Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пористость покрытий

Все приведенные выше теплообменные устройства с проницаемым высокотеплопроводным заполнителем в каналах или межтрубном пространстве (см. например, рис. 1.3 и 1.10) могут быть использованы для организации фазового превращения потока теплоносителя. Отметим некоторые наиболее интересные конструкции испарительного элемента для сброса теплоты, подводимой к сплошной поверхности. В конструкции, показанной на рис. 1.11,д, охлаждающая жидкость распределяется по каналам 2 и при движении сквозь пористую матрицу 3 в окружающее пространство она поглощает теплоту и испаряется. Если такое устройство размещено в отверстии корпуса аппарата перед воздухозаборником реактивного двигателя, то в качестве испаряющейся жидкости можно использовать горючее последнего. В другом испарительном элементе пористое покрытие на теплоотдающей поверхности не имеет каналов, но выполнено трехслойным, с различной проницаемостью боковых и среднего слоев, причем последний имеет наиболее высокое гидравлическое сопротивление (см. рис. 1.11, 6). Охлаждающая жидкость распределяется по теплоотдающей поверхности стенки 1 внутри примыкающего к ней слоя 4 высокой проницаемости. Далее направления потоков теплоты и испаряющейся жидкости в пористой структуре совпадают — по нормали от теплопередающей поверхности.  [c.14]


На рис, 3,23 показано распределение температуры обугливающегося пористого покрытия для условий, соответствующих данным, приведенным на рис. 3.22. Температура внешней поверхности максимальна в лобовой точке (у/Ьу = 0), здесь же матрица и прогревается на самую большую глубину.  [c.75]

Многочисленные результаты экспериментов по кипению различных жидкостей на поверхностях нагрева с пористым покрытием (воды, этилового спирта, фреонов) показали, что перегрев сплошной поверхности, соответствующий началу появления пузырьков снаружи покрытия, очень мал и составляет величину меньше 1,5 К. Причем следует отметить, что перегрев проницаемого материала в месте зарождения пузырьков еще меньше вследствие падения температуры при подводе теплоты к нему теплопроводностью от сплошной поверхности.  [c.84]

Из анализа механизма переноса тепла в покрытиях, нанесенных тем или иным способом, следует, что эфф существенно зависит от целого ряда факторов. Поэтому если не учитывать влияния давления, состава окру жающего газа, степени пористости покрытия, температуры, при которой проведены измерения, то можно получить значения теплофизических характеристик, отличающиеся от истинных величин в несколько раз.  [c.162]

Недостатком описанных выше способов определения пористости покрытий является трудность изготовления образцов для испытаний.  [c.176]

Очень широко на практике для определения пористости используется метод заполнения пор водой и взвешивания образцов до и после насыщения. Этот способ применим для определения пористости покрытий непосредственно на образце. Заполнение пор осуществляется дистиллированной водой, для чего исследуемый образец погружают в специальную ванну  [c.176]

Рис. 7-11. Прибор для определений пористости покрытия. Рис. 7-11. Прибор для <a href="/info/235810">определений пористости</a> покрытия.
Рис 37. Электрические модели систем металл - полимерная пленка -электролит а - сплошное покрытие 6 - электролит в - пористое покрытие С, - электрическая ёмкость конденсатора г/ - активное сопротивление, эквивалентное диэлектрическим потерям конденсатора - электрохимическая ёмкость электролита внутри пор ti - сопротивление электролита в порах  [c.63]


Такая зависимость наблюдается у пористых покрытий (рис. 38).  [c.63]

Ультразвуковая обработка снижает пористость покрытий (табл. 18). Для получения плотных беспористых никелевых покрытий применяют также ультразвуковую обработку электролита, содержащего гидроокись никеля в виде мелкодисперсного золя [8].  [c.68]

Таблица 18. Влияние ультразвуковой обработки на пористость покрытий Таблица 18. Влияние <a href="/info/81242">ультразвуковой обработки</a> на пористость покрытий
Методы контроля пористости покрытий. Для определения Пористости покрытий используют методы погружения, паст и наложения фильтровальной бумаги, основанные на взаимодействии основного металла или металла подслоя с реагентом в местах пор с образованием окрашенных соединений.  [c.59]

Пасты для определения пористости покрытий  [c.60]

Метод наложения фильтровальной бумаги применим для определения пористости хромовых, никелевых, оловянных покрытий на деталях, конфигурация которых допускает наложение фильтровальной бумаги. На подготовленную деталь накладывают фильтровальную бумагу, пропитанную раствором, таким образом, чтобы между поверхностью детали и бумагой не оставалось пузырьков воздуха. Растворы, применяемые для определения пористости покрытий, приведены в табл. 43.  [c.61]

Кипение на поверхностях с пористыми покрытиями  [c.218]

Применяются различные способы нанесения на поверхность трубы пористого покрытия. Например, используется термодиффузионный процесс спекания металлического порошка определенной грануляции с основным металлом в водородной среде при повышенных температурах [137]. При газотермическом металлизационном напылении (электродуговом или газопламенном) расплавленный металл в виде частиц различной дисперсности наносят пульверизатором на холодную трубу, в результате чего образуется разветвленная система открытых пор i[62]. Авторы работы [62] исследовали теплоотдачу при кипении фреонов-11 н 12 на поверхности стальных труб с пористым покрытием из меди М-3. Перед нанесением пористого покрытия применялась дробеструйная обработка поверхности трубы металлическим песком с размерами зерен 0,9—1,2 мм. Опыты показали. что покрытие, нанесенное электродуговым способом, оказалось более эффективным по сравнению с газопламенным. Например, при р = 3,63-10 Па при среднем в этих опытах значении = 6000 Вт/м2 и толщине покрытия 0,235 мм а при кипении фреона-12 на пористой поверхности, нанесенной электродуговым способом, оказался в 4,5 раза больше по сравнению с а гладкой трубы. При тех же условиях на поверхности покрытия, нанесенного газопламенным способом, а увеличился по сравнению с а гладкой трубы только в 2 раза. Изменение толщины покрытия (нанесенного электродуговым способом) от бел = 0,075 мм до бел = 0,3 мм привело к увеличению а. При / = 6000 Вт/м и при бел = 0,3 мм отношение а при кипении на трубе с покрытием к а при кипении на гладкой трубе оказалось равным 5. Аналогичные результаты были получены и для фреонов-11 и 22.  [c.220]

Однако, как уже отмечалось, интенсивность теплообмена при ки-, пении на пористых покрытиях существенно зависит от структурных, показателей покрытия толщины слоя, формы и ориентации ка-  [c.221]

Б — пористые покрытия с крупными порами, имеющими выход к поверхности, и с широкими длинными слоевыми линиями  [c.222]

Рис. 7.24. Зависимость а т q при кипении фреонов-12 и 22 на гладкой, сребренной трубах и трубах с пористыми покрытиями а —/g = 10° б —10°С 7 — оптимальное покрытие 2 — оптимальное покрытие, исследованное на стабильность 3 —гладкая труба 4 —оребренная труба А, Б, В— Рис. 7.24. Зависимость а т q при кипении фреонов-12 и 22 на гладкой, сребренной трубах и трубах с <a href="/info/39733">пористыми покрытиями</a> а —/g = 10° б —10°С 7 — оптимальное покрытие 2 — оптимальное покрытие, исследованное на стабильность 3 —<a href="/info/27750">гладкая труба</a> 4 —оребренная труба А, Б, В—

На рис. 7.24 представлены также результаты испытания труб с оптимальным пористым покрытием (тип Б) на повторяемость. Проведено исследование интенсивности теплообмена при кипении фреонов-12 и 22 на трубах с пористым металлизационным покрытием, нанесенным в разное время, но по одной и той же технологии. Весьма обнадеживающая повторяемость результатов говорит о том, что технология нанесения покрытия отработана уже настолько, что дает возможность воспроизводить одну и ту же характеристику пористого покрытия и, следовательно, предсказывать значения а.  [c.223]

Опыты авторов [63] показали также, что при кипении на пористых покрытиях, т. е. в условиях, весьма благоприятных для зарождения и роста паровых пузырей, коэффициенты теплоотдачи к кипящим фреонам-12 и 22 при равных плотностях теплового потока оказались практически одинаковыми.  [c.223]

При кипении хладагентов на трубах с пористыми покрытиями примеси масла снижают значение коэффициента теплоотдачи в той же мере, что и при кипении на гладких трубах.  [c.224]

Необходимые толщину и пористость покрытий микротвэла можно рассчитать на основе предложенной Скоттом и Прадо-сом математической модели [15]. При известных прочностных характеристиках плотного запирающего силового слоя можно определить зависимость допустимой глубины выгорания ядер-ного топлива от толщины покрытия, пористости сердечника и буферного слоя с учетом анизотропного расширения и усадки покрытия, происходящих под действием потока быстрых нейтронов и термического отжига.  [c.15]

В условиях возможного пассивирования несплошные катодные покрытия могут облегчить пассивирование защищаемого металла в порах, повышая их анодный ток до пассивирующего значения, т. е. защищать его не только механически, но и электрохимически. Так, осаждение пористых покрытий из Си и Pt на хромистой и хромоникелевой сталях повышает их коррозионную стойкость в H2SO4 (рис. 220) "начиная с некоторой их толщины, когда площадь катодного покрытия не слишком мала, и, наоборот, понижает их коррозионную стойкость в сильно депассивирующей среде НС1 (рис. 221), облегчая протекание контролирующего скорость коррозии катодного процесса.  [c.319]

Гальванические покрытия, наряду с большими достоинствами (])авпомериос распределепне по поверхности защищаемого изделия, возможность получения покрытия заданной толщины II др.), имеют также и некоторые недостатки, к числу которых, ограничивающих их применение в химическом маишноетроеинн, относится пористость покрытия.  [c.320]

Рис. 7-12. Прибор для определения пористости покрытия по методу Эвертса. Рис. 7-12. Прибор для <a href="/info/598273">определения пористости покрытия</a> по методу Эвертса.
Исследовалось влияние токо дуги I и дистанции напыления L на пористость плазмовапыленного покрытия порошка титана марки ПТС дисрерсностью 50-М00 мкм. Также изучалась сорбция азота полученным покрытием и устанавливалась связь между скоростью сорбции и режимами напыления через характеристики пористой структуры. Пористость покрытия определялась по методу ртутной порометрии, скорость сорбции — по методу Вагнера. Толщина покрытия составляла 166 436 мкм.  [c.182]

Металлизацию можно осуществлять как постоянным, так и переменным токами. Предпочтительнее проводить металли ацшо постоянным током. В этом случае обеспечивается более высокая производительность, снижается содержание оксидов в папыленном металле, уменьшается пористость покрытия.  [c.10]

Определение коэффициента оголенности (пористости покрытия) внутренней поверхности резервуара  [c.69]

Электрохимические параметры полимерного покрытия определяют ёмкостно-омическим методом. Для измерения используется четырёхплечный мост (рис. 39) с последовательной эквивалентной схемой (V=25. .. 50 мВ,/= 500. .. 20000 Гц) - для относительно пористых покрытий.  [c.64]

Вместе с тем сравнительные исследования режущих свойств модифицированных твердосплавных инструментов выявили высокие потенциальные возможности комплексной обработки на основе износостойких покрытий с использованием пучков заряженных частиц. Имплантация ионами химически активных элементов приводит к существенному повышению износостойкости инструментальных твердых сплавов, что связано с формированием твердых, термоустойчивых химических соединений в поверхностных слоях покрытий. Другие эффекты модификации связаны со снижением пористости покрытий, а также с устранением отрицательного влияния на прочностные характеристики капельной фазы, что подтверждается улучшением режущих свойств твердых сплавов с покрытием после модификации ионным пучком состава Al -N , имеющей целью образование фаз по типу TiAl3. Весьма перспективна комплексная обработка с использованием в качестве износостойкого покрытия нитрида гафния. Однако превышение дозы свыше  [c.230]

Полярность покрытия в значительной степени зависит от состава среды, и в процессе коррозии в результате поляризации или других факторов может произойти изменение полярности покрытия. Исследование алюминиевых покрытий различной толщины и пористости в жесткой промышленной атмосфере Москвы, отличающейся высоким содержанием сернистых газов, показало, что в пористом покрытии (10-12 мкм) очаги коррозионных поражений концентрируются в местах наличия пор и происходит значительное язвенное разрушение стали. Такой же характер разрушения был на образцах с тонким пористым алюминиевым покрытием, испытанных в районе Уфимского нефтеперерабатьшающего завода и Оренбургского ГПЗ, атмосфера которых отличается высоким содержанием Hj S и SO2. Толстые алюминиевые покрытия обнаруживали в этих условиях эффект намного выше, чем у цинковых той же толщины. Об этом свидетельствуют также сравнительные испытания, в промышленных атмосферах предприятий химической и нефтеперерабатьша-ющей промышленности алюминированной стали и цинковых покрытий, полученных различными методами и имеющими толщину слоя 50 мкм (из расплава), 25 мкм (гальваническое с хроматированием), 25 мкм (вакуумное), 100-120 мкм (термодиффузионное), 200-250 мкм (металлизационное). Характеристика промышленных атмосфер и скорость коррозии покрытий, полученных различными методами, приведена в табл.15.  [c.59]


Водородопроницаемость покрытий зависит от их пористости. Для каждого способа нанесения покрышй существует определенная оптимальная толщина, обеспечивающая минимапьную пористость покрытий. Пористость покрытий зависит от геометрии и размера пор, которые классифицируются как макропоры, микропоры и поры канального типа.  [c.67]

Предварительная ультразвуковая обработка мелкодисперсного устойчивого золя гидроокиси никеля- вызывает резкое увеличение катодной поляризащш в процессе осаждения никеля и увеличение плотности покрытия. Положительный эффект снижения пористости достигается при определенном соотношении времени обработки на аноде и катоде. Для каждого вида покрытия есть оптимальная величина соотношения, выбранная в соответствии с применяемым электролитом. Реверсивный ток используется для снижения пористости покрытий при оса>кдении меди, цинка, кадмия, никеля.  [c.68]

Для покрытий, полученных из порошковых материалов электростатическим и электрофоретическим методом, пористость покрытия зависит в основном от методов последующего уплотнения порошка (прокаткой, гидростатическим обжатием). Алюминиевое покрытие с пористостью 3-5 % получают уплотнением прокаткой при толщине слоя порошка 20— 25 мкм, а гидростатическим обжатием - не менее 400 МПа - при толщине слоя порошка 40-50 мкм. Для металлиэационных покрьггий порте-  [c.68]

О пористости покрытий можно судить по водородопроницаемости. Исследование водородопроницаемости покрытий при низких температурах экспериментально затруднено, так как она зависит от множества различных факторов и требует использования высокочувствительных методов. Скорость проникновения водорода через различные мембраны обычно характеризуется коэффициентом диффузии, изменением равновесного или стационарного потенциала, плотностью тока в потенциоста-тическом режиме, временем проникновения водорода через мембрану.  [c.69]

Малорастворимые продукты коррозии уменьшают размер пор, что снижает роль пористости покрытия в наводороживании металла основы. Окисные пленки, образующиеся на основном металле, также оказьшают влияние на стойкость покрытий в наводороживающих средах. Дополнительная обработка стали с покрытием в пассивирующих растворах повышает их защитную способность.  [c.72]

Коррозионная среда (ЗЗ %-ный раствор Na l) понизила предел усталости незащищенной стали на 30 %, стали с дробеструйной обработкой на 26 %, а с алюминиевым металлизационным покрытием на 11 %. Меры, снижающие пористость покрытий - крацевание металлической щеткой, пропитка кремнийорганической жидкостью ГКЖ-94 - значительно повышают предел коррозионной усталости стали марки ОХ18Н10Т.  [c.84]

Барьерный эффект снижается с увеличением пористости покрытия. Незначительный коэффициент диффузии при высокой плотности покрытия приводи г к задержке в.>дор1- да в. металле оснчвы Видор1Дн я хруп кость стали не устраняется даже после термической обработки. Для никелевого покрытия максимальное количество водорода наблюдается также в слое толщиной 1 мкм, прилегающем к основе по мере увеличе-  [c.103]

Многослойные покрытия с использованием никеля могут применяться для формирования пористых покрытий, которые показывают высокую эффективность при работе на трение в присутствии смазок. В этом случае на никелевое покрытие наносился юнкии с кл1 шке.чя (0,5--мкм) с внутренними напряжениями 490—590 МПа, сверху осаждается хром. Под действием внутренних напряжений образуется сетка трещин,  [c.109]

Согласно современным представлениям, механизм защитного действия неметаллических покрытий связан как с изолирующим действием, так и с влиянием на электрохимические процессы, протекающие под неметаллической пленкой. Экранирующее действие неметаллических покрытий обусловлено их способностью замедлять диффузию и перенос через покрытие компонентов коррозионно-активной среды к поверхности металла и определяется в значительной степени пористостью покрытий. Проникновение электролита через поры покрытия или через межмо-лекулярные несовершенства пленкообразующего вещества (в процессе теплового движения) происходит под действием капиллярных сил. Осмотическое давление, возникающее вследствие перепада концентрации электролита на поверхности капиллярной пленки, контактирующей с внешней средой, прилегающей к защищаемому металлу, способствует диффузии среды через покрытие. При осмотическом перемещении влаги через пленку давление может быть больше, чем сила адгезии пленки к металлу, в результате чего происходит локальный отрыв пленки от поверхности металла, что приводит к образованию вздутий и пузырей, являющихся первоначальным очагом коррозионного поражения металлической основы.  [c.128]

Метод паст применим для определения пористости покрытий на деталях любой конфигурации и любых габаритных размеров. Пасту (табл. 42) на иссле-  [c.61]

Наиболее эффективным и надежным способом интенсификации теплообмена при кипении является применение пористых металлических покрытий. При этом пористая структура образуется либо в результате покрытия поверхности трубы тонкими металлическими сетками, либо нанесением на нее металлического порошка определенной зернистости. При этом образуется пористый слой с разветвленной системой сообщающихся между собой капиллярных каналов, через которые происходят эвакуация пара и подпитка пористой структуры жидкостью, подтекающей сюда под действием сил поверхностного натяжения. Кипение происходит как внутри пористого покрытия, так и на его поверхности. Высокая ннтен-сивность теплообмена свидетельствует о том, что пористая структура создает весьма благоприятные условия для зарождения и роста паровых пузырей. Например, авторы работы [137] указывают, что при кипении н-бутана (р= 1,27-10 Па) на гладкой трубе образование паровых пузырей по всей ее поверхности наблюдалось только при = 35 кВт/м2, а дд трубе с пористым покрытием вся поверхность трубы была занята паровыми пузырями уже при 7=1,5 кВт/м . Эти и многие другие опыты показали, что устойчивое развитое кипение на поверхностях с пористыми покрытиями устанавливается при весьма незначительных температурных напорах (перегревах жидкости). Основной причиной этого является то, что в данном случае поверхности раздела фаз возникают внутри пористого слоя [54, 130, 146]. При выбросе паровой фазы из пористой структуры в последней всегда остаются паровые включения, в которые испаряется тонкая пленка жидкости, обволакивающая стенки капиллярных каналов [54, 130]. В соответствии с моделью автора [14G] испарение микропленки происходит по всей поверхности капиллярного канала, высота которого равна толщине пористого покрытия. Таким образом, элементы пористой структуры сами являются центрами зарождения паровой фазы. Так как диаметр капиллярных каналов (10- —10 м) больше критического диаметра обычного центра парообразования, то испарение пленки в паровые включения или с поверхности капилляра требует значительно меньшего перегрева жидкости. Не менее важное значение имеет и то, что в пористой структуре перегрев поступающей в капилляры жидкости происходит в условиях весьма высокой интенсивности теплообмена. Действительно, при таких малых диаметрах капилляров движение жидкости в них всегда ламинарное. В этом случае значение коэффициента теплоотдачи определяется из условия (ас ) Д = 3,65. При диаметре капилляров 10- —10 м значение а получается равным 5-103—5-Ю Вт/(м2-К). В условиях сильно развитой поверхности пористого слоя только за счет подогрева жидкости можно отводить от стенки весьма большие тепловые потоки. Снижение необходимого перегрева, а также интенсивный подогрев жидкости существенно уменьшают время молчания центров парообразования, что также способствует интенсификации теплообмена на трубах с пористыми структурами.  [c.219]


В опытах авторов работы [54] кипение осуществлялось на трубах из нержавеющей стали 1Х18Н9Т диаметром 5,45X0,2 мм с пористым покрытием, полученным электрохимическим методом. Пористый слой осаждался электрохимическим способом из водных растворов солей и представлял собой композиции Fe—Ni, Fe—Ni— МО, Fe. После нанесения покрытия производилось спекание его в атмосфере водорода. Толщина слоя изменялась в пределах от 10 до 140 мкм. В работе приводятся зависимости q = f(At), полученные при кипении фреонов-12 и 22, а также аммиака на стальных и медных трубах диаметром 20—25 мм с металлизационным покрытием и с покрытием, полученным методом спекания металлических порошков. На рис. 7.22 приведены осредненные зависимости q = =f At), полученные в указанных опытах. Из рисунка видно, что интенсивность теплообмена на пористых металлических покрытиях, нанесенных металлизационным способом и методом спекания, при-  [c.220]

Перегрев пара на верхних рядах трубного пучка с пористым покрытием значительно в большей степени снижает средее значение коэффициента теплоотдачи, чем это наблюдается на пучках с ореб-  [c.223]

Для расчета интенсивности теплообмена при кипении на теплоотдающих поверхностях с пористыми покрытиями предложен ряд < )ормул, полученных либо теоретическим путем, либо на основе теории подобия. Из формул первого типа можно отметить полуэмпири-ческие зависимости авторов [130, 146], при выводе которых использованы весьма сходные между собой физические модели, В обоих случаях стенки капиллярных каналов рассматриваются в виде ре- бер, на поверхности которых испаряется пленка жидкости. Жидкость подсасывается в капилляры под действием сил поверхностного натяжения. Эти формулы качественно правильно отражают закономерности рассматриваемого явления, однако рассчитать по ним интенсивность теплообмена достаточно сложно. Это связано с трудностями, взоннкающими при определении эффективной теплопроводности пористого слоя Яэф. Авторы [130, 146], сопоставляя полученные ими формулы с опытными данными, не приводят зависимости, использованные для расчета Хэф в тех или иных конкретных условиях проведения опытов. Меледу тем очевидно, что значение 1эф зависит как от характера пористого покрытия, так и от технологии его нанесения. Этим, по-видимому, объясняется, что эмпирические коэффициенты формул авторов [130, 146], подобранные на сновании опытов одного исследователя, оказываются неприемлемыми при обобщении опытных данных других исследователей.  [c.224]


Смотреть страницы где упоминается термин Пористость покрытий : [c.75]    [c.45]    [c.221]    [c.224]   
Композиционные покрытия и материалы (1977) -- [ c.135 , c.205 , c.223 , c.239 , c.241 , c.250 ]



ПОИСК



Влияние структуры, толщины и пористости покрытий на коррозионную стойкость

Зависимость пористости оловянного покрытия от его толщины

Кипение на поверхностях с пористыми покрытиями

Контроль качества покрытий — Внутренние напряжения 2.104—106 Защитная способность 2.106, 107 Микротвердость 2.103, 104 — Пористость покрытий 2.100—103 — Прочность сцепления

Контроль качества покрытий — Внутренние напряжения 2.104—106 Защитная способность 2.106, 107 Микротвердость 2.103, 104 — Пористость покрытий 2.100—103 — Прочность сцепления метод 2.83—85 — Потенциометрический метод

Контроль пористости покрытий

Метод контроля пористости покрытий

Метод контроля пористости покрытий контактных отпечатков

Методы контроля толщины гальванических покрытий - и пористости

Методы определения прочности сцепления и пористости гальванических покрытий

Определение пористости (сплошности) покрытий

Определение пористости и других свойств покрытий

Определение пористости лакокрасочных покрытий электрохимическим методом

Определение пористости покрытий

Покрытий характеристики, важнейшие виды пористость

Покрытия защитные пористость

Покрытия оловянные — Пористость 197 — Твердость

Покрытия пористые и фильтрующие

Покрытия пористым хромом

Покрытия регулирование пористости

Получение пористых и фильтрующих композиционных материалов и покрытий. Использование полимерных частиц

Пористость

Пористость хромовых покрытий

Пористые покрытия

Пористые покрытия

Пористые покрытия на турбинных лопатках

Приборы для определения толщины и сплошности покрыОпределение коэффициента оголенное (пористости покрытия) внутренней поверхности резервуара

Способы получения пористого хромового покрытия

Структуры покрытий аморфные пористые

Твердость и пористость хромовых покрытий

Теоретические основы получения железных покрытий из электролитов содержащих органические вещества Влияние пористости диафрагм па свойства железных покрытий, полученных из сахарно-глицериновых ванн

Характеристика пористых хромовых покрытий и способы их получения



© 2025 Mash-xxl.info Реклама на сайте