Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изолирующие фланцы

Секционирование трубопроводов осуществляется с помощью изолирующих вставок (рис. 282), монтируемых на базе стандартного фланцевого соединения с использованием резиновой прокладки и текстолитовых втулок и шайб. Секционирование приводит к образованию распределенных катодных и анодных зон, число которых пропорционально количеству изолирующих фланцев.  [c.397]

Действие блуждающего тока можно уменьшить применением секционирования, которое заключается в том, что по длине трубопровода устанавливают несколько изолирующих фланцев. Изолирующие фланцы устанавливаются в отдельных колодцах.  [c.25]


При проектировании электрохимической защиты трубопровода следует иметь в виду, что большее число изолирующих фланцев на трубопроводе значительно усложняет эксплуатацию трубопровода и средств защиты. Неправильный выбор может сделать применение изолирующих фланцев не только бесполезным, но и вредным, так как пропорционально числу фланцев увеличивается число местных анодных зон. Анодные зоны устраняют присоединением к трубопроводу заземлённых токоотводов, а также шунтированием фланцев регулируемым сопротивлением.  [c.25]

А —активным сопротивлением Б — разделительным устройством В — запирающим устройством Г — изолирующими фланцами I — силовой кабель 2 — защитное заземление 3 — сопротивление 4 — анодный заземлитель 5 — силовые вентили 6 —разрядник 7 — стабилитрон 8 — ограничитель напряжения 9 — изолирующий фланец 10 — газопровод 11 —панельный жилой дом 12 — теплопровод (водопровод).  [c.21]

На рис, 3, Г показана схема СКЗ трубопроводов различного назначения 10 и 12, на одном из которых установлены изолирующие фланцы 9 при вводе в заземленные потребители И. Установленные на трубопроводе 10 изолирующие фланцы 9 практически эффекта не дают, так как они шунтируются другим трубопроводом 12.  [c.22]

На рис. 4 приведена схема катодной защиты подземного газопровода I = 6 км D =300 мм, Ras = 3.10 Ом.м , имеющего пересечения с железной электрифицированной дорогой, бронированным кабелем и стальным водопроводом. Опытная установка на газопроводе показала, что при установке изолирующих фланцев I и перемычки 2, шунтирующей отсеченный газопровод в футляре 3, для защиты газопровода требуется / .э = 2,5 А. Однако на кабеле и водопроводе появились анодные и знакопеременные зоны, которые вынуждены были устранить перемычками с регулируемым сопротивлением 4, при этом /к.з увеличился до 25А, т. ев 10 раз.  [c.28]

Таким образом, повышение эффективности катодной защиты любого подземного трубопровода может быть достигнуто использованием изолирующих фланцев или изолирующих вставок. При этом наибольший техникоэкономический эффект дает применение изолирующих фланцев, изготовленных и испытанных в стационарных условиях.  [c.36]

Устанавливая изолирующие элементы 8 через определенные участки на таком трубопроводе 7, уменьшают величину затекания в него блуждающего тока. Этот метод требует к себе особого внимания, т. к. на трубопроводе появляются анодные зоны в местах установки изолирующих элементов. Причем, анодные зоны часто меняются по длине и зависят от величины и положения нагрузки Rt,. Кроме того, нарушается целостность трубы, которая требует-дополнительного контроля, так как не исключена утечка транспортируемого продукта. В Башкирии этот метод применяется только на пересечениях трубопроводов с рельсовой сетью (см. рис. 4). Блуждающие токи (показаны стрелками), натекающие на газопровод и футляр, отводятся в рельсы через поляризованный токоотвод 5, зато натекание блуждающих токов на линейную часть газопровода, благодаря установленным изолирующим фланцам, снижается в сотни раз. Если заземлить близлежащий к рельсам трубопровод через определенные участки, то переходное его сопротивление резко уменьшится, а стекающие с рельсов в землю токи, подхватываемые таким трубопроводом, будут возвращаться в рельсы через другие заземленные участки трубопровода.  [c.52]


Проверку и приемку защитных устройств должны осуществлять, как правило, в процессе строительства защищаемого сооружения в строгом соответствии с проектом. Однако ка практике часто наблюдаются случаи, когда строительство средств активной защиты проводят после сдачи коммуникаций в эксплуатацию, а это в свою очередь приводит к излишним работам и соответственно удорожанию сметной, стоимости строительства средств защиты. Так, например, стоимость контрольно-измерительного пункта строящегося трубопровода составляет 42—50 рублей, уложенного в три раза дороже. Проверку протекторов, электродов анодного заземления и соединительных кабелей проводят обычно внешним осмотром, а исправность катодных станций, электродренажных установок, вентильных блоков и изолирующих фланцев — путем электрических измерений на специальном стенде.  [c.65]

При расшифровке результатов измерений для трубопровода с катодной защитой, когда наряду с потенциалами включения и выключения определяют также силу токов в трубе, сопротивления изолирующих фланцев и между трубопроводом и футляром нужно рассчитывать также плотности защитного тока и сопротивления покрытия на отдельных  [c.97]

Старые трубопроводы нередко имеют многочисленные места контактов с другими трубопроводами, кабелями или иными заземленными сооружениями, которые обнаруживаются только после включения катодной защиты. Однако и у новых трубопроводов очень часто встречаются закорачивания изолирующих фланцев, контакты с другими трубопроводами или кабелями, соприкосновения о футляром, соединения с зазем-лителями электрических установок или контакты с мостовыми конструкциями и шпунтовыми стенками. Низкоомные контакты, которые часто делают невозможной катодную защиту всего участка трубопровода, могут быть локализованы (т. е. может быть установлено их местонахождение) методами измерений на постоянном и переменном токе [37, 38].  [c.119]

По кривым изменения потенциалов и тока в стенке Трубопровода на нижней части рис. 3.24 можно судить о виде дефекта и оценить его приблизительное местонахождение. Только поблизости от станции катодной защиты благодаря анодной воронке напряжений достигается более отрицательный потенциал выключения между трубопроводом и грунтом (по медносульфатному электроду), чем 1/ си=—0,85 В. Силу тока, отдаваемого станции катодной защиты, потребовалось увеличить на 50 %. Из этого тока теперь 75 % поступает по направлению от изолирующего фланца. На координате 26,480 км еще почти весь защитный ток был измерен как ток в стенке трубопровода (1,22 А). Напротив, на координате 27,210 м через стенку трубопровода течет уже лишь незначительный ток 0,08 А. Это означает, что весь ток входит в  [c.120]

Электрическое разъединение места пересечения или параллельно проложенных трубопроводов при помощи изолирующих фланцев.  [c.243]

Рис. И.И. Катодная внутренняя защита от коррозии для устранения неблагоприятного влияния за изолирующими фланцами в трубопроводах для рассола / — преобразователь СКЗ 2—амперметр 3—изолирующий фланец 4 — изолирующая кольцевая прокладка 5 — внутреннее покрытие б — анод 7 — электрод сравнения S — катодный вольтметр К — катодная сторона А — анодная сторона Рис. И.И. <a href="/info/495131">Катодная внутренняя защита</a> от коррозии для устранения неблагоприятного влияния за изолирующими фланцами в трубопроводах для рассола / — преобразователь СКЗ 2—амперметр 3—изолирующий фланец 4 — изолирующая кольцевая прокладка 5 — внутреннее покрытие б — анод 7 — <a href="/info/6873">электрод сравнения</a> S — <a href="/info/393458">катодный вольтметр</a> К — катодная сторона А — анодная сторона
Перемычки для уравнивания потенциалов, изолирующие фланцы  [c.280]

Если защитный ток для резервуаров-хранилищ с катодной защитой от коррозии из-за таких соединений получается слишком большим, то обычно устанавливают изолирующие фланцы в трубопровод, отходящий от наполнительного патрубка. При этом нужно следить за тем, чтобы перемычка для уравнивания потенциалов не была оборвана (т. е. действовала постоянно). Если на железнодорожных линиях с тягой на постоянном токе постоянно действующее соединение между рельсами и переливным устройством создает опасность коррозии блуждающими токами, то уравнивание потенциалов следует выполнять только во время наполнения резервуара-хранилища (из железнодорожной цистерны).  [c.280]


На электрифицированных участках железных дорог пути для перелива горючего из цистерн, не имеющие контактного провода, должны быть, как правило, изолированы [12] от остальной сети рельсовых путей при помощи изолирующих стыков, чтобы по возможности уменьшить стекание тока с рельсов в резервуар-хранилище, контактирующий с землей. Изолирующие стыки должны быть расположены за пределами опасной зоны, причем на тупиковом пути — в его начале, а на путях, соединяющихся с другими железнодорожными путями с обеих сторон — по обе стороны опасной зоны. Устанавливать изолирующие фланцы в трубопроводе к наполнительному патрубку в таком случае не нужно, поскольку защитный ток для резервуара-хранилища при соединении наполнительного устройства с этими рельсовыми путями возрастает лишь  [c.280]

Грозозащита, изолирующие фланцы и искровые разрядники  [c.282]

По нормали VDE 0115 а, 12 [12] для искровых разрядников на складах горючих жидкостей классов опасности AI, АП и В около электрифицированных железных дорог предписывается при их размещении в опасной зоне взрывобезопасное исполнение. Изолирующие фланцы и искровые разрядники должны кроме того иметь надежное изоляционное покрытие, предохраняющее от случайного закорачивания, например, монтажным инструментом. Напряжение срабатывания искрового разрядника согласно нормали VDE 0433 часть 3/4.66, 5а [15] при импульсном напряжении 1/2/50 должно составлять не более 50 % пробивного напряжения переменного тока (считая по эффективному значению) изолирующего фланца.  [c.282]

На складах горючих жидкостей класса опасности АП1 достаточно иметь закрытые пожаробезопасные искровые разрядники, которые должны срабатывать до пробоя изолирующего фланца. Если склад горючих материалов располагается поблизости от заземления мачт высоковольтных линий, то необходимо особо тщательно проверить, не имеется ли (недопустимой) близости по нормативам АББ [14].  [c.282]

Поскольку сопротивление заземления объекта в целом обычно бывает очень низким, требуется весьма большой защитный ток. Однако обусловленные этим большие затраты на сооружение анодных заземли-телей компенсируются возможностью обойтись без изолирующих фланцев и главным образом благодаря более высокой эксплуатационной надежности. Типичными примерами применения являются трубопроводы, заземлители, кабели и резервуары-хранилища на электростанциях и на нефтеперерабатывающих заводах. Но такая защита может быть применена и на насосных или компрессорных станциях и на станциях для измерения и регулирования расхода продукта, а также на железобетонных колодцах, электрически не изолированных от самого трубопровода [2].  [c.287]

Эффективность катодной защиты любого сооружения определяется качеством электрической изоляции и зависит от входного его сопротивления. Поэтому при осуществлении катодной защиты необходимо изолировать защищаемое сооружение от всякого рода заземленных объектов. Требованиями СНиПа П-37-76 Газоснабжение. Внутренние и наружные устройства определено применение изолирующих фланцев на газопроводах при вводе их к потребителям, где возможен электрический контакт с заземленными конструкциями. Это мероприятие позволяет снизить защитный ток установки в два-три раза. Эффективен изолирующий фланец и на тепловодонроводах, что подтверждается испытаниями электропроводности воды в лабораторных условиях.  [c.34]

Так, например, в двухметровый отрезок металлической трубы D = 100 с четырьмя изолирующими фланцами и заглушкой с одного торца, заливалась обычная питьевая вода из водопроводного крана. При подключении посто-  [c.34]

С изменением Уоб в сторону отрицательных значений повышалась плотность тока и время до разрушения покрытий сокращалось. При Уоб = —1,35В покрытия разрушались через 3,5 года. Целесообразность применения изолирующих фланцев не требует доказател ютв. Однако промышленностью не освоен серийный выпуск надежных изолирующих соединений, а также отсутствует нормативно-техническая документация с необходимыми требованиями по их установке.  [c.35]

Таким образом, изолирующие фланцы на тепловодопроводах, имеющих катодную защиту, дают значительный экономический эффект. Основным недостатком изолирующего соединения с электропроводной жидкостью является возникновение анодных зон. Такие зоны устраняются токоотводами или шунтированием фланца сопротивлением [3]. Учитывая малую величину тока, протекающего  [c.35]

В декабре 1906 г. в работе комиссии по блуждающим токам наметился существенный сдвиг, поскольку Союз немецких электротехников и Объединение немецких управлений трамвайных линий и малых железных дорог выразили готовность к сотрудничеству. В результате переговоров с М. Ульбрихтом и Ф. Кольраушем в марте 1907 г. была учреждена одна из первых комиссий Союза немецких электротехников, которая в 1910 г. издала Инструкцию по защите газопроводных и водопроводных труб от вредных влияний токов электрифицированных железных дорог, работающих на постоянном токе и использующих рельсы в качестве проводников . Однако непосредственный обратный отвод блуждающих токов в рельсы этими правилами был запрещен. Поэтому пытались уменьшить блуждающие токи путем устройства изолирующих фланцев и усовершенствования изоляционного покрытия труб. Чтобы сократить число изолирующих фланцев, нередко ограничивались только пересечениями с трамвайными путями. В результате этого перед изолирующими фланцами часто образовывались новые места стекания блуждающих токов. Чтобы обойтись без запрещеиного непосредственного соединения с трамвайными рельсами, выполняли соединения с защитными трубами без покрытий или с железными балками, зарытыми в грунт параллельно рельсам. Хотя вскоре было установлено, что таким способом решить проблему не удается, только в 1954 г. с выпуском новой редакции нормали VDE 0150 была создана правовая основа для узаконения сооружавшихся после 1950 г. установок дренажной защиты [13]. Для защиты от все более усиливающегося воздействия высоковольтных систем на трубопроводы, имеющие все более совершенные изоляционные покрытия, Рабочее объединение по вопросам коррозии (АФК) совместно с арбитражным ведомством, контролировавшим воздействие высоковольтных систем, разработали соответствующие мероприятия [62].  [c.41]


Увеличение требуемого защитного тока нз-за контакта с посторонним заземленным сооружением нлн закорочения изолирующего фланца  [c.218]

Такое влияние проявляется и на участках трубопровода за изолирующим фланцем, причем обычно при малых напряжениях закорачивать этот фланец не требуется. При более высоком напряжении и смещении потенциала в положительную сторону изолирующий фланец в таком случае можно закоротить уравнительным сопротивлением. В случае водопроводов может потребоваться установка внутри них дополнительной системы катодной защиты или же применение участка с изолирующей внутренней футеровкой (см. раздел 11.6).  [c.238]

ПОГц) изолирующих фланцев в водопроводе в зависимости от ширины изолирующего кольца I н условного прохода DN (цифры у кривых — DN, мм) р=240 Ом-м  [c.264]

Резервуары и их эксплуатационные трубопроводы, оборудуемые системой катодной защиты, должны быть электрически изолированы от всех других металлических сооружений. В случае резервуаров-хранилищ это делается установкой изолирующих трубных вставок (фланцев), которые для обеспечения полной защиты должны располагаться так, чтобы все эксплуатационные стальные трубопроводы, соединенные с резервуарами, а также и подсоединительные изолированные медные трубопроводы, если они уложены в землю, могли бы быть включены в систему катодной защиты. Таким образом, при вводах в здания изолирующие фланцы должны располагаться внутри зданий и в местах отбора топлива, например у опор бензозаправочных колонок.  [c.267]

Рис. 12Л. Определение требуемого защитного тока для топливозаправочной станции методом пробного подключения системы защиты / — вспомогательный анодный заземлитель 2 — анодные и катодные кабели 3 — трубопроводы 4 — здание 5 — измерительный канал на глубине около 2,3 м S — регулируемое напряжение постоянного тока 7 — изолирующие фланцы в топлнворазборные колонки Рис. 12Л. Определение требуемого защитного тока для <a href="/info/39806">топливозаправочной станции</a> методом пробного подключения системы защиты / — вспомогательный <a href="/info/39582">анодный заземлитель</a> 2 — анодные и катодные кабели 3 — трубопроводы 4 — здание 5 — <a href="/info/306968">измерительный канал</a> на глубине около 2,3 м S — регулируемое <a href="/info/401526">напряжение постоянного</a> тока 7 — изолирующие фланцы в топлнворазборные колонки
Резервуар с мазутом (мазутохранилище), нуждающийся в защите, располагается (рис. 12.2) под землей поблизости от здания. Граница имеющегося в распоряжении земельного участка проходит на расстоянии нескольких метров от резервуара со стороны, противоположной зданию. Стальные трубопроводы, подсоединенные к мазутному резервуару, которые тоже должны быть подключены к системе защиты, имеют изоляционное покрытие. Изолирующие фланцы, необходимые для электрической изоляции мазутного резервуара, располагаются внутри здания. Для расчета системы катодной защиты приняты следующие параметры, полученные при пробном пуске системы емкость резервуара (двухстенная конструкция) 20 м площадь поверхности резервуара и трубопроводов 50 м сопротивление растеканию тока с мазутного резервуара в грунт 30 Ом сопротивление изолирующих фланцев (вставок) 28 Ом удельное электросопротивление грунта в месте расположения анодных зазем-лителей, измеренное при расстояниях между зондами 1,6 и 3,2 м (среднее значение для восьми измерений) 35 Ом-м требуемый защитный ток (при потенциале выключения по медносульфатному электроду l/ u/ usOi =—плотность защитного тока 200 мкА-м .  [c.273]

Рис. 12.2. Катодная защита резервуара мазутохранилища магниевыми протекторами / — здание 2 — изолирующие фланцы Л — посторонние сооружения 4 — магниевые протекторы а, и 5 — анодные и катодные кабели 6 — трубопроводы 7 — измерительный канал на глубине около 2,3 м — регулируемое сопротивление (резистор, настраиваемый на 8 Ом) 9 — измерительный пункт Рис. 12.2. <a href="/info/6573">Катодная защита</a> резервуара мазутохранилища <a href="/info/168396">магниевыми протекторами</a> / — здание 2 — изолирующие фланцы Л — посторонние сооружения 4 — <a href="/info/168396">магниевые протекторы</a> а, и 5 — анодные и катодные кабели 6 — трубопроводы 7 — <a href="/info/306968">измерительный канал</a> на глубине около 2,3 м — регулируемое сопротивление (резистор, настраиваемый на 8 Ом) 9 — измерительный пункт
Рнс. 12.3. Система катодной защиты топливозаправочной станции с преобразователем, питаемым от сети / — искровые разрядники 5 — наполнительные (заправочные) колодцы 3 — измерительный канал на глубине около 2,3 м < —анодные и катодные кабели J — преобразователь станции катодной защиты б — изолирующие фланцы 7 — топливоразборные колонки  [c.276]

При монтаже изолирующих фланцев нужно следить за тем, чтобы они были доступны для контроля и в случае необходимости снабжены измерительными проводами. Кроме того, изолирующие вставки, если они расположены во взрывоопасных зонах, должны быть закорочены взрывобезопасными искровыми разрядниками для защиты от возможных атмосферных разрядов (см. раздел 12.5). При этом нужно не забывать и о том, что перенапряжение или напряжение пробоя изолирующих фланцев на вводах труб в здание и на других аналогичных устройствах должно быть гораздо более высоким, чем напряжение срабатывания соответствующих искровых разрядников.  [c.278]

Поскольку при катодной защите изолирующие фланцы находятся под некоторым электрическим напряжением, необходимо (особенно во взрывоопасных зонах) заботиться о том, чтобы эти фланцы, разъединяющие отдельные секции трубопровода, не могли быть закорочены металлически проводящим соединением для этого они должны иметь, в частности, прочное изоляционное покрытие.  [c.278]

На рельсовых путях для перелива горючего из цистерн, имеющих контактный провод, предусматривать изолирующие стыки не нужно. При переливе горючего контактный провод нужно отключать и соединять с системой заземления железнодорожного нути. В таких случаях для обеспечения возможности катодной защиты резервуара-хранилища от коррозии в трубопроводе к наполнительному патрубку всегда нул4н0 предусматривать изолирующие фланцы.  [c.281]

Согласно общим директивам Комиссии по сооружению систем грозозащиты (АББ, 9.4 [14]), заземлители, к которым относятся также и подземные металлические трубопроводы, если они находятся на расстоянии до 2 м от заземлителя системы грозозащиты, должны быть соединены с ним непосредственно или через искровой разрядник. Если в трубопроводах, имеющих соединение с заземлителем системы грозозащиты, встроены изолирующие фланцы, то эти фланцы должны быть закорочены искровыми разрядниками.  [c.282]

Если применяются коррозионностойкие материалы, например коррозиоиностойкая (нержавеющая) сталь или медь, то для предотвращения образования коррозионного элемента необходимо электрическое отсоединение деталей сооружения из углеродистых сталей. При катодной защите от коррозии стальных конструкций детали сооружения из более коррозионностойких материалов, не имеющие изоляционного покрытия, должны быть толсе включены в систему защиты путем закорачивания изолирующих фланцев через (омические) сонротивления соответствующей величины, так чтобы перед изолирующим фланцем эти материалы (металлы) не испытывали анодного влияния (диапазоны защитных нотенциалов см. в разделе 2.4). Детали сооружения из материалов повышенной коррозионной стойкости, имеющие изоляционное покрытие, могут быть включены в систему катодной защиты без существенных трудностей.  [c.284]

Предпосылкой для обычной катодной защиты является. электрическое отсоединение защищаемого объекта от всех посторонних сооружений, имеющих низкое омическое сопротивление по отношению к земле (см. раздел 11.1). Однако на промышленных предприятиях такое отсоединение бывает связано с техническими трудностями, поскольку число трубопроводов обычно весьма велико и многие из них имеют большой диаметр. Защитные мероприятия получаются не только весьма громоздкими и дорогими, но и не дают надезкного длительного эффекта ввиду возможного контакта с посторонними сооружениями и закорачивания изолирующих фланцев. Такие случаи наблюдаются особенно ири реконструкции и расширении существующих систем трубопроводов. Технические трудности встречаются на установках, имеющих взрывоопасные участки, а также на водопроводах большого диаметра, нанри-  [c.286]



Смотреть страницы где упоминается термин Изолирующие фланцы : [c.396]    [c.17]    [c.36]    [c.36]    [c.120]    [c.276]    [c.287]    [c.294]   
Смотреть главы в:

Справочник по защите подземных металлических сооружений от коррозии  -> Изолирующие фланцы



ПОИСК



Вал изолированный

Грозозащита, изолирующие фланцы и искровые разрядники

Перемычки для уравнивания потенциалов, изолирующие фланцы в трубопроводах и изолирующие стыки в рельсовых путях

Фланец



© 2025 Mash-xxl.info Реклама на сайте