора температуры процесса для заданного типа частиц и материала подложки, давления), чтобы образующийся тонкий монокристаллический эпитаксиальный слой являлся продолжением кристаллической решетки подложки (изоэпитаксия) В том случае, если кристаллические решетки слоя и подложки различны, возникает гетероэпитаксия. С увеличением температуры подложки переход атомов в состояние хемосорбции облегчается, отчего происходит большее сцепление слоя с подложкой.  [c.287]


Изобразим на PF-плоскости систему изотерм Ван-дер-Ваальса, исправленных в соответствии с правилом Максвелла (рис. 22) (область горбов и впадин заменена изобарой). Кривые, соединяющие начальные и конечные точки изобар, сходятся в критической точке и делят РК-плоскость на три области. Область, ограниченная кривой АК и верхней частью критической изотермы, представляет собой область жидкого состояния. Область, лежащая внутри куполообразной кривой АКБ (она называется кривой сосуществования), описывает двухфазные состояния — жидкость и насыщенный пар. В области, лежащей выще критической изотермы и правее кривой ВК, двухфазное состояние невозможно, и с ростом температуры и объема изотермы приближаются по форме к изотермам идеального газа PV = = onst. Следовательно, мы можем придать следующий физический смысл параметрам Ркз Ук, Рк- Критическое давление есть максимальное давление насыщенного пара, критический объем представляет собой максимальный объем 1 моля жидкости и критическая температура есть максимальная температура, при которой вещество может существовать в жидком состоянии. По мере приближения к критической точке разность молярных объемов пара и жидкости К — Pi уменьшается, и в критическом состоянии она обращается в нуль. Это значит, что в критической точке вообще исчезает различие в физических свойствах жидкости и пара.  [c.56]

Аустенитизация. Для того чтобы в стали происходили превращения, описанные Выше, необходимо начинать процесс термической обработки из аустенитного состояния. Аустеиит в стали возникает не толькр в процессе первичной кристаллизации и затвердевания при охлаждении, но и во время нового нагрева полностью охлажденной Стали. В процессе нагрева аустеиит образуется из продуктов распада (феррита, перлита, карбидов и т. д.), возникших ранее. При достижении температуры A i начинается превращение перлита (эвтек-тоида) в аустенит, которое представляет собой процесс, идущий одновременно с изменением кристаллической решетки и диффузией, причем из феррита, содержащего 0,025% С, и цементита, содержащего 6,67% С, образуется аустенит, содержащий приблизительно 0,8% С. Это йревращение начинается с образования центров зарождения новой фазы по границам зерен феррита и цементита и продолжается с роСтом устойчивых зародышей. Здесь действительно утверждение, что чем больше перегрев (по отношению к критической температуре превращения), тем большее количество зародышей меньшего размера будет способно к росту и тем быстрее начнется и протечет превращение или же уменьшится скрытый (инкубационный) период.  [c.136]

Известны случаи малого вл11яния запаса упругой энергии на величину максимальной нагрузки (прочность) и при испытании тонкостенных оболочек и образцов другой формы до разрушения однако во всех случаях с ростом запаса упругой энергии скорость процесса пластической деформации существенно увеличивается. ГТостепенные нарушения прочности (в отличие от потери устойчивости), в большей мере характеризуют материал, степень неравномерности сопротивления нагружению Ю объему образца и в меньшей — зависят от свойств испытательной машины и других условий нагружения, от размеров тела и т. п. факторов. Отметим, что многие практически применяемые критические характеристики (критическая температура хрупкости, температура появления кристаллического излома, переход от установившейся к заключительной стадии ползучести и др.) отображают начало перехода в закритическое состояние по деформации или по разрушению и, таким образом, должны быть отнесены к группе характеристик потери устойчивости.  [c.78]

Уже первые исследователи критических явлений обратили внимание на своеобразную опалесценцию, которая возникает при прохождении света через вещество, когда его состояние близко к критическому. Опалесценция вызвана необычайно высоким уровнем крупномасштабных флуктуаций плотности. Вещество как бы приобретает мелкозернистую структуру. Ниже критической температуры развитие микрогетерогенности приводит к распаду системы на две фазы, но при Г ]> Гр макроскопическая однородность системы не нарушается. Тепловые флуктуации дают толчок процессу гомогенной нуклеации. С другой стороны, сам этот процесс ограничивает величину наблюдаемых флуктуаций в метастабильной фазе. С ростом пересыщения снижается работа образования критического зародыша и возрастает средний уровень флуктуаций. Оба указанных фактора способствуют зародышеоб-  [c.18]

Таким образом, критическая изотерма определяет две характерные области изменения состояния. В области, расположенной ниже критической температуры (Гк), с ростом температуры зигзагообразная часть изотермы постепенно выравнивается, отрезки АВ, А В и А"В" уменьшаются, а значения трех действительных корней постепенно сближаются. При достижении критической изотермы HKL три точки А, С и В сливаются в одну критическую точку К. В критической точке все три корня уравнения (1.26) совпадают, т. е. существует лишь одно значение удельного объема Ук, соответствующего температуре Гк н давлению рк. В области выше критической изотермы с ростом температуры изгиб изотерм постепенно исчезает и при достаточно высокой температуре изотермы реального газа приближаются к изотермам идеального газа, подчиняющегося уравнению pv=RT. Линия, соединяющая точки А. А, А", К (фиг. 1. 12), называется нижней пограничной кривой, а линия, соединяющая точки В, В, В", К,— верхней пограничной кривой. Нижняя и верхняя пограничные кривые, а также кривая r= onst, проходящая через точку К, разбивают плоскость v—p на три характерных области  [c.31]

Значительное влияние на механические свойства металла шва оказывает скорость охлаждения последнего (см. рпсунок), что объясняется изменением количества и строения перлитной фазы. Увеличение скорости охлаждения приводит к возрастанию прочностных и к снижению пластических свойств металла шва. Ударная вязкость металла шва уменьшается с ростом скорости охлаждения. Однако критическая температура перехода металла однослойного шва в хрупкое состояние практически не зависит от скорости охлаждения.  [c.30]

Углерод оказывает особенно сильное влияние на коррозионную стойкость сталей и сплавов. Будучи активным аустенизато-ром и карбидообразователем, обладая высокими горофильными свойствами, углерод в некоторых условиях определяет структурный и фазовый состав стали, напряженное состояние на границах зерен, уровень потенциалов в системе металл—электролит. С ростом содержания углерода коррозионные свойства стали, как правило, ухудшаются (рис. 16, 17). Особенно сильно свойства стали изменяются в результате воздействия нагрева при критических температурах, приводящих к структурным и фазовым превращениям в стали.  [c.32]

Известно , что, сжимая газ при очень низких температурах (например Го), его можно непосредственно перевести в твердую фазу, минуя жидкую. Сжимая изотермически углекислый газ при температуре Го, можно получить его в твердом виде (сухой лед), минуя жидкую фазу. Однако при более высоких температурах (Гх и Г2) путем сжатия газ уже нельзя перевести в твердое состояние, минуя жидкую фазу. Сжатие жидкости сопровождается резким возрастанием ее давления (линии идут почти вертикально). Самую высокую температуру Г3, при которой газ еще удается превратить в жидкость (пусть и на мгновение) в результате повышения давления, называют критической температурой. Критической температуре Гкр (точка) соответствует критическое давление Ркр> при котором газ еще может перейти в жидкость. При температурах выше критической (Гг > Г3 = Гкр) никакое давление не может заставить газ перейти в жидкое состояние. Вместо этого с ростом давления газ становится все плотнее и постепенно приобретает свойства, напоминаюище свойства жидкости, однако жидкостью так и не становится.  [c.92]


Для Ф. п. II рода характерно отсутствие скачков плотности в-ва, концентрации компонентов, теплоты перехода. Но точно такая же картина наблюдается и в критич. точке на кривой Ф. п. I рода (см. Критические явления). Сходство оказывается очень глубоким. Ок. критич. точки состояние в-ва можно характеризовать величиной, играющей роль параметра порядка. Напр., в случае критич. точки на кривой равновесия жидкость—пар — это отклонение плотности от ср. значения. При движении по критич. изохоре со стороны высоких темп-р газ однороден, и отклонение плотности от среднего значения равно нулю. Ниже критической температуры в-во расслаивается на две фазы, в каждой из к-рых отклонение плотности от критической не равно нулю. Поскольку вблизи точки Ф. п. II рода фазы мало отличаются друг от друга, возмояшо образование зародышей большого размера одной фазы в другой фазе [флуктуация), точно так же, как вблизи критич. точки. С этим связаны многие критич. явления при Ф. п. II рода бесконечный рост магнитной восприимчивости ферромагнетиков и диэлектрической во с приимчивос ти сегнетоэлектриков (аналогом явл. рост сжимаемости вблизи критич. точки жидкость—пар), бесконечный рост теплоёмкости, аномальное рассеяние эл.-магн. волн [световых в системе жидкость—пар (см. Опалесценция критическая), рентгеновских в ТВ. телах], нейтронов в ферромагнетиках. Существенно меняются и динамич. явления, что связано с очень медленным рассасыванием образовавшихся флуктуаций. Напр., вблизи критич. точки жидкость—пар сужается линия рэлеевского рассеяния света, вблизи Кюри точки ферромагнетиков и Нееля точки антиферромагнетиков замедляется спиновая диффузия (происходящее по законам диффузии распространение избыточной намагниченности) и т. д. Ср. размер флуктуаций (радиус корреляций) Я растёт по мере приближения к точке Ф. п. II рода и становится в этой точке бесконечно большим.  [c.801]

Согласно Фаберу, дефекты представляют собой ограниченные области, в которых поверхностное натяжевше границы разде.та отрицательно. Эти области находятся в сверхпроводящем состоянии, когда образец переохлажден, и служат стабильными зародышами. Однако росту этих зародышей препятствует положительное поверхностное натяжение границ раздела в основной массе металла. Такое положение сохраняется до тех пор, иока поле не будет сн11жено до величины значительно меньше критической. Рассматривая простую модель дефектов, Фабер показал, что количество зародышей переохлаждения определяется их разлгерами и формой, а также параметром поверхностной энергии А, прпчем для дефектов любой формы величина (1—пропорциональна А. Экспериментальные данные хороню согласуются с предложенной моделью. Хотя степень переохлаждения меняется от дефекта к дефекту, для всех дефектов она одинаково зависит от температуры. Различие в степени переохлаждения не представляет особого интереса, так как оно, вероятно, связано с различием в размерах и форме зародышей. Единая температурная зависимость степени переохлаждения  [c.658]

Представленная на рис. 1.13, г, р-диаграмма для СО2 имеет вид, характерный для всех реальных газов. Как видно из этой диаграммы, отклонения свойств реального газа от идеального различны для разных областей параметров состояния и достигают максимального значения вблизи критической точки. Коэффициент сжимаемости в критической точке 2к для различных веществ лежит в пределах 0,23—0,33. При температурах от Тк до Т б = = (2-5-2,2)Гк все изотермы имеют минимум. Следовательно, в этой области при постоянной температуре отклонения от идеального газа с ростом давления вначале увеличива-йтся, а затем уменьшаются.  [c.21]

Уравнение Ван-дер-Ваальса непосредственно не описывает фазовый переход при температурах ниже критической. Однако вид изотерм, соответствующих уравнению при этих температурах, косвенным образом указывает на существование такого перехода. Действительно, в этом случае на всех изотермах имеется участок, где ( р/бо)т> >0 (участок ВО, рис. 1.15). Но такие состояния являются термодинамически неустойчивыми, так как это озна--чает, что при постоянной температуре с ростом давления увеличивается и объем вещества. Поэтому по достижении крайних точек этого участка вещество должно перейти в двухфазное состояние. Полученные таким образом границы двухфазной области, проходящие по максимумам и минимумам волнообразных участков изотерм, все же значительно отличаются от действительных.  [c.24]

Приближение к указанной критической частоте со нагружения по мере ее возрастания сопровождается противоположными процессами по своему влиянию на рост трещин. С возрастанием частоты материал не успевает в полной мере релакси-ровать поступающую энергию к кончику трещины за счет процессов пластической деформации в связи с приближением к скорости движения дислокаций и избыток поступающей энергии будет релак-сирован за счет создания свободной поверхности квазихрупко. Движение трещины в момент ее скачкообразного подрастания в цикле нагружения не будет заторможено за счет пластической релаксации, и поэтому ее скорость будет близка к скорости распространения статической, хрупкой трещины при монотонном растяжении материала. Следует ожидать влияние на скорость роста трещины охрупчивания материала из-за резкого снижения возможности пластической релаксации поступающей энергии по мере нарастания частоты нафуже-ния в две стадии. Первоначально возрастание частоты нагружения приводит к снижению размера зоны пластической деформации при прочих равных условиях, что и объясняет основной эффект ее влияния на снижение скорости роста трещины [1]. Результаты выполненных испытаний жаропрочного сплава In 718 на образцах толщиной И мм при нафе-ве до температуры 923 К и асимметрии цикла 0,1 приведены на рис. 7.1. Чередование частот приложения нафузки приводит к тому, что взаимное влияние условий роста трещины при плоской деформации и плосконапряженном состоянии снижает скорость роста трещины при низкой частоте нафуже-ния по сравнению с монотонным процессом неизменно низкочастотного нафужения.  [c.341]

Следующая температурная область примыкает к Tg со стороны больших температур. Выше уже было показано, что при приближении к Tg со стороны меньших температур понижается о э и сглаживается соответствующий ему максимум на диаграмме напряжений. При Т= Tg — АТ максимума нет вовсе и диаграмма о — е состоит из сопрягаемых криволинейным участком прямолинейных участков — первого — крутого со вторым — пологим (рис. 4.94, в, диаграмма Tg — АТ). Точке пересечения этих двух прямолинейных участков соответствует так называемое критическое напряжение о р. В диапазоне температур Т гй Гкр диаграмма имеет вид, изображенный на рис. 4.94, г по мере роста Т в указанном диапазоне диаграмма располагается все ниже и ниже, вместе с этим уменьшается и а р. Наконец, Оцр обращается в нуль. Та температура, при которой это происходит, называется критической (Ткр). Начиная с Г = Т р и при более высоких температурах (в диапазоне Гкр s Г < Г ) вид диаграмм растяжения становится таким, какой показан на рис. 4.94,й. Напомним, что вся деформация в этом диапазоне температур (небольшая упругая и огромная высокоэластическая) Появляющиеся в температурной области Г < Г,, высокозластические деформации происходят с образованием шейки и ориентированием всего образца. Однако вся картина в общем-то аналогична той, которая была рассмотрена в области Т р < 7 < Tg, но все же отличается тем, что начало образования шейки соответствует весьма малому напряжению, тогда как при Т < Tg ориентационное упрочнение происходит быстрее, чем в высокоэластическом состоянии. В следующем диапазоне темпера-тур (Т Г < ту) деформация е содержит два слагаемых высокоэластическую деформацию e j, и остаточную деформацию 8о . Измеряя деформацию в конце каждого шага нагружения и производя разгрузку, можно отделить одно слагаемое от другого. По мере роста Т в указанной выше области доля остаточной деформации растет. Наконец, при Т = Tf деформация становится полностью необратимой и образец течет при очень малом напряжении.  [c.344]

Горячая обработка давлением при пониженных температурах вредна тем, что способствует появлению в металле полугорячего наклепа, а при последующей термической обработке разнозернистости или грубозернистости. Это связано с деформацией сплава в области критических степеней деформации и последующим усиленным ростом зерна, т. е. рекристаллизацией металла. Начало рекристаллизации сплавов различно и зависит как от легирования сплава, так и условий предшествующей деформации сплава в холодном или полугорячем состоянии (термомеханической обработки).  [c.226]

Расчеты, произведенные для воды, ртути, аммиака, фреонов и углекислоты, показали, что в диапазоне давлений Р /Рк -С 0.6 и вплоть до капель радиуса порядка сотых долей мкм обе вычитаемые из единицы величины в выражении для 8 (As) весьма малы. Таким образом, в пределах этой области при фиксированном размере капель поправка к разности энтропий на пограничных кривых S (As) (лэ avJT (пропорциональна отношению капиллярной постоянной к абсолютной температуре). Поскольку с повышением давления растет температура и одновременно уменьшается капиллярная постоянная av [Л. 25], то и поправка 8 (As) на криволинейность поверхности раздела с ростом давления убывает. По мере приближения к критическому состоянию (Рн/Рк > 0.6) усиливается влияние vjv" изменяется и характер температурной зависимости коэффициента поверхностного натяжения, устремляюще- гося в критической точке к нулю. Вид функции а = а (Т) вблизи критического состояния неизвестен. Если считать, что в окрестности критической точки коэффициент поверхностного натяжения пропорционален T — Tf [Л. 27], то в этой области производная daldT и с по-  [c.45]


Если удельный объем вещества меньше критического (изохора /), то изохорное нагревание приводит к полной конденсации пара, в результате чего изохора в р—и-диаграмме пересекает левую пограничную кривую. При дальнейшем нагревании вещество будет находиться в однофазном — жидком — состоянии и зависимость между температурой и давлением принимает характерный для жидкости вид — резкий рост давления при незначительном изменении температуры. Если же удельный объем вещества больше критического (изохора II), то изохора пересекает правую пограничную кривую, т. е. вещество переходит в состояние перегретого пара (газа). Таким образом, в однофазной области изохоры для значений удельного объема, меньших критической, располагаются в / — 2 19  [c.19]

Рассмотрим поверхность нагрева, находящуюся в контакте с жидкостью. При этом давление превышает критическое, а температура жидкости ниже псевдокритической. Допустим, что температура стенки превышает псевдокритическую. Тогда жидкость вдали от стенки представляет собой псевдожидкость, а в нагретом пограничном слое свойства жидкости напоминают свойства газа. Таким образом, жидкость в пограничном слое характеризуется высокой сжимаемостью и малой плотностью. Волна конденсации, проходящая через поверхность нагрева, стремится сжать н Идкость в пограничном слое и кратковременно увеличить теплоотдачу. Когда через поверхность проходит волна разрежения, пограничный слой расширяется, вызывая мгновенное уменьшение теплоотдачи. По-видимому, эти условия являются идеальными для поддержания пульсаций. Аналогичный вывод справедлив и для докритической двухфазной системы, когда существует пузырьковый пограничный слой . Способность теплового источника, зависящего от давления, поддерживать резонансные акустические колебания, известна с 1777 г. Отдельные задачи подобного рода были рассмотрены Зондхаузом и Релеем [18, 19). Очевидно, необходимо, чтобы рабочее тело вдали от стенки было в состоянии нсевдожидкости, поскольку пульсации при температуре в массе жидкости, превышающей псевдокритическую, не наблюдались. Возможно, жидкость в пограничном слое (псевдогаз) находится в таком состоянии, что при незначительном росте давления она сжимается и ее плотность приближается к плотности жидкости. Происходящий в этом случае взрыв может генерировать волны давления, которые в дополнение к влиянию нестационарного теплообмена должны усиливать первоначальное возмущение.  [c.358]


Смотреть страницы где упоминается термин Критическая температура роста состояния : [c.17]    [c.36]    [c.55]    [c.53]    [c.41]    [c.70]    [c.112]    [c.221]    [c.180]    [c.21]   
Машиностроение Энциклопедический справочник Раздел 3 Том 6 (1948) -- [ c.291 ]



ПОИСК



Критическая температура роста

Рост пор

Состояние критическое

Температура критическая



© 2025 Mash-xxl.info Реклама на сайте