Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железные дороги электрические

Железнодорожные тормозные приборы—Испытания 13 — 731 Железные дороги электрические — см. Электрические железные дороги Железные руды — см. Руды железные Железные сплавы — см. Сплавы, железные Железный сурик — Нормы расхода разбавителей 4 — 415 Железо 1 (1-я) —366. 369  [c.76]

Железные дороги электрические  [c.468]

ЖЕЛЕЗНЫЕ ДОРОГИ ЭЛЕКТРИЧЕСКИЕ  [c.338]


Чаще всего антифрикционные смазки используют в подшипниках качения (в индустриальных механизмах, автомобилях, подвижном составе железных дорог, электрических машинах и др.), шарнирных соединениях (в подвесках и шасси автомобилей, в системе управления самолетов, приводах и т. п.), тихоходных шестеренчатых и червячных передачах (в лебедках, редукторах).  [c.43]

Кроме создания мощных и сверхмощных АЭС в настоящее время большое внимание уделяется разработке небольших АЭС, удобных для эксплуатации в специфических условиях (например, в отдаленных районах). Так, например, в Советском Союзе построена транспортабельная атомная электростанция (ТЭС-3) электрической мощностью 1500 кет, которая смонтирована на четырех гусеничных транспортерах. ТЭС-3 имеет реактор водоводяного типа с двумя контурами. Он может работать без перезарядки более года. Общий вес ТЭС-3 (вместе с транспортерами) около 350 т, т. е. ее можно перевозить на большие расстояния по железной дороге. Кроме того, она может двигаться самоходом в любой труднодоступный район страны.  [c.407]

Определить натяжение в нижнем сечении несущего троса, поддерживающего провод электрической железной дороги (см. рисунок), при уклоне 1 = 30 / , пролете 1=75 м и нагрузке =1,6 кг]м  [c.54]

В конце первой пятилетки на заводах электропромышленности началось изготовление крупных электрических машин для оснащения заводов и предприятий металлургии, угольной промышленности, химической и бумагоделательной промышленности, для электрификации железных дорог и строительства электрических станций.  [c.95]

К этому времени были устранены ограничения, накладывавшиеся на применение электрической и тепловозной тяги в довоенный период и в первые послевоенные годы выработка электроэнергии в стране возросла с 48,3 млрд, квт-ч в 1940 г. до 170,23 млрд, квт-ч в 1955 г., составила 292,27 млрд. ввт-ч в 1960 г. и достигла 545 млрд, квт-ч в 1965 г. [30] намного увеличилось производство дизельного топлива был накоплен значительный опыт проектирования, строительства и эксплуатации электрифицированных железных дорог и новых видов железнодорожного тягового состава.  [c.212]

По данным, приводимым А. П. [Михеевым, в результате замены паровозной тяги электрической и тепловозной тягой в 1959—1965 гг. высвобождено для других отраслей народного хозяйства 520 млн. т каменного угля. Для доставки этого количества угля к железнодорожным топливным складам потребовалось бы затратить 312 млрд, ткм дополнительной работы железных дорог (А. П. М и х е е в. Современные локомотивы. М., изд-во Знание , 1967, стр. 9).  [c.230]


В 1932 г. состоялась I Всесоюзная конференция по электрификации железных дорог. Одобрив использование для целей электрификации постоянного тока напряжением 3000 в, она рекомендовала также применение (после соответствующей опытной проверки) системы однофазного переменного тока промышленной частоты напряжением 20 кв, более выгодной по техническим и экономическим показателям (уменьшение числа тяговых подстанций и превращение их из понизительно-трансформаторных в понизительные, значительная экономия меди вследствие уменьшения сечения контактных проводов, снижение потерь энергии в проводах и пр.), но предполагающей дополнительные затраты при замене воздушных линий межстанционной связи кабельными линиями для устранения электрических помех и недостаточно изученной к тому времени в эксплуатационных условиях.  [c.231]

Вплоть до 20-х годов текущего столетия во многих странах усиленно велись исследования, связанные с разработкой наиболее оптимальных электрических схем питания железных дорог электрическим током. Наряду с этим большое внимание уделялось непрерывному совершенствованию деталей и узлов электровозов, системам подвески и установки токосъемных проводов и т. п. В результате возросла мош,ность моторов, повысились их технико-экономические показатели. Большое значение имели усовершенствования в системе управления электровозами. В 1897 г. американский специалист Спрэг предложил систему управления, названную системой многочисленных единиц или системой объединенного управления . Предложение сводилось к следующему. Все локомотивы поезда (их может быть несколько), как бы они ни располагались, взаимно соединяются электрической схемой, что позволяет вожатому (машинисту) переднего локомотива управлять остальными локомотивами. Образуется своего рода единая система, как бы один локомотив со многими моторами. Система объединенного управления позволила также формировать состав и из одних моторных вагонов, которые работают в одинаковых режимах и управляются одним машинистом. Это замечательное новшество способствовало быстрому прогрессу мотор-вагонной тяги, ускорило электрификацию метрополитенов и пригородных участков магистралей [19, с. 15].  [c.232]

С первых дней существования советской власти партия и правительство уделяли большое внимание электрификации железнодорожного транспорта. Еще в 1920 г. VIII съезд Советов утвердил план ГОЭЛРО, составленный по указанию В. И. Ленина. В этом плане предусматривалась электрификация всех отраслей народного хозяйства и в том числе широкое внедрение на железных дорогах электрической тяги.  [c.10]

ЖЕЛЕЗНЫЕ ДОРОГИ ЭЛЕКТРИЧЕСКИЕ. Под Ж. д. э. подразумеваются только те ж.-д. линии, на к-рых локомотивы приводятся в движение с помощью электроэнергии, получаемой от центральных электрич. станций, пли же от аккумуляторов, установленных на самом локомотиве. Передача электроэнергии подви кному составу производится с помощью  [c.338]

Источниками блуждающих постоянных токов являются электрические железные дороги и трамваи, работающие на постоянном токе, гальванические установки, электрозаземление постоянного тока и др.  [c.367]

Борьба с утечкой токов для ее ограничения и снижения а) уменьшением падения напряжения в рельсах трамваев, электрических железных дорог и метрополитена (уменьшением расстояния между тяговыми подстанциями, увеличением числа отсасывающих пунктов, увеличением сечения рельсов, уменьшением сопротивления стыков рельсов, увеличением числа между рельсовых и междупутных соединителей) б) повышением переходного сопротивления между токоносителем (рельсом, гальванической установкой) и землей (соответствующей пропиткой деревянных шпал,  [c.395]

Величина протекающего по подземным сооружениям блуждающих токов может быть очень велика. Вблизи электрических железных дорог были измерены токи в трубопроводе, достигающие 200—300 а. В обычных условиях для подземных трубопроводов характерны блуждающие токи 10—20 а. Так как ток силой 1 а в течение года разрушает около 9 кг железа, 11 кг меди, 34 кг свинца, то этот вид коррозии весьма опасен. Радиус действия блуждающих токов, сходящих в землю с рельсов электрофициро-ваниых железных дорог, определяется иногда несколькими десятками километров.  [c.189]

Совершенно гибкой называется нить, которая способна сопротивляться только растяжению. Из шести компонентов внутренних сил в поперечных сечениях такой нити только осевая растягивающая сила не равна нулю. В инженерной практике широко распространены системы, которые с известным приближением могут рассматриваться как гибкие нити. Таковы воздушные линии электрических проводов, провода телеграфной сети, контактные провода электрифицированных железных дорог и трамваев, цепи висячих мостов, тросы канатных дорог и кабелькранов и т. п.  [c.146]


Фреттинг-коррозия часто является причиной разрушения рессор, головок болтов и заклепок, деталей самоустанавливающихся механизмов подшипников на камнях, винтов регулируемого шага, деталей на горячей посадке, контактов электрических реле, соединительных тяг и многих других механизмов, подвергающихся вибрации. Фреттинг-коррозия может вызвать обесцвечивание сложенных штабелями листов металла при транспортировке. Впервые фреттинг-коррозия была отмечена при перевозке автомобилей по железной дороге из Детройта на Западное побережье. Вследствие вибрации шарикоподшипники крлес подвергались фреттинг-коррозии с образованием питтингов, что привело к порче автомобилей. Подобное разрушение чаще наблюдалось в зимнее время,  [c.164]

Задача 134. На рис. 112 показана мачта, служащая для крепления проводов электрической железной дороги. Верхний провод имеет натяжение Р, а нижний натягивается при помощи груза М и троса E DK, перекинутого через неподвижный блок С и подвижный блок D. Высота проводов над уровнем опор равна соответственно а и й, кратчайшее расстояние от опоры В до свешивающейся части троса С равное, расстояние между опорами 2d, вес мачты G, вес груза Q. Определить натяжение нижнего троса и вертикальную составляющую реакции в опоре А, если мачта симметрична относительно прямой т—п. Трением и размерами блокоз пренебречь.  [c.54]

Размеищние трубопровода под железной дорогой в выемке показано на рис. 22.11. Глубина заложения кожуха Н должна быть не менее 1,5 м, считая от подошвы рельса или от покрытия автомобильных дорог до верха кожуха. Кожухом (футляром) называют трубопровод, предо.храняющий рабочий трубопровод от внешних нагрузок и защиты его от агрессивных грунтов и блуждающих электрических токов. Кроме того, кожух предохраняет дорогу от разрушения в случае разрыва под ней рабочего трубопровода.  [c.325]

Сверхпроводниковые материалы получили достаточно широкое применение в различных областях науки и техники. Их используют для создания сверхсильных магнитных полей в достаточно большой области пространства для изготовления обмоток электрических машин и трансформаторов, обладающих малой массой и габаритами, до очень высоким КПД сверхпроводящих кабелей для мощных линий передачи энергии волноводов с очень малым затуханием мощных накопителей электрической энергии устройств памяти и управления. Эффект Майснера—Оксенфельда, наблюдаемый в сверхпроводниках, используется для создания опор без трения и вращающихся электрических машин с КПД, равным почти 100 %. Явление сверхпроводящего подвеса (левитации) применяется в гироскопах и в поездах сверхскоростной железной дороги и т. д.  [c.125]

Сталь как проводниковый материал используется также в виде шин, рельсов трамваев, электрических железных дорог (включая третий рельс метро) и пр. Для сердечников сталеалюминиевых проводов воздушных линий электропередачи (см. выше) применяется особо прочная стальная проволока, имеюи ая 0 =1200—1500 Л Па и А/// = 4—5 %. Обычная сталь обладает малой стойкостью к коррозии даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком. Непрерывность слоя цинка проверяется опусканием образца провода в 20 %-иый раствор медного купороса при этом на обнаженной стали в местах дефектов оцинковки откладывается медь в виде красных пятен, заметных на общем сероватом фоне оцинкованной поверхности провода. Железо имеет высокий температурный коэффициент удельного сопротивления (см. табл. 7-1 и рис. 7-15). Поэтому тонкую железную проволоку, помещенную для защиты от окисления в баллон, заполненный Еюдородом или иным химическим неактивныи газом, можно применять в бареттерах, т. е. в приборах, использующих зависимость сопротивления от силы тока, нагревающего помещенную в них проволочку, для поддержания постоянства силы тока при колебаниях напряжения.  [c.204]

В оценке видов энергии важное значение имеет коэффициент полноты их использования — КИЭ. Так, например, этот показатель для электрической энергии в большинстве случаев близок к 100%. Химическая энергия каменного угля, бурого угля и кокса в промышенности используется на 55%, в быту — на 40%, а на транспорте (железные дороги) — всего лишь на 4—10%. КИЭ продуктов перегонки нефти — дистиллатного нефтетошлива и мазута — в промышленности равен 60%, в быту 55—60%, в сельском хозяйстве и на транспорте 25% КИЭ бензина (в основном применяется на транспорте) составляет примерно 20%, а горючих газов в промышленности — 80%, в быту —60%, на транспорте — 20—25%.  [c.40]

В 1874 г. Ф. А. Пироцкий предложил использовать для передачи электроэнергии на расстояние железнодорожные рельсы, а в период 1875—1876 гг. им проведены опыты по передаче электроэнергии на Сестрорецкой железной дороге. Эти опыты привели изобретателя к мысли о создании вагонов, приводимых в движение электрическим током [16].  [c.130]

Строительство крупных заводов, электрических станций, ведение открытых разработок, а также расширение грузооборота на железных дорогах потребовали освоения техники прожекторного освещения заливающим светом. В течение первой пятилетки создается советское прожекторостроение. В 1927 г. была подготовлена для производства первая серия прожекторов заливающего света, а с 1928 г. начался крупносерийный выпуск этих приборов.  [c.141]

Еще в 1907 г. в Петербургском политехническом институте А. В. Вульфом (1867—1923) была основана Лаборатория электрической тяги к этому же времени относилась разработка проектов строительства электрифицированных железных дорог, выполнявшаяся в Петербургском электротехническом институте под руководством Г. О. Графтио [28]. Но первая попытка введения электротяги—электрификация пригородного участка Петербург— Ораниенбаум—Красная Горка протяженностью около 58 км, предпринятая в 1913 г., осталась незавершенной в связи с началом первой мировой войны [30].  [c.202]


Грузовой вагонный парк на 98% состоял из так называемых нормальных двухосных вагонов грузоподъемностью 15—16 т с ручными тормозами и с ручными сцепными приборами. Опыт оборудования автосцепкой нескольких паровозов и 250 вагонов пассажирского парка Московско-Казанско-Рязанской железной дороги, относящийся к 1906 г., не был распространен на другие дороги [11]. Для регулирования движения поездов примерно на 45% железнодорожной сети использовалась межстанционная телеграфная связь, в пределах 41% сети применялась электрожезловая система с аппаратурой, поставлявшейся иностранными фирмами, и только около 14% сети было оборудовано устройствами полуавтоматической блокировки. Опыты установления межстанционной радиосвязи, проводившиеся С. С. Жидковским с 1913 г. на Юго-Западной железной дороге, в 1914 г. были прекращены по требованию прокурорского надзора [4]. Управление подавляющим большинством стрелок, станционных и путевых сигналов осуществлялось вручную. Средствами механической централизации — с центральных станционных постов — управлялось лишь 11% общего их числа, хотя уже тогда имелись рациональные отечественные конструкции систем централизации и блокировки, разработанные Я. Н. Гордеенко (1851 —1922). Устройства электрической централизации [были введены только на двух станциях.  [c.202]

До середины 50-х годов на всей железнодороншой сети СССР преобладала паровая тяга. Преимущественное использование электроэнергии для промышленных нужд, недостаточный рост производства дизельного топлива, недооценка технических и экономических преимуществ новых тяговых средств ограничивали до войны применение электрической и тепловозной тяги. К началу 1941 г. в стране насчитывалось 1,9 тыс. кж электрифицированных линий (пригородные участки Московского и Ленинградского узлов, магистральные участки Москва—Александров, Кандалакша—Мурманск, Тбилиси — Хашури — Самтредиа, Кизел—Чусовская—Гороблагодатская — Свердловск, ветвь Минеральные Воды — Кисловодск) и около 300 км, в пределах которых движение поездов поддерживалось тепловозами. В общей сложности длина линий с электрической и тепловозной тягой составляла лишь 2,3% от общей эксплуатационной длины железных дорог Советского Союза [22]. К 1946 г. она увеличилась до 3,5 тыс. км, а к 1956 г. возросла до 11,9 тыс. км. И все же в 1955 г. на долю паровой тяги приходилось 85,9% всего грузооборота железнодорожного транспорта общего пользования. Между тем паровая тяга по существу уже достигла максимума своих возможностей, и если средняя величина силы тяги грузового паровоза, составлявшая в 1913 г. 8,61 т, увеличилась до 12,1 т к 1933 г. и до 15—20 т к началу 50-х годов,  [c.211]

В 1956 г. в связи с дальнейшим подъемом технического уровня железнодорожного транспорта и коренными изменениями в структуре локомотивного парка из Технических условий были исключены нормы проектирования железных дорог с паровой тягой. Затем к середине 60-х годов были утверждены Технические условия, ориентированные на применение только электрической и тепловозной тяги, обраш,ение тяжеловесных поездов и увеличение скорости движения до 100—140 км1час. Действуюш,ие с некоторыми изменениями и в настояш ее время, они предполагают разработку проектов нового железнодорожного строительства и реконструкции существующих линий в увязке с проектами развития других видов транспорта как составных частей единой транспортной системы страны.  [c.216]

В 1918 г. В. И. Ленин в Наброске плана научно-технических работ указал на необходимость уделять особое внимание электрификации промышленности и транспорта. Планом ГОЭЛРО намечалось электрифицировать в течение 10—15 лет 3,5 тыс. км наиболее грузонапряженных железнодорожных магистралей. На протяжении 20-х годов были опубликованы исследования А. В. Вульфа, В. А. Шевалина (1888-1941), А. В. Лебедева (1883-1941) и других крупных специалистов, посвященные выбору систем постоянного тока, расчетам контактной сети, тяговым расчетам, теории и методике проектирования электрических железных дорог и составившие основы советской школы электрификации железнодорожного транспорта. Но для реализации плановых предположений нужно было восстановить и развить электротехническую промышленность страны, обеспечить ввод в эксплуатацию и производственное освоение электровозостроительных предприятий, построить значи-те.льное количество больших электростанций и линий электропередач.  [c.230]

В 1921 г. проф. Я. М. Гак-кель — участник строительства нескольких электростанций, конструктор и строитель оригинальных и надежных самолетов — представил в Госплан проект дизель-электровоза (тепловоза с электрической передачей). 4 января 1922 г. Совет Труда и Обороны, признавая, что введение новых типов локомотивов имеет особо важное значение для оздоровления теплового хозяйства железных дорог и разрешения топливного вопроса [31], принял постановление о постройке тепловозов. В марте того же года при Петроградском технологическом институте было учреждено специальное проектное бюро заведующим бюро был назначен Гаккель.  [c.237]


Смотреть страницы где упоминается термин Железные дороги электрические : [c.207]    [c.210]    [c.214]    [c.233]    [c.234]   
Техническая энциклопедия Т 10 (1931) -- [ c.0 ]

Техническая энциклопедия Том 6 (1938) -- [ c.0 ]



ПОИСК



Дорога

Железные дороги

Общие сведения об электрифицированных железных дорогах Развитие электрической тяги в СССР

Определение объемов работ и стоимости устройств электроснабжения железных дорог с электрической тягой

Расчёты расхода электрической энергии для электрических железных дорог постоянного тока (доц., канд. техн. наук М- Е. Крестьянок)

Электрификация железных дорог. Особенности и преимущества электрической тяги

Электрические железные дороги - Энергоснабжение - Схемы



© 2025 Mash-xxl.info Реклама на сайте