Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Концентрация энергии в зоне сварк

Концентрация энергии в зоне сварки  [c.23]

Источники энергии для термомеханических и механических процессов сварки давлением (контактная, термопрессовая, холодная и другие виды сварки) должны обеспечивать концентрацию тепловой или механической энергии в зоне сварки, а также давление, достаточные для создания физического контакта, активации и химического взаимодействия атомов соединяемых поверхностей.  [c.26]


Интенсивность ультразвука и концентрация энергии в зоне наконечника увеличивается по сравнению со спаем волновода и преобразователя пропорционально отношению их площадей или иначе их диаметров DW. При сварке амплитуда усиливается в 4—5 раз, достигая при холостом ходе электрода на конце 20—60 мкм.  [c.192]

Источники энергии для термических процессов сварки плавлением (луч, дуга, пламя и др.) должны обеспечивать концентрацию тепловой энергии и температуру в зоне сварки или пятне нагрева заданных размеров, достаточные для плавления материала и провара его на требуемую глубину, но без интенсивного испарения.  [c.26]

Лазерную сварку производят на воздухе или в среде защитных газов аргона, СО2. Вакуум, как при электронно-лучевой сварке, здесь не нужен, поэтому лазерным лучом можно сваривать крупногабаритные конструкции. Лазерный луч легко управляется и регулируется, с помощью зеркальных оптических систем легко транспортируется и направляется в труднодоступные для других способов места. В отличие от электронного луча и электрической дуги на него не. влияют магнитные поля, что обеспечивает стабильное формирование шва. Из-за высокой концентрации энергии (в пятне диаметром 0,1 мм и менее) в процессе лазерной сварки объем сварочной ванны небольшой, малая ширина зоны термического влияния, высокие скорости нагрева и охлаждения. Это обеспечивает высокую технологическую прочность сварных соединений, небольшие деформации сварных конструкций. Например, лазерная сварка вилки с карданным валом автомобиля по сравнению с дуговой сваркой увеличивает срок службы карданной передачи в три раза, потому что более чем вдвое уменьшается площадь сечения сварного шва, в несколько раз -время сварки. Деформации вилки, вызывающие преждевременный износ, практически отсутствуют.  [c.236]

Электронно-лучевая сварка. Преимущества метода - в отсутствии окисления и вакуумной дегазации композиционного расплава, высокой концентрации энергии в пучке, позволяющей получить соединения с минимальной шириной зоны плавления и ОШЗ (последнее особенно важно при выполнении соединения волокнистых КМ в направлении армирования). Для уменьшения количества продуктов межфазного взаимодействия в зоне шва рекомендуется проведение процесса при минимальных погонных энергиях. При специальной подготовке соединений возможна сварка с использованием присадочных проставок.  [c.172]


Широкое распространение получили технологические методы уменьшения сварочных деформаций, которые сравнительно легко применить в процессе изготовления конструкции. Выбранная технология сборки и сварки соединения должна обеспечить получение минимально возможной ширины зоны термического влияния. Для этого стремятся использовать методы сварки, обеспечивающие высокую концентрацию энергии в дуге, а соединения сваривают на повышенных скоростях. В случае сварки стыковых соединений необходимо обеспечивать симметричную форму поперечного сечения шва и минимально проплавлять свариваемые элементы в нахлесточных и угловых швах. Важное значение для уменьшения деформаций соединений имеет качество сборки. Наличие между соединяемыми элементами зазоров и превышений увеличивает объем сварочной ванны и, как следствие этого, остаточные деформации соединений. В процессе сварки под действием температурно-временных деформаций соединяемые кромки могут смещаться относительно друг друга, образуя зазоры и превышения даже в тех местах, где их не было после сборки.  [c.20]

Существенное влияние на характеристики процесса оказывают методы и режимы сварки, свойства сталей, геометрические размеры и форма стыкуемых деталей, качество их подготовки для сварки. Для большинства технологий в зоне соединения деталей происходит концентрированное приложение электрической или газовой энергии, которая расплавляет концы стыкуемых деталей и присадочный материал. Высокое качество сварного соединения в значительной мере зависит от создания большой локальной концентрации энергии. Поэтому основным требованием к ее источникам является обеспечение минимально возможных перегревов расплавленного и остающегося в твердом состоянии металла. Такими возможностями обла-192  [c.192]

Таким образом, на стадиях проектирования, изготовления и монтажа сварных конструкций необходимо принимать меры по уменьшению влияния сварочных напряжений и деформаций. Нужно уменьшать объем наплавленного металла и тепловложение в сварной шов. Сварные швы следует располагать симметрично друг другу, не допускать, по возможности, пересечения швов. Ограничить деформации в сварных конструкциях можно технологическими приемами сваркой с закреплением в стендах или приспособлениях, рациональной последовательностью сварочных (сварка обратноступенчатым швом и др.) и сборочно-сварочных операций (уравновешивание деформаций нагружением элементов детали). Нужно создавать упругие или пластические деформации, обратные по знаку сварочным деформациям (обратный выгиб, предварительное растяжение элементов перед сваркой и др.). Эффективно усиленное охлаждение сварного соединения (медные подкладки, водяное охлаждение и др.), пластическое деформирование металла в зоне шва в процессе сварки (проковка, прокатка роликом, обжатие точек при контактной сварке и др.). Лучше выбирать способы сварки, обеспечивающие высокую концентрацию тепла, применять двустороннюю сварку, Х-образную разделку кромок, уменьшать погонную энергию, площадь поперечного сечения швов, стремиться располагать швы симметрично по отношению к центру тяжести изделия. Напряжения можно снимать термической обработкой после сварки. Остаточные деформации можно устранять механической правкой в холодном состоянии (изгибом, вальцовкой, растяжением, прокаткой роликами, проковкой и т.д.) и термической правкой путем местного нагрева конструкции.  [c.42]

Аналогичными (с сосудами давления) условиями характеризуются и разрушения трубопроводов, в том числе магистральных для транспортировки жидкостей и газов. Возможность хрупкого разрушения трубопроводов на участках от 0,5-1 м до нескольких десятков километров обусловлена большими запасами упругой энергии, накопленной в стенках трубопроводов и рабочих телах, непрерывностью сварных швов, циклическим характером нагружения (10 < N < 5 1 O ), низкими температурами t эксплуатации (до -60°С) и местным аэродинамическим охлаждением за счет истечения газов в момент инициирования хрупких трещин. Учитывая сравнительно невысокую концентрацию напряжений (а = 1,1-1,6) на прямых участках трубопроводов, одними из основных причин хрупких разрушений трубопроводов следует считать повышенную чувствительность применяемых сталей к хладноломкости и наличие исходных дефектов сварки и технологических повреждений. В зонах компрессорных станций увеличивается число повреждений от вибраций.  [c.73]


Большая концентрация энергии и отсутствие потерь теплоты в окружающую среду определяют высокое значение к. п. д., достигающего 90%. Скорость электронно-лучевой сварки в 1,5—2 раза превышает скорость дуговой сварки в аргоне. Малая ширина зоны термического влияния вызывает незначительную деформацию конструкции.  [c.228]

Электронно-лучевую сварку применяют для получения стыковых, угловых и отбортованных соединений. Кроме того, она дает возможность расширить область использования прорезных и заклепочных соединений (особенно при сварке толстолистовых конструкций). Современное оборудование позволяет сваривать изделия толщиной более 100 мм. Электронно-лучевая сварка весьма эффективна для получения высококачественных соединений из тугоплавких и активных металлов. Большая концентрация энергии и отсутствие потерь теплоты в окружающую среду определяют высокое значение КПД, достигающего 90 %. Скорость электронно-лучевой сварки в 1,5—2 раза превышает скорость дуговой сварки в аргоне. Малая ширина зоны термического влияния вызывает незначительную деформацию конструкции.  [c.282]

Комплекс устройств, служащих для формирования и фокусировки электронного луча, называют сварочной электронной пушкой. В процессе сварки кинетическая энергия электронов превращается в тепловую, которая расходуется на плавление кромок свариваемых деталей. По мере удаления источника нагрева происходит затвердевание сварочной ванны и образование шва. Металл шва, так же как и при других видах сварки плавлением, имеет литую структуру. Концентрация энергии электроннолучевой сварки очень высока, что обеспечивает получение узкого и глубокого шва и узкой околошовной зоны. Провар при этом виде сварки, как правило, имеет форму острого клина. Оператор, осуществляющий сварку в зависимости от размеров камеры, находится за ее пределами или в самой камере.  [c.23]

Сжатые дуги. При ограничении области существования дуги в радиальном направлении применением электродов малых диаметров или специальных ограничивающих сопл она приобретает новые свойства, отражаемые названием сжатая дуга . Сжатие столба соплом уменьшает площадь анодного пятна и зону его блуждания, что приводит к концентрации энергии на аноде и увеличению глубины его проплавления. Струя плазмы, истекающая из сопла, повышает также давление на жидкий металл ванны и вызывает увеличение глубины проплавления анода. Однако при некоторых критических скоростях струй жидкий металл выдувается и сварка становится невозможной. Зато интенсивно протекает процесс разделительной резки, имеющий важное значение в промышленности.  [c.44]

Плазменная сварка (сжатой дугой) постоянным током обратной полярности (табл. 26). Высокая плотность тока в столбе дуги, большая концентрация энергии при плазменном процессе позволяют повысить скорость сварки, улучшить зону термического влияния и уменьшить деформацию конструкций по сравнению с аргонодуговой сваркой переменным током.  [c.60]

Сварка коррозионно-стойких, жаропрочных сталей и сплавов. Стали и сплавы этого класса обладают хорошей свариваемостью. Однако теплофизические свойства и склонность к образованию в шве и околошовной зоне горячих трещин определяют некоторые особенности их сварки. Характерные для большинства сталей и сплавов низкая теплопроводность и высокий коэффициент линейного расширения обусловливают при прочих равных условиях (способе сварки, геометрии кромок и др.) расширение зоны проплавления и областей, нагретых до различных температур, и увеличение суммарной пластической деформации металла шва и околошовной зоны. Это увеличивает коробление конструкций. Поэтому следует применять способы и режимы сварки, характеризующиеся максимальной концентрацией тепловой энергии. Оценка возможностей дуговых способов сварки по толщине детали дана в табл. I.  [c.28]

Импульсная старка вольфрамовым электродом прежде всего применяется для сварки тонкого материала, так как кратковременное расплавление небольшой сварочной ванны позволяет избежать прожога. Импульсная дуговая сварка может производиться и на переменном токе. Повысить эффективность воздействия обычной дуги на металл можно с помощью концентрации ее энергии на меньшей площади, чего можно добиться соответствующим изменением размеров анодного пятна при сварке на постоянном токе. В настоящее время разработаны эффективные активирующие флюсы, которые уменьшают размер анодного пятна и позволяют получать швы с узким проплавом, что положительно влияет на уменьшение деформаций при сварке, сокращает зону термического влияния.  [c.466]

С увеличением толщины свариваемого металла пластичность сварных соединений уменьшается вследствие неблагоприятных структурных изменений и структурных напряжений в металле шва и околошовной зоны, повышения сварочных напряжений и ухудшения качества основного металла. Эти факторы значительно снижают пластичность сварных соединений при наличии низких температур и резкой концентрации напряжений. Повышение погонной энергии с увеличением толщины свариваемого металла позволяет повысить пластичность металла шва с одновременным снижением его прочности. Влияние скорости охлаждения наиболее резко сказывается при сварке угловых и многослойных стыковых швов, поэтому такие соединения нельзя рекомендовать для ответственных конструкций. Наряду с этим для соединения элементов изделия следует использовать сварные швы, сечение которых находится в определенном соотношении с толщиной металла. При толщине металла 16—24 мм рекомендуется применять шов с сечением не менее 35 мм , при 25—40 и 41—50 мм — соответственно 50 и 60 мм . Скорость охлаждения при этом не должна превышать 30°С в 1 с.  [c.124]


Интенсивность процессов, предшествующих разрушению, определяется не только разностью энергий источников и стоков, но также способностью металла к их реализации. Главным фактором, обусловливающим кинетику указанных процессов, является высокая степень неравновесности состояния металла шва и околошовной зоны непосредственно после сварки. Неравновесное состояние металла в данном случае вызвано особенностями сварочного процесса. Быстрое охлаждение с высоких температур фиксирует в металле высокотемпературную концентрацию вакансий, являющуюся неравновесной для низких температур. Низкотемпературное мартенситное  [c.242]

Проблема сварки ферритных сталей — укрупнение зерна в околошовной зоне и в металле сварного шва при повышении погонной энергии сварки и уменьшении концентрации источника сварочной теплоты. По этой причине становится нежелательным применение сопутствующего рши предварительного подогрева и последующего отпуска для предотвращения появления холодных трешин.  [c.302]

Сварку с глубоким проплавлением осуществляют при плотностях мощности излучения порядка 10 Вт/см . Если при сварке малых толщин необходима концентрация энергии в одной точке (случай острой фокусировки излучения), то при сварке с глубоким проплавлением требуется высокая плотность мощности на достаточно значительном продольном участке пучка. Для достижения требуемых высоких плотностей мощности в зоне обработки применяют более мощные лазеры с выходной мощностью в несколько киловатт. Сварку с глубоким проплавлением можно осуществлять как в непрерывном, так и в квазинепрерывном режимах. Ее выполняют в основном мощными непрерывными СОг-лазерами или импульснопериодическими твердотельными лазерами. В последнем случае, как и при сварке малых толщин, энергетическая эффективность процесса выше, но скорость обработки меньше.  [c.246]

При сварке толстолистовых металлов (рис. 20.9, ff) используют острофокусные пучки электронов. Процесс сварки толстолистового металла состоит из следующих этапов. Вначале ввиду высокой концентрации энергии в пятне нагрева и высокого температурного градиента происходит преимущественное испарение металла. Далее по мере нагрева металл плавится и образуется сварочная ванна. Потоки паров, истекая в вакуум, силой реакции воздействуют на жидкий металл, вытесняя его из зоны нагрева. При этом оголяемые глубинные слои металла, воспринимая энергию электронов, плавятся, испаряются и вытесняются, пока не наступает динамическое равновесие всех сил, действующих на жидкий металл. В результате в его толще образуется канал с большим отношением глубины к диаметру. Воспринимающая энергию электронного пучка боковая поверхность канала имеет площадь, во много раз превышающую сечение пучка. Канал устойчив, так как при заполнении хотя бы части его жидким металлом резко увеличивается количество поглощаемой этим металлом энергии, он вскипает и испаряется.  [c.427]

При сварке термопластичных ПКМ без создания концентраторов энергии требуется фиксировать осадку деталей, а процесс вести при меньшем давлении прижима и большей амплитуде колебаний. При сварке жестких ПКМ на основе однонаправленных волокон без подготовки поверхностей есть опасность разрыва волокон под влиянием прикладываемого высокого давления. По этой причине сварка по плоским поверхностям, например, листового квазиизотропного углепластика типа АРС-2 с помощью У 3-инструмента, имеющего плоскую рабочую поверхность (амплитуда колебаний 40 мкм, давление 1-2 МПа, продолжительность 1,0-2,5 с) позволила достичь прочности соединения при сдвиге, равной 11% прочности основного материала при таком же нагружении. Кроме того, У 3-сварка по плоским поверхностям, как и в случае ненаполненных термопластов, не обеспечивает воспроизводимости показателей качества швов [123, с. 20]. Для получения качественного соединения ПКМ за короткое время необходимо так же, как и при сварке ненаполненных или наполненных дискретными частицами термопластов, создавать условия для концентрации У 3-энергии в зоне соединяемых поверхностей. Концентратор энергии в виде треугольного в сечении выступа при УЗ-сварке ПКМ в целом имеет те же размеры, что и при сварке ненаполненных термопластов. Применение метода скоростной съемки (1000 кадров в одну секунду) при УЗ-сварке углепластика на основе ПЭЭК подтверждает вывод, что она в большей степени представляет собой ступенчатый, нежели непрерывный, процесс из многократно повторяющихся и поочередно протекающих плавления, течения расплава, охлаждения материала, его затвердевания, плавления и т. д. [142].  [c.397]

При сварке толстолистовых металлов используют острофокуо ные пучки электронов. Процесс сварки толстолистового металла состоит из следующих этапов. В начале ввиду высокой концентрации энергии в пятне нагрева и высокого температурного градиента происходит преимущественное испарение металла. Далее, по мере нагрева, металл плавится и образуется сварочная ванна. Потоки паров, истекая в вакуум, силой реакции воздействуют на жидкий металл, вытесняя его из зоны нагрева. При этом оголяемые глубинные слои металла, воспринимая энергию электронов, плавятся, испаряются и вытесняются, пока не наступает динамическое равновесие всех сил, действующих на жидкий металл. В результате в его толще образуется канал с большим отно-  [c.125]

Трещины по разупрочненной прослойке зоны металла термического влияния (ЗТВрп) на расстоянии 2-4 мм от границы сплавления со стороны корпуса тройника 4.ПЗ, б Межкристаллитный хрупкий xapai rep повреждения. Магистральная трещина на участке металла с мелким зерном. Края трещины поражены порами и микротрещинами ползучести. Структурная и механическая неоднородность Конструктивные причины чрезмерное ослабление прочности корпуса тройника отверстием под штуцер повышенная концентрация напряжений и деформаций в зоне углового шва. Эксплуатационные причины действие повышенных изгибающих нагрузок, вызванных нарушением проектного состояния опорно-подвесной системы, неудовлетворительной работой дренажей, защемлением паропровода, забросами воды и др. Технологические причины сварка углового шва с повышенным тепловложением чрезмерно высокая погонная энергия, недопустимо высокий подогрев при сварке нарушение в технологии термообработки основного металла недоотпуск  [c.269]

Микроплазменная сварка. При микро-плазменной сварке применяют токи в пределах 0,2... 15 А. Устойчивое и стабильное горение микроплазменной дуги на малых токах достигается благодаря высокой степени сжатия столба дуги каналом сопла малого диаметра (<1 мм). В качестве плазмообразующего газа используют аргон, а как защитный - аргон, гелий, азот, смеси аргона с водородом, аргона с гелием. При микроплазменной сварке сжатая дуга может принимать конусообразную форму с вершиной, обращенной к изделию. Высокая концентрация энергии и иглоподобная форма малоамперной сжатой дуги обеспечивают получение узкого шва и малой зоны термического влияния, что снижает деформацию изделий на 25...30 % по сравнению с аргонодуговой сваркой.  [c.413]

Благодаря высокой концентрации энергии лазерного излучения в процессе сварки обеспечиваются малый объем расплавленного металла, незначительные размеры околощовной зоны (ОШЗ) термического. влияния, высокие скорости нагрева и охлаждения металла шва и ОШЗ. Эти особенности теплового воздействия предопределяют минимальные деформации сварных конструкций, специфику физико-химических и металлургических процессов в деталях при лазерной сварке, высокую технологическую прочность и характерные свойства полученных сварных соединений.  [c.421]


Аг+(2 20)% На Микроплазменная сваркя различных сплавов, кроме легких Высокая концентрация энергии. Восстановительная атмо сфера в зоне плавления Баллоны с водоро-ром взрывоопасны  [c.100]

Ограничение площади поперечного сечения статба дуги приводит к уменьшению площади активного пятна анода, зоны его перемещения и, как следствие, к увеличению концентрации энергии и температуры в приэлектродной области анода. Сварочная дуга с ограниченной площадью поперечного сечения столба дуги называется сжатой. Уменьшают площадь поперечного сечения столба дуги соплом специальной конструкции. Изменяя напряжение дуги, скорость движения охлаждающего газа и диаметр сопла, получают необходимые режимы сварки или резки.  [c.6]

Сварка низколегированных низкоуглеродистых конструкционных сталей. Низколегированная низкоуглеродистая сталь имеет ряд свойств, заметно отличающих ее сварку от сварки низкоуглеродистой стали. При сварке низколегированной стали режим выбирается в более узких границах по значению погонной энергии, металл шва для обеспечения равнопрочности с основным металлом должен обладать более высокой прочностью, содержание в металле щва углерода должно быть ниже. Указанные особенности вызваны тем, что металл околошовной зоны склонен несколько больше к росту зерна при перегреве и к закалке при повышенных скоростях остывания, легирующие элементы усиливают отрицательное влияние углерода. К качеству сварных соединений из низколегированной низкоуглеродистой стали предъявляются более жесткие требования, так как эти стйли чувствительнее к концентрации напряжений, чем низкоуглеродистые.  [c.129]


Смотреть страницы где упоминается термин Концентрация энергии в зоне сварк : [c.416]    [c.262]    [c.25]    [c.87]    [c.193]    [c.115]    [c.458]    [c.118]    [c.88]    [c.149]    [c.781]   
Сварка пластмасс ультразвуком (1974) -- [ c.23 ]



ПОИСК



Энергия сварки



© 2025 Mash-xxl.info Реклама на сайте