Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Провода железные

Мешающее индуктивное влияние на трубопроводы возможно только при тесном сближении на большой длине или параллельном прохождении с высоковольтными воздушными линиями электропередач или с контактными проводами железных дорог с тягой на переменном токе. Для кабелей телефонной связи эта проблема известна примерно с 1920 г., для трубопроводов она приобретает все большее значение в связи с увеличением рабочих токов и токов короткого замыкания в электрических установках и с улучшением качества изоляционного покрытия трубопроводов. Электромагнитные поля переменных токов, текущих в высоковольтных воздушных линиях или в контактных проводах железных дорог, наводят в близрасположенных проводниках электрического тока (независимо от того, находятся ли они на поверхности или под землей) соответствующее напряжение, которое при сквозном электрическом соединении всех труб трубопровода влечет за собой в появление токов вдоль трубопровода и ощутимой разности потенциалов между трубопроводом и окружающим его грунтом.  [c.429]


Для проводов железных многопроволочных. .............  [c.78]

В случае применения крана на погрузке и разгрузке железнодорожных вагонов расстояние между стрелой и контактным проводом железной дороги должно быть не менее 2м.  [c.217]

В случае применения крана на погрузке и разгрузке железнодорожных платформ (полувагонов, гондол) расстояние между стрелой и контактным проводом железной дороги должно быть выдержано не менее 2м.  [c.308]

Для проводов железных многопроволочных.  [c.159]

Определение массы грузов проводится железными дорогами - при погрузке в местах общего пользования  [c.470]

Провода биметаллические 116. Провода железные 116. Проводимость костная 239. Проводка 15.  [c.490]

Азотирование обычно проводят при 500—600°С. В железную герметически закрытую реторту (муфель), вставленную в печь,, помещают детали, подвергаемые азотированию.  [c.331]

После расплавления шихты, окисления значительной часги примесей и разогрева металла проводят период кипения ванны в печь загружают железную руду или продувают ванну подаваемым по трубам 3 (см. рис. 2.3) кислородом. Углерод в металле интенсивно окисляется, образуется оксид углерода. В это время отключают подачу топлива и воздуха в печь и удаляют шлак,  [c.34]

Магнитный контроль основан на намагничивании сварных или паяных соединений и обнаружении полей магнитного рассеяния на дефектных участках. Изделие намагничивают, замыкая им магнито-провод электромагнита или помеш,ая его внутрь соленоида. На поверхность соединения наносят порошок железной окалины или его масляную суспензию. Изделие слегка обстукивают для облегчения подвижности частиц порошка. По скоплению порошка обнаруживают дефекты, залегающие на глубине до 6 мм.  [c.244]

Определить натяжение в нижнем сечении несущего троса, поддерживающего провод электрической железной дороги (см. рисунок), при уклоне 1 = 30 / , пролете 1=75 м и нагрузке =1,6 кг]м  [c.54]

Следует стремиться по возможности избегать переходов под железными дорогами, реками и оврагами или уменьшать их число, проводя два параллельных коллектора по обеим сторонам реки или железной дороги.  [c.438]

Источниками блуждающих токов служат линии электрофицированных железных дорог, трамваев, метрополитена, линии передач постоянного тока, работающие по системе провод-земля , анодные заземлители установок катодной защиты не включенных в систему защиты рассматриваемого подземного металлического сооружения. Наиболее сильно коррозия под действием блуждающих токов проявляется вблизи электрофицированного рельсового транспорта. Процессы возникновения в земле блуждающих токов показаны на рис. 4.  [c.21]


Одновременно с новым строительством и введением прогрессивных видов тяги столь же широко проводились реконструкция путевого хозяйства ранее построенных железных дорог, обновление вагонного парка, совершенствование средств связи и управления движением поездов. Более половины главных путей поставлены на щебеночное основание, и около двух третей их полной длины уложены тяжелыми рельсами типов Р50, Р65 (64,9 кг/м) и Р75(75,1 кг/м), на протяжении около 75 тыс. км произведена сварка короткомерных рельсов в длинномерные. На линиях протяженностью 7 тыс. км осуществлена укладка железобетонных шпал, намного более прочных и долговечных, чем деревянные шпалы, свыше 7 тыс. км основных магистралей имеют бесстыковой путь со сварными рельсовыми плетями длиной по 800 м каждая. Значительно возрос уровень механизации работ по ремонту и текущему содержанию пути.  [c.214]

В 1932 г. состоялась I Всесоюзная конференция по электрификации железных дорог. Одобрив использование для целей электрификации постоянного тока напряжением 3000 в, она рекомендовала также применение (после соответствующей опытной проверки) системы однофазного переменного тока промышленной частоты напряжением 20 кв, более выгодной по техническим и экономическим показателям (уменьшение числа тяговых подстанций и превращение их из понизительно-трансформаторных в понизительные, значительная экономия меди вследствие уменьшения сечения контактных проводов, снижение потерь энергии в проводах и пр.), но предполагающей дополнительные затраты при замене воздушных линий межстанционной связи кабельными линиями для устранения электрических помех и недостаточно изученной к тому времени в эксплуатационных условиях.  [c.231]

Важным методом защиты является обработка среды с целью снижения ее агрессивности. В водных средах одним из основных окислителей является растворенный кислород. Снижение его концентрации проводят путем нагрева воды при пониженных давлениях, барботирования воды инертным газом, введения восстановителей (гидразин, сульфит натрия), пропускания воды через железные стружки и т. д. [471. В ряде случаев увеличение концентрации кислорода позволяет перевести металл в пассивное состояние. Этот прием применяется при защите теплообменной аппаратуры на атомных станциях [19 ]. Углекислый газ, растворимый в воде, понижает pH раствора и увеличивает агрессивность среды. Его концентрацию также снижают путем кипячения воды.  [c.48]

Источниками блуждающих токов обычно являются электрифицированные железные дороги, сварочное оборудование, катодные и электролизные установки, а также любые электрические сети, в которых одним из проводов служит земля. В некоторых случаях источниками блуждающих токов являются также линии электропередач на переменном токе при нарушении симметрии напряжения и тока отдельных фаз, замыканий на землю или утечек через изоляторы. Так, в трубопроводах, уложенных параллельно линиям электропередач, наблюдаются индукционные токи, напряжение которых может достигать до 100 В [1].  [c.43]

При наличии блуждающих токов рекомендуется пробное включение с продолжительной записью потенциала. Для этого применяется передвижная защитная установка с автоматическим регулированием потенциала. Испытание проводится в период наиболее интенсивной работы источников блуждающего тока, например электрифицированной железной дороги. Требуемое напряжение при дренаже блуждающих токов зависит не только от напряжения в цени тока, но и от напряжения трубопровод— рельс. Здесь особенно рекомендуется предусматривать запас по выходным параметрам защитной установки.  [c.219]

На электрифицированных участках железных дорог пути для перелива горючего из цистерн, не имеющие контактного провода, должны быть, как правило, изолированы [12] от остальной сети рельсовых путей при помощи изолирующих стыков, чтобы по возможности уменьшить стекание тока с рельсов в резервуар-хранилище, контактирующий с землей. Изолирующие стыки должны быть расположены за пределами опасной зоны, причем на тупиковом пути — в его начале, а на путях, соединяющихся с другими железнодорожными путями с обеих сторон — по обе стороны опасной зоны. Устанавливать изолирующие фланцы в трубопроводе к наполнительному патрубку в таком случае не нужно, поскольку защитный ток для резервуара-хранилища при соединении наполнительного устройства с этими рельсовыми путями возрастает лишь  [c.280]


При заземлении через пробивные предохранители упомянутые детали, а также сооружения, имеющие катодную защиту, обычно не имеют соединения с заземленными рельсами. Необходимо контролировать состояние предохранителей. Рельсы электрифицированных железных дорог являются обратным проводом (проводят обратный ток), и на них устанавливается некоторый потенциал по отношению к далекой земле. Этот потенциал называют также рельсовым (см. раздел 16). При работе станций катодной защиты с наложением тока от постороннего источника рекомендуется применять трансформаторы, имеющие между первичной и вторичной обмотками еще и защитную обмотку, или же трансформаторы, обмотки которых располагаются в отдельных камерах.  [c.282]

Сооружения, испытывающие влияние систем катодной защиты, можно через соответствующие сопротивления включить в систему защиты можно также дополнительно изолировать сооружения, находящиеся в зоне влияния. Опыты по пробному включению систем катодной защиты поблизости от железных дорог, поскольку эти работы могут повлиять на системы сигнализации, централизации и блокировки, можно проводить только с разрешения диспетчерской службы железной дороги.  [c.283]

Блуждающим называется ток, стекающий с токоведущих проводов электрических установок в окружающий грунт (среду [1]) где-либо в другом месте этот ток должен вернуться к электрическому генератору, которым он был выработан. Этот ток может быть постоянным или переменным, преимущественно с частотой 50 Гц (коммунальное электроснабжение) или 16 % Гц (электрическая тяга железных дорог). На своем пути в грунте блуждающий ток может натекать на металлические проводники, например на трубопроводы и оболочки кабелей. Постоянный ток при стекании с этих проводников в окружающую среду вызывает анодную коррозию (см. раздел 2.2 и рис. 2.5). Аналогичным образом и переменный ток во время анодной фазы тоже вызывает анодную коррозию. Поскольку электрическая емкость границы раздела материал — среда обычно бывает довольно большой, анодная коррозия существенно зависит от частоты, и при частотах 16 % или 50 Гц обычно наблюдается только при очень высоких плотностях тока [2—5]. В общем случае отношение коррозионный ток/переменный ток зависит также и от среды и вида металла, причем сталь, свинец и алюминий ведут себя ио-разному. Опыты по изучению коррозии [6] в грунте, вызываемой переменным током с эффективной плотностью /е/ =10 А-м при частоте 50 Гц, показали, что в стали переменный ток вызывает лишь незначительную коррозию — примерно до 0,5 % ее интенсивности при постоянном токе, в свинце — до нескольких процентов и в алюминии до 20 % интенсивности коррозии от постоянного тока. Таким образом, на практике коррозия, вызываемая переменным током, не может быть полностью исключена, в особенности на алюминии. Однако в случае свинца и стали при плотностях тока, обычно встречающихся в практических условиях, масштабы ее развития должны быть незначительными. Чаще всего коррозионные повреждения, как показали более тщательные исследования, были вызваны не переменным током, а явились следствием образования коррозионного элемента (см. раздел 4). В настоящем разделе рассматривается только коррозия блуждающими токами от установок постоянного тока.  [c.314]

Почти на всех электрифицированных железных дорогах с тягой на постоянном токе для возвращения рабочего тока к генератору (тяговой подстанции) используют ходовые рельсы. Ходовые рельсы укладывают на деревянных или бетонных шпалах, и на железных дорогах на поверхности они имеют более или менее хорошее электрическое соединение с грунтом. Грунт является электрическим проводником ионов, подключенным параллельно ходовым рельсам. Железнодорожную сеть следует считать заземленной на всей ее длине. Эти обстоятельства и связанная с ними опасность коррозии были выявлены уже давно (см. раздел 1.4). При соответствующем строительном исполнении и надлежащем контроле блуждающие токи от железных дорог можно уменьшить. Требуемые для этого мероприятия изложены в нормативных документах [1, 8], а также в рекомендациях Объединения предприятий общественного транспорта [9. Однако поскольку полностью избежать блуждающих токов нельзя, целесообразно, а в ряде случаев даже необходимо проводить дополнительные мероприятия по защите трубопроводов и кабелей. Важнейшими предпосылками для уменьшения блуждающих токов являются  [c.316]

Необходимое число тяговых подстанций для питания железных дорог на постоянном токе и расстояния между ними зависят от эксплуатационных особенностей. Для уменьшения блуждающих токов эти показатели следует выбирать так, чтобы разность потенциалов в рельсовой сети в среднем за определенное время не превысила некоторых предельных значений fl]. При этом необходимо проводить различие между средней разностью потенциалов в центральной части (ядре) железнодорожной сети и средним падением напряжения участков пути, ответвляющихся от центральной части сети.  [c.317]

Почти на всех железных дорогах ФРГ с тягой на постоянном токе положительный полюс преобразовательных тяговых подстанций соединен с контактным проводом или с токоведущим (третьим) рельсом, а отрицательный полюс —с ходовыми рельсами. Такая полярность считается обязательной [9]. Предлагавшаяся ранее система с тремя проводами и переключением полярности по участкам не оправдала себя. Соединение плюсового полюса с ходовыми рельсами технически возможно и прежде при использовании ртутных выпрямителей было даже целесообразным по соображениям защиты от прикосновения (для снижения напряжения прикосновения), но вызывало трудности при осуществлении мероприятий по защите от коррозии типа дренажа или усиленного дренажа блуждающих токов. Поэтому следует рекомендовать всегда соединять минусовой полюс с ходовыми рельсами.  [c.319]

Влияние токов в контактных проводах электрифицированных железных дорог с частотой 16 % Гц  [c.437]


Если эти Предельные условия не выдержаны, то необходимо сделать запрос у энергоснабжающего предприятия и провести более детальное рассмотрение. Рекомендации по предельным значениям расстояний для контактных проводов электрифицированных железных дорог находятся на стадии подготовки.  [c.440]

Этим способом спарпвагот детали вагонов и локомотивов [4], рельсы [1], [10], части е шодетов [8], контактные провода железных дорог, трамвайных  [c.311]

П. железный (П. ж.), проводник электрич. тока, выполняемый обычно в виде тянутой или катаной круглой проволоки. В качестве средства защиты от атмосферных влияний применяется омеднение и оцинковка поверхности проволоки или покрытие ее олифой. П. ж. находит весьма широкое применение в телеграфных линиях, а также в линиях передачи электрич. энергии для осветительных и силовых установок. В последнем случае применение П. ж. взамен медных делается экономичным тогда, когда сечение медных проводов недостаточно используется в электрич. отношении и устанавливается по соображениям необходимой механич. прочности. Кроме того замену медных проводов железными и возможно и целесообразно производить при устройстве заземлений, в установках высокого напряжения и в некоторых случаях в сетях низкого напряжения и устройствах радиолюбительских антенн. В качестве материала для П. ж. применяется мягко отожженная железная проволока применение отожженной проволоки мотивируется следующим а) большей электропроводностью по сравнению с неото-жженной б) получением частичного или полного отжига при сращивании проводов путем пайки, сварки или термитным способом  [c.418]

Сращивание концов проводов железных и медных вручную производится обмоткой их тонкой (спаечной) проволокой с пропайкой сростка третником. Алюминиевые, биметаллические и медные провода сращивают с помощью трубочек из того же металла, в которые вставляют оба конца, затем скручивают ее винтообразно на 2 оборота. Железные провода в настоящее время соединяются электросваркой концов, для чего служат подвижные агрегаты из двигателя 4—6 сил, генератора переменного тока 110—120 V и трансформатора для получения тока до 1000 А.  [c.66]

Применяют различные виды наплавочных материалов, например порошковую смесь карбидов W2 - -W в эвтектической пропорции . Этой смесью заполняют железную трубку. Наплавление проводят с помощью расплавления железной трубки. Наплавленный слой состоит из железа с bkjuoi-ния-ми карбидов вольфрама. При высокой твердости и износостойкостн, превышающей остальные наплавочные материалы, этот наплавочный материал обладает весьма высокой хрупкостью. Предел прочности при изгибе составляет всего лишь 30—50 кгс/мм (при растяжении — близок к нулю).  [c.507]

Совершенно гибкой называется нить, которая способна сопротивляться только растяжению. Из шести компонентов внутренних сил в поперечных сечениях такой нити только осевая растягивающая сила не равна нулю. В инженерной практике широко распространены системы, которые с известным приближением могут рассматриваться как гибкие нити. Таковы воздушные линии электрических проводов, провода телеграфной сети, контактные провода электрифицированных железных дорог и трамваев, цепи висячих мостов, тросы канатных дорог и кабелькранов и т. п.  [c.146]

Задача 134. На рис. 112 показана мачта, служащая для крепления проводов электрической железной дороги. Верхний провод имеет натяжение Р, а нижний натягивается при помощи груза М и троса E DK, перекинутого через неподвижный блок С и подвижный блок D. Высота проводов над уровнем опор равна соответственно а и й, кратчайшее расстояние от опоры В до свешивающейся части троса С равное, расстояние между опорами 2d, вес мачты G, вес груза Q. Определить натяжение нижнего троса и вертикальную составляющую реакции в опоре А, если мачта симметрична относительно прямой т—п. Трением и размерами блокоз пренебречь.  [c.54]

Электродренажная защита сооружений от коррозии, вызываемой блуждающими токами. Блуждающие токи возникают в основном при работе электрифи-а1ированного транспорта (железная дорога, трамвай) и линий электропередачи постоянного тока по системе провод — земля. Особую опасность поедставляют блуждающие токи от источников постоянного тока. Один ампер тока уносит около 10 кг железа в год. Блуждающие токи, которые собираются трубопроводом, достигают сотен ампер. Поэтому коррозионные поражения, обусловленные воздействием блуждающих токов, могут возникнуть уже на стадии строительства. Это объясняет важность принятия мер защиты от блуждающих токов с -момента укладки сооружения в грунт.  [c.77]

Сталь как проводниковый материал используется также в виде шин, рельсов трамваев, электрических железных дорог (включая третий рельс метро) и пр. Для сердечников сталеалюминиевых проводов воздушных линий электропередачи (см. выше) применяется особо прочная стальная проволока, имеюи ая 0 =1200—1500 Л Па и А/// = 4—5 %. Обычная сталь обладает малой стойкостью к коррозии даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком. Непрерывность слоя цинка проверяется опусканием образца провода в 20 %-иый раствор медного купороса при этом на обнаженной стали в местах дефектов оцинковки откладывается медь в виде красных пятен, заметных на общем сероватом фоне оцинкованной поверхности провода. Железо имеет высокий температурный коэффициент удельного сопротивления (см. табл. 7-1 и рис. 7-15). Поэтому тонкую железную проволоку, помещенную для защиты от окисления в баллон, заполненный Еюдородом или иным химическим неактивныи газом, можно применять в бареттерах, т. е. в приборах, использующих зависимость сопротивления от силы тока, нагревающего помещенную в них проволочку, для поддержания постоянства силы тока при колебаниях напряжения.  [c.204]

В практике часто встречаются случаи, когда объектом расчета является сложное сочетание различных тел, например бетонное перекрытие с замурованными железными балками, изолированные трубопроводы с открытыми фланцами, барабаны паровых котлов и др. Расчет теплопроводности таких сложных объектов обычно производят раздельно по элементам, мысленно разрезая их плоскостями параллельно и перпендикулярно направлению теплового потока. Однако вследствие различия термических сопротивлений отдельных элементов, а также вследствие различия их формы в местах соединения элементов распределение температур может иметь очень сложный характер, и направление теплового потока может оказаться неожиданным. Поэтому указанный способ расчета объектов имеет лишь приближенный характер. Более точно расчеты сложных объектов можно провести лишь в том случае, если известно распределение изотерм и линий тока, которое можно определить опытным путем при помощи методов гидро- или электроаналогии. В ряде случаев достаточно точный расчет можно получить путем последовательного интегрирования дифференциального уравнения теплопроводности (см, 2-2 и 7-1) для различных элементов сложной конструкции. Однако для таких расчетов необходимо привлекать современную вычислительную технику и машинный счет. Наиболее надежные данные по теплопроводности сложных объектов можно получить только путем непосредственного опыта, который проводится или на самом объекте или на его уменьшенной модели.  [c.25]

Грузовой вагонный парк на 98% состоял из так называемых нормальных двухосных вагонов грузоподъемностью 15—16 т с ручными тормозами и с ручными сцепными приборами. Опыт оборудования автосцепкой нескольких паровозов и 250 вагонов пассажирского парка Московско-Казанско-Рязанской железной дороги, относящийся к 1906 г., не был распространен на другие дороги [11]. Для регулирования движения поездов примерно на 45% железнодорожной сети использовалась межстанционная телеграфная связь, в пределах 41% сети применялась электрожезловая система с аппаратурой, поставлявшейся иностранными фирмами, и только около 14% сети было оборудовано устройствами полуавтоматической блокировки. Опыты установления межстанционной радиосвязи, проводившиеся С. С. Жидковским с 1913 г. на Юго-Западной железной дороге, в 1914 г. были прекращены по требованию прокурорского надзора [4]. Управление подавляющим большинством стрелок, станционных и путевых сигналов осуществлялось вручную. Средствами механической централизации — с центральных станционных постов — управлялось лишь 11% общего их числа, хотя уже тогда имелись рациональные отечественные конструкции систем централизации и блокировки, разработанные Я. Н. Гордеенко (1851 —1922). Устройства электрической централизации [были введены только на двух станциях.  [c.202]


Незадолго до начала текущего столетия из США поступили первые тревожные сообщения о разрушающем действии блуждающих токов. В Германии в связи с развитием снабжения бытовых потребителей постоянным током и с созданием сети железных дорог с тягой на постоянном токе тоже появилась новая опасность коррозии подземных трубопроводов— электролиз, под действием блуждающих токов. В 1879 г. на Берлинской промышленной выставке Вернер фон Сименс продемонстрировал первую в мире электрическую железную дорогу с тягой на постоянном токе. Спустя два года в Берлин-Лихтерфельде началась эксплуатация первого электрического трамвая, причем один рельс был положительным, а другой отрицательным, и рабочее напряжение составляло 140 В. На участке от Вестэнда до Шпандауэр Бокк Сименс оборудовал в 1882 г. первую экспериментальную трамвайную линиЮ с верхним контактным проводом. Участок вначале был оборудован двумя верхними контактными проводами, так что никакие блуждающие токи не могли стекать в грунт [54]. К сожалению, впоследствии эту схему не удалось сохранить.  [c.39]

Рис. 12.5. Защитные мероприятия на электрифицированных железных до рогах при сооружении резервуаров-хранилищ с катодной защитой (зона влияния верхнего контактного провода в проекте стандарта DIN 57115, часть I установлена равной 4 м нормативное значение 5 м по нормали VDE 0115а 12 теперь не применяется [12]) / — станция катодной защиты 2 — защитное заземление по нормали VDE 0115, 12 3 — изолирующий фланец и искровой разрядник (можно не применять, если защитное заземление выполнено с подсоединением через пробивной предохранитель) 4 — наполнительный штуцер S — изолирующий фланец 6 — искровой разрядник (по АББ, 9) 7 — перемычка для уравнивания иотенциалов S — заземление рельсов S — зона влияния верхнего контактного провода (до 4 М) Рис. 12.5. <a href="/info/648976">Защитные мероприятия</a> на электрифицированных железных до рогах при сооружении <a href="/info/39768">резервуаров-хранилищ</a> с <a href="/info/6573">катодной защитой</a> (зона влияния верхнего <a href="/info/266733">контактного провода</a> в проекте стандарта DIN 57115, часть I установлена равной 4 м нормативное значение 5 м по нормали VDE 0115а 12 теперь не применяется [12]) / — <a href="/info/39790">станция катодной защиты</a> 2 — <a href="/info/106323">защитное заземление</a> по нормали VDE 0115, 12 3 — <a href="/info/495410">изолирующий фланец</a> и <a href="/info/178809">искровой разрядник</a> (можно не применять, если <a href="/info/106323">защитное заземление</a> выполнено с подсоединением через пробивной предохранитель) 4 — наполнительный штуцер S — <a href="/info/495410">изолирующий фланец</a> 6 — <a href="/info/178809">искровой разрядник</a> (по АББ, 9) 7 — перемычка для уравнивания иотенциалов S — <a href="/info/39635">заземление рельсов</a> S — зона влияния верхнего контактного провода (до 4 М)
Поскольку на электрифицированных железных дорогах близрасполо-женные трубопроводы тоже могут проводить обратный ток, перед разборкой трубопровода и перед демонтажом металлических деталей необходимо предусмотреть электропроводные соединения с заземлением рельсов с обеих сторон или же закоротить вынутый участок перемычкой, чтобы предотвратить искровой разряд [12].  [c.283]

Мероприятия по предотвращению или уменьшению блуждающих токов регламентированы в нормали VDE 0150 [1]. Земля не должна использоваться в обычных условиях работы для прохождения тока. Исключением являются только небольшие и кратковременно протекающие токи от установок связи, токи от железных дорог с тягой на постоянном токе, линии высоковольтных электропередач и системы катодной защиты. Для этих установок регламентированы особые требования. Все провода, по которым течет ток, и части установки, относящиеся к цепи рабочего тока, должны быть изолированы. В протяженных установках ностояп-ного тока с большими рабочими токами целесообразно предусматривать контроль замыкания на землю. Это позволит сразу же выявить замыкание на землю и устранить неисправность в общем случае до того, как произойдет второе замыкание.  [c.315]


Смотреть страницы где упоминается термин Провода железные : [c.430]    [c.359]    [c.75]    [c.239]    [c.215]    [c.113]    [c.424]   
Техническая энциклопедия том 21 (1933) -- [ c.116 ]



ПОИСК



Влияние токов в контактных проводах электрифицированных железных дорог с частотой 16 2з Гц



© 2025 Mash-xxl.info Реклама на сайте