Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Заземление рельсов

Заземленные рельсы и защитное заземление на электрифицированных железных дорогах, обратные токи, потенциал рельсов  [c.281]

При заземлении через пробивные предохранители упомянутые детали, а также сооружения, имеющие катодную защиту, обычно не имеют соединения с заземленными рельсами. Необходимо контролировать состояние предохранителей. Рельсы электрифицированных железных дорог являются обратным проводом (проводят обратный ток), и на них устанавливается некоторый потенциал по отношению к далекой земле. Этот потенциал называют также рельсовым (см. раздел 16). При работе станций катодной защиты с наложением тока от постороннего источника рекомендуется применять трансформаторы, имеющие между первичной и вторичной обмотками еще и защитную обмотку, или же трансформаторы, обмотки которых располагаются в отдельных камерах.  [c.282]


При проектировании и практическом использовании дренажных установок нельзя забывать об опасности усиления коррозии соседних сооружений, не имеющих электрического контакта с защищаемым, а также усиления коррозии рельсового пути и крепежа (костылей и накладок), так как при работе дренажа токи утечки обычно возрастают. Последнее обусловлено заземлением рельсов через трубопроводы и уменьшением общего сопротивления в цепи, шунтирующей рельсовый путь.  [c.198]

Источниками блуждающих постоянных токов обычно являются пути электропоездов, заземления линий постоянного тока, установки для электросварки, системы катодной защиты и установки для нанесения гальванических покрытий. Источники блуждающих переменных токов — это обычно заземления линий переменного тока или токи, индуцированные в трубопроводах проложенными рядом электрическими кабелями. Пример возникновения блуждающего постоянного тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показан на рис. 11.1. Вследствие плохого контакта рельсов на стыках и недостаточной изоляции их от земли часть тока выходит в почву и находит пути с низким сопротивлением, например подземные газо- и водопроводы. В точке А труба попадает под воздействие катодной защиты и не подвергается коррозии, а в точке В, напротив, сильно корродирует, так как по отношению к рельсам является анодом. Если в точке В труба защищена неметаллическим покрытием, это усугубляет коррозионные разрушения, так как в этом случае все блуждающие токи выходят через дефекты в покрытии трубы, что вызывает увеличение плот-, ности тока на ограниченных участках поверхности и ускоряет разрушение трубы.  [c.210]

В практике зашиты стараются как можно ближе расположить заземление от рельсов и тем самым увеличить коэффициент эффективности.  [c.51]

Устанавливая изолирующие элементы 8 через определенные участки на таком трубопроводе 7, уменьшают величину затекания в него блуждающего тока. Этот метод требует к себе особого внимания, т. к. на трубопроводе появляются анодные зоны в местах установки изолирующих элементов. Причем, анодные зоны часто меняются по длине и зависят от величины и положения нагрузки Rt,. Кроме того, нарушается целостность трубы, которая требует-дополнительного контроля, так как не исключена утечка транспортируемого продукта. В Башкирии этот метод применяется только на пересечениях трубопроводов с рельсовой сетью (см. рис. 4). Блуждающие токи (показаны стрелками), натекающие на газопровод и футляр, отводятся в рельсы через поляризованный токоотвод 5, зато натекание блуждающих токов на линейную часть газопровода, благодаря установленным изолирующим фланцам, снижается в сотни раз. Если заземлить близлежащий к рельсам трубопровод через определенные участки, то переходное его сопротивление резко уменьшится, а стекающие с рельсов в землю токи, подхватываемые таким трубопроводом, будут возвращаться в рельсы через другие заземленные участки трубопровода.  [c.52]


Промышленные испытания такого экрана на пути блуждающих токов проводились в г. Уфе вдоль рельсовой сети трамвая протяженностью 5 км. В качестве протяженного проводника была использована магистральная теплосеть (две нитки), расположенная вдоль рельсовой сети трамвая, а токоотводами служили повторные заземления нулевого провода для опор уличного освещения (рис. 11), где 1—рельсы, 2—теплосеть, 3—кабельная перемычка, 4— заземление опор, 5— вгн ильная перемычка (ВК-200).  [c.54]

Рассмотренная схема экранирования блуждающих токов протяженными трубопроводами путем многократного заземления и соединения их с рельсами вентильными перемычками позволит значительно ограничить зону распространения блуждающих токов в земле и тем самым предотвратить коррозию многих подземных металлических и армированных сооружений.  [c.54]

Первый анодный заземлитель для катодной защиты газопроводов в Новом Орлеане представлял собой горизонтально уложенную чугунную трубу длиной 5 м. Позднее использовали также и отслужившие трамвайные рельсы. Поскольку на городской территории Нового Орлеана не было подходящего места для установки анодных заземлений для катодной защиты, а также с целью не допустить вредного влияния катодной защиты на другие трубопроводы, Кун рекомендовал применять глубинные анодные заземлители, первый из которых был установлен в 1952 г. на глубине до 90 м. Первый глубинный анодный заземлитель, в ФРГ смонтировал в 1962 г. Ф. Вольф в Гамбурге [42].  [c.38]

Заземлением электрифицированных железных дорог являются сами нитки ходовых рельсов (рельсовый путь). Надземные металлические детали устройств для опорожнения цистерн необходимо заземлять на рельсы  [c.281]

Сварочные установки, подкрановые пути и другие установки постоянного тока с большими рабочими токами должны иметь возможно более короткие токоподводы. Заземленные металлические сооружения, например рельсы заводских железнодорожных путей, подкрановые пути, трубопроводные эстакады, трубопроводы и т. п., не должны использоваться для пропускания тока. Преобразователей большой мощности для питания постоянным током нескольких потребителей следует избегать. Желательно предусматривать снабжение переменным током и вырабатывать постоянный ток непосредственно в местах его потребления при помощи небольших преобразователей (например, при сварке па верфях).  [c.315]

Почти на всех электрифицированных железных дорогах с тягой на постоянном токе для возвращения рабочего тока к генератору (тяговой подстанции) используют ходовые рельсы. Ходовые рельсы укладывают на деревянных или бетонных шпалах, и на железных дорогах на поверхности они имеют более или менее хорошее электрическое соединение с грунтом. Грунт является электрическим проводником ионов, подключенным параллельно ходовым рельсам. Железнодорожную сеть следует считать заземленной на всей ее длине. Эти обстоятельства и связанная с ними опасность коррозии были выявлены уже давно (см. раздел 1.4). При соответствующем строительном исполнении и надлежащем контроле блуждающие токи от железных дорог можно уменьшить. Требуемые для этого мероприятия изложены в нормативных документах [1, 8], а также в рекомендациях Объединения предприятий общественного транспорта [9. Однако поскольку полностью избежать блуждающих токов нельзя, целесообразно, а в ряде случаев даже необходимо проводить дополнительные мероприятия по защите трубопроводов и кабелей. Важнейшими предпосылками для уменьшения блуждающих токов являются  [c.316]

Особенно важно не допускать заземления сборных шин на подстанции. Эти шины должны быть соединены с ходовыми рельсами по крайней мере двумя изолированными кабелями. Металлические оболочки питающих кабелей и кабелей отвода обратного тока можно соединять с ходовыми рельсами или со сборной шиной только в том случае, если это надежно исключит опасность коррозии других подземных сооружений. У кабелей отвода обратного тока необходимо контролировать состояние их изоляции.  [c.317]

Объединение заземлений на подстанциях рассматривается в 52 нормали VDE 0115/3.65 [8]. Согласно одной из рекомендаций Объединения предприятий общественного транспорта, ходовые рельсы железной дороги с тягой на постоянном токе всегда должны быть электрически отсоединены от защитных и эксплуатационных заземлений питающей сети переменного тока, в том числе и в вагонных депо и в мастерских. Соединения допускаются только с целью защиты от коррозии.  [c.319]


Для предотвращения натекания блуждающих токов посторонние сооружения, например фундаменты зданий, мосты, трубопроводы, металлические оболочки кабелей, заземленные установки и заземлители не должны иметь металлического соединения с ходовыми рельсами или с несущей конструкцией туннеля. Внутри туннеля целесообразно применять пластмассовые трубы и кабели с полимерной (пластмассовой) оболочкой, например типа NYY. Все трубопроводы сетей снабжения должны быть введены в несущую конструкцию туннеля электрически изолированно, например на станциях метро. В металлические трубопроводы за пределами туннеля устанавливают изолирующий фланец. Электроснабжение из коммунальной сети должно осуществляться через трансформаторы с разделенными обмотками.  [c.327]

Новые стальные трубопроводы для транспортировки газа, воды, нефтепродуктов обычно имеют покрытие, обеспечивающее хорошую электрическую изоляцию. Для таких трубопроводов во всех случаях целесообразно предусматривать катодную защиту fl7, 18] см. раздел 11. В области влияния железных дорог с тягой на постоянном токе даже и трубопроводы с хорошим изоляционным покрытием подвергаются опасности коррозии (см. раздел 4.3). Однако такие трубопроводы обычно не проходят около подстанций. Напротив, пересечения или сближения с линиями железных дорог постоянного тока наблюдаются довольно часто. Ввиду малости требуемого защитного тока и обычно уже предусмотренного или по крайней мере легко осуществимого электрического отсоединения от других низкоомно заземленных сооружений такие трубопроводы чаще всего можно эффективно защищать при помощи станций катодной защиты с регулируемым потенциалом. Если трубопроводы уже уложены, то области стекания блуждающих токов можно выявить путем измерения потенциалов труба—грунт. Целесообразно также дополнительное измерение потенциала рельс—грунт или разности напряжений между рельсом и трубопроводом. Если потенциал свободной коррозии неизвестен или если измерительных подсоединений к трубопроводу нет и поэтому неясно, где имеется наибольшая опасность коррозии блуждающими токами и есть ли вообще такая опасность, то области стекания тока можно определить путем  [c.335]

Рельсы па территории депо электроподвижного состава изолируются от металлических сооружений, бетона и арматуры железобетонных конструкций и от контуров заземлений. Если по условиям техники безопасности требуется глухое заземление на рельсы металлических конструкций и сооружений внутри здания депо, то на вводах кабелей и трубопроводов в здание устанавливаются изолирующие муфты и фланцы.  [c.36]

Шина тяговой подстанции, соединенная с рельсами, не должна иметь глухое заземление. Данное требование не распространяется на заземление шипы через цепи электрических дренажей.  [c.37]

Требования к электрифицированным железнодорожным путям промышленного транспорта электрифицированные линии рельсового промышленного транспорта и главные пути карьеров полезных ископаемых и устройства их электроснабжения должны отвечать требованиям, предъявляемым к электрифицированным пригородным и магистральным железным дорогам постоянного тока. На главных электрифицированных путях железорудных карьеров должны быть уложены рельсы тяжелых типов. На электрифицированных участках передвижных, забойных и отвальных путей рельсо-шпальная решетка, уложенная непосредственно на разрабатываемый или насыпной грунт, должна балластироваться щебнем. Толщина балластного слоя не менее 150 мм. Рельсовые пути в карьерах, на промышленных площадках и станциях должны быть изолированы от контуров заземления экскаваторов, подземных металлических сооружений, от ферм мостов и арматуры.  [c.42]

Проверка изоляции кабелей отсасывающих линий и междупутных соединителей производится мегомметром напряжением 1 кв. В качестве заземляющего электрода могут быть использованы любые заземленные конструкции. На время измерений кабели отсасывающих линий и междупутных соединителей отключаются от шин тяговой подстанции и рельсов. Сопротивление изоляции должно удовлетворять нормам, установленным для кабеля данного типа.  [c.96]

Принципиально заземлитель может быть изготовлен из любого токопроводящего материала металла, графита, угля и т. п. Но наибольшее распространение получили заземлители из черных металлов, особенно из стали. Это объясняется тем, что в практических условиях почти всегда можно найти бросовый черный металл - в виде старых труб, рельсов, уголков, двутаврового проката - и использовать их для анодных заземлений. Недостаток заземлителей из черного металла заключается в сравнительно быстром разрушении их проходящим током за счет высокого электрохимического эквивалента (9 -10 кг/А-год). Но в то же время форма и механическая прочность изделий из бросового железа обычно позволяет легко устанавливать их в грунт.  [c.30]

Горизонтальное заземление выполняется из одной или нескольких труб, рельс, полос, закладываемых на некоторую глубину в грунт в горизонтальном положении.  [c.37]

Анодные заземления, использующиеся при катодной защите, наиболее часто изготавливают в виде параллельно включённых горизонтально или вертикально расположенных анодов. В некоторых случаях устанавливают глубинные аноды (для защиты подземных коммуникаций городов, трубопроводов на территории промышленных площадок нефте-, газопроводов и нефтебаз, т.е. в условиях высокой плотности застройки). Материалами для анодов служат сталь (трубы, рельсы, прутки и т.д.), графит, ферросилиций и др.  [c.35]

Ограничение блуждающих токов осуществляют применением мероприятий, выполненных как непосредственно на рельсовых путях, так и в системе электроснабжения электрифицированного транспорта уменьшение падения напряжения в рельсах создание оптимального режима работы рельсовой сети повышение сопротивления в цепи утечки тяговых токов уменьшение утечек тягового тока через заземлен ия металлические сооружения и устройства.  [c.221]


В случае достаточной эффективности электродренажа работа дополнительного источника тока вызывает непроизводительные затраты электроэнергии, а применение рельсов Б качестве анодного заземления увеличивает их износ.  [c.239]

Заземление металлоконструкций мостовых кранов и установленного на них электрооборудования можно выполнять через подкрановые пути. Заземление тележек на кранах обеспечивается контактом через рельсы и ходовые колеса.  [c.106]

Источник электрического питания ЭПТ. В связи с использованием рельсов и корпуса подвижного состава в цепи управления ЭПТ со сменой полярности постоянного тока питание тормозных приборов производится от источников, изолированных от заземленных электрических цепей управления и освещения локомотивов.  [c.190]

При неблагоприятных условиях, способствующих утечке тока в землю (отсутствие стыковых соединителей, загрязненность балласта, прямое заземление контактных опор на рельсы и др.), величина блуждающего тока в земле может достигать 70—80% от общей величины тягового тока. Наиболее значительные токи утечки наблюдаются на участках станционных путей электрифицированных железных дорог, где имеются малые переходные сопротивления между рельсами и землей и значительные величины тяговых (пусковых) токов.  [c.235]

Рис. 12.5. Защитные мероприятия на электрифицированных железных до рогах при сооружении резервуаров-хранилищ с катодной защитой (зона влияния верхнего контактного провода в проекте стандарта DIN 57115, часть I установлена равной 4 м нормативное значение 5 м по нормали VDE 0115а 12 теперь не применяется [12]) / — станция катодной защиты 2 — защитное заземление по нормали VDE 0115, 12 3 — изолирующий фланец и искровой разрядник (можно не применять, если защитное заземление выполнено с подсоединением через пробивной предохранитель) 4 — наполнительный штуцер S — изолирующий фланец 6 — искровой разрядник (по АББ, 9) 7 — перемычка для уравнивания иотенциалов S — заземление рельсов S — зона влияния верхнего контактного провода (до 4 М) Рис. 12.5. <a href="/info/648976">Защитные мероприятия</a> на электрифицированных железных до рогах при сооружении <a href="/info/39768">резервуаров-хранилищ</a> с <a href="/info/6573">катодной защитой</a> (зона влияния верхнего <a href="/info/266733">контактного провода</a> в проекте стандарта DIN 57115, часть I установлена равной 4 м нормативное значение 5 м по нормали VDE 0115а 12 теперь не применяется [12]) / — <a href="/info/39790">станция катодной защиты</a> 2 — <a href="/info/106323">защитное заземление</a> по нормали VDE 0115, 12 3 — <a href="/info/495410">изолирующий фланец</a> и <a href="/info/178809">искровой разрядник</a> (можно не применять, если <a href="/info/106323">защитное заземление</a> выполнено с подсоединением через пробивной предохранитель) 4 — наполнительный штуцер S — <a href="/info/495410">изолирующий фланец</a> 6 — <a href="/info/178809">искровой разрядник</a> (по АББ, 9) 7 — перемычка для уравнивания иотенциалов S — заземление рельсов S — зона влияния верхнего контактного провода (до 4 М)
Поскольку на электрифицированных железных дорогах близрасполо-женные трубопроводы тоже могут проводить обратный ток, перед разборкой трубопровода и перед демонтажом металлических деталей необходимо предусмотреть электропроводные соединения с заземлением рельсов с обеих сторон или же закоротить вынутый участок перемычкой, чтобы предотвратить искровой разряд [12].  [c.283]

Обычно удельное сопротивление стали точно неизвестно. У низколегированных, например у марганецсодержащих (рельсовых) сталей оно особенно высоко. Измерение электросопротивления уложенных рельсов без полного снятия участка рельса невозможно даже в периоды прекращения работы железной дороги, поскольку имеются соединения с другими рельсами по поперечным межрельсовым перемычкам и по стяжкам для фиксации ширины колеи, а также заземления. Удельное электросопротивление рельсов целесообразно определять на постоянном токе по четырехточечному методу на изолированно уложенных одиночных рельсах длиной не менее нескольких метров (см. раздел 3.5.1).  [c.320]

Рельсы на металлических или железобетонных эстакадах, а также на расстоянии 200 м вдоль пути с двух сторон от мостов и эстакад укладываются на деревянные шпалы, подрельсовые подкладки на изолирующие прокладки. Шурупы изолируются от подкладки с помощью изолирующих втулок. Рельсы ходовые, уложенные в депо подвижного состава, должны быть изолированы от металлических сооружений, контуров заземлений, бетона эстакад, бетона проезжих дорог и т. п. Болты анкерные, крепящие продольные брусья к эстакадам, не должны располагаться под рельсовыми подкладками и должны иметь зазор от подошвы рельса не менее 30 мм. Рельсы ходовые, уложенные в депо, должны отделяться от тяговых нитей рельсов парковых путей изолирующими стыками, оборудованными шунтирующими их аппаратами. Междурельсовые соединения должны быть выполнены изолированным проводом или кабелем. На тракционных и тупиковых станционных путях, где только одна из нитей является тяговой, электросоедипители тяговых нитей выполняются изолированными проводами или кабелями.  [c.38]

Смена рельсов на обеих нитях производится поочередно. Одновременно на обеих нитях рельсы меняют только тогда, когда работы выполняются путеукладчиками или рельсоукладочными кранами с прекращением подачи тока в контактную сеть и с заземлением последней на месте работ.  [c.375]

Количество утечек тягового тока уменьшают, отказавшись от глухого заземления минусовой шины тяговой подстанции, соединенной с ходовыми рельсами применяя изолированную от земли канализацию для отсасывающих линий изолируя рельсы неэлектрифицированных путей.  [c.227]

Анодные заземления должны быть выполнены с преимущественным использованием малорастворимых материалов железокремниевых сплавов (ферросилицидов) марки С-15, ЗЖК, АКО, а также графитопласта (АТМ-1), искусственного графита МГ, пропитанного резольной фенол-формальдегидной смолой, углеграфита и др. Широкое распространение на практике находят заземлители из черных металлов (старые балки, стальные и чугунные трубы, изношенные рельсы, уголки или прутки).  [c.259]

Ежесменно перед началом работы машинист должен осмотреть крановый путь. Особо тщательно следует осматривать пути в сильные дожди и весной при оттаивании грунта. Периодически необходимо требовать от производителя работ инструментальную съемку путей. Съемка хранится в крановом журнале. Проверить состояние заземления (контура, перемычек), осмотреть рельсовые захваты. Захваты должны легко вращаться и плотно обхватывать головку рельса. Летом винты захватов смазывают чистым солидолом. Зимой винты очищают от смазки и прокаливают на огне.  [c.203]

При отпуске и зарядке (1иП положения ручки крана машиниста) переменный ток от генератора контроля ГК (см. рис. 123) через зажим Г1, предохранитель Пр2, ограничительный резистор R1, контакты 0Р1 и ТР1 реле отпуска ОР и торможения ТР поступает в линейный рабочий провод М I с межвагонными соединениями МС и через головку КЗ рукава хвостового вагона, являющуюся концевой заделкой, контрольный провод М 2, выпрямительный мост ВК, контрольное реле КР блока управления и заземленный корпус локомотива идет в рельсы. Второй полюс Г2 генератора ГЯ заземлен через главный выключатель ГВ2, резистор R2 и контакты 0Р2 и ТР2. Контрольное реле КР возбуждается, его контакты КР1 и КР2 замыкаются и сигнальная лампа О питается постоянным током. Вследствие большого индуктивного сопротивления катушки электромагнитных вентилей электровоздухораспределите-  [c.187]


Смотреть страницы где упоминается термин Заземление рельсов : [c.50]    [c.187]    [c.45]    [c.30]    [c.53]    [c.317]    [c.10]    [c.212]    [c.12]    [c.118]    [c.261]    [c.227]   
Катодная защита от коррозии (1984) -- [ c.283 ]



ПОИСК



Заземление

Заземленные рельсы и защитное заземление на электрифицированных железных дорогах, обратные токи, потенциал рельсов

Рельсы



© 2025 Mash-xxl.info Реклама на сайте