Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Воздушные линии

Зажимы поддерживающие глухие угловые для воздушных линий электропередачи. Технические условия Гильзы кабельные соединительные алюминиевые, закрепляемые опрессовкой. Конструкция и размеры Наконечники кабельные штифтовые. Конструкция и размеры Кабели радиочастотные  [c.61]

Для воздушных линий электропередачи выпускаются неизолированные провода из меди, алюминия, алюминиевых сплавов, а также сталеалюминиевые провода, которые изготовляются путем скрутки из отдельных элементарных проволок. В некоторых случаях для повышения стойкости проводов к атмосферным воздействиям их поверхность покрывают термостойкой смазкой.  [c.257]


Какие типы проводов применяются для воздушных линий электропередач  [c.266]

Поэтому для изготовления проводов одной и той же проводимости при данной длине алюминий выгоднее меди в том случае, если тонна алюминия дороже тонны меди не более чем в два раза. Весьма важно, что алюминий менее дефицитен, чем медь. В настоящее время в СССР алюминий не только заменил медь в воздушных линиях электропередачи, но и внедряется в производство изолированных кабельных изделий.  [c.201]

При переменном токе в стали как в ферромагнитном материале заметно сказывается поверхностный эффект, поэтому в соответствии с известными законами электротехники активное сопротивление стальных проводников переменному току выше, чем постоянному току. Кроме того, при переменном токе в стальных проводниках появляются потери мощности на гистерезис. В качестве проводникового материала обычно применяется мягкая сталь с содержанием углерода 0,10—0,15 %, имеющая предел прочности при растяжении ар=700—750 МПа, относительное удлинение перед разрывом А///= = 5 — 8 % и удельную проводимость у, в 6—7 раз меньшую по сравнению с медью. Такую сталь используют в качестве материала для проводов воздушных линий при передаче небольших мощностей. В подобных случаях применение стали может оказаться достаточно  [c.203]

Выбор места строительства электростанции зависит от выбора транспортируемого энергоносителя. Задача решается путем сложных техно-экономических расчетов. Так, еще недавно передача электроэнергии по воздушным линиям напряжением 400 кВ ограничивалась 1000—1200 км. Теперь широко используются линии электропередач напряжением 500 и 750 кВ, строятся линии переменного тока напряжением до 1250 кВ и постоянного — до 1500 кВ, причем напряжение последних в будущем предполагается повысить до 2000—2500 кВ [20, 92]. Это позволит увеличить передаваемую мощность и дальность передач в несколько раз.  [c.102]

Был разработан и внедрен способ ремонта воздушных линий передач 110 и 220 кв под напряжением, сущность которого состоит в том, что эта работа выполняется с изолирующих лестниц. При этом все тело работающего имеет тот же потенциал, что и линия.  [c.24]

В 1932 г. состоялась I Всесоюзная конференция по электрификации железных дорог. Одобрив использование для целей электрификации постоянного тока напряжением 3000 в, она рекомендовала также применение (после соответствующей опытной проверки) системы однофазного переменного тока промышленной частоты напряжением 20 кв, более выгодной по техническим и экономическим показателям (уменьшение числа тяговых подстанций и превращение их из понизительно-трансформаторных в понизительные, значительная экономия меди вследствие уменьшения сечения контактных проводов, снижение потерь энергии в проводах и пр.), но предполагающей дополнительные затраты при замене воздушных линий межстанционной связи кабельными линиями для устранения электрических помех и недостаточно изученной к тому времени в эксплуатационных условиях.  [c.231]


Столь же существенные изменения произошли в составе воздушного транспортного флота. К середине 60-х годов полностью обновлен самолетный парк и значительно увеличены сроки службы самолетов, самолетных двигателей и специального оборудования. В эксплуатацию введены десятки новых магистральных и местных авиалиний (в том числе трансарктическая линия, проходящая по побережью Северного Ледовитого океана) регулярные международные авиалинии Аэрофлота связали крупнейшие аэропорты СССР с аэропортами 46 зарубежных стран. Для перевозок пассажиров, почты и грузов в труднодоступных районах Кавказа, Сибири, Средней Азии, Дальнего Востока и Крайнего Севера с 1955—1956 гг. эксплуатируются воздушные линии, обслуживаемые вертолетами.  [c.323]

Для обслуживания местных воздушных линий, удовлетворения нужд санитарной и сельскохозяйственной авиации, несения службы лесного надзора и т. д. в послевоенные годы конструкторскими коллективами А. С. Яковлева и О. К. Антонова были спроектированы и переданы в производство самолеты Як-12 и Ан-2 специального назначения, способные базироваться на небольших грунтовых аэродромах, а в поплавковых вариантах — на водных акваториях. Четырехместные монопланы Як-12 с каркасом крыла из дюралевых профилей, дюралевым носком и полотняной обшивкой поступили в серийное производство в 1947 г. II получили широкое распространение как в гражданской авиации, так и в Советской Ар.мии в качестве связных самолетов. Цельнометаллические бипланы АН-2, также начатые постройкой в 1947 г., продолжают успешно эксплуатироваться в различных модификациях на местных воздушных линиях и в различных отраслях народного хозяйства СССР.  [c.380]

У трубопроводов с катодной защитой, находящихся в зоне влияния высоковольтных воздушных линий электропередач или электрифицированных участков железных дорог на переменном токе, на потенциал труба — грунт накладывается индуцированное напряжение переменного тока. Это напряжение может значительно исказить результат измерения потенциала, если, например, индуцированное напряжение порядка  [c.99]

Анодная проволока была закреплена иа опорах при помощи обычных изоляторов из небьющегося стекла, которые применяются при сооружении воздушных линий электропередач. Анодный кабель был пропущен через изолирующие проводки в крыше, смонтированные в муфтах, и подведен к защитной установке. На торцовой стороне немного выше днища через такие же муфты были введены электроды сравнения. В качестве защитной установки был использован преобразователь, бесступенчато регулируемый при помощи установочного трансформатора (О—12 В, О—2,5 А) с подключенным за ним фильтром для сглаживания тока. Минусовой полюс защитной установки был подсоединен к резервуару снаружи при помощи приваренной планки.  [c.386]

Трубопровод принимает по отношению к земле потенциал Ur, зависящий от рабочего напряжения во влияющем проводе i/jf и от емкостей i2 и С20 и в неблагоприятных случаях может достигать нескольких киловольт. Поскольку емкость с увеличением расстояния а убывает по логарифмическому закону, зона влияния получается все же сравнительно небольшой. Следует учитывать, что при трехфазных воздушных линиях между каждым из трех фазовых проводов и трубопроводом создается различная емкость С -2. Потенциал Un в таком случае получается векторным сложением отдельных составляющих. Такой же способ расчета должен применяться для высоковольтных воздушных линий с несколькими системами проводов. Конденсатор С20 как источник напряжения имеет чрезвычайно высокое внутреннее сопротивление, так что при прикосновении к трубопроводу человека, стоящего на земле, напряжение Ur садится. При этом через тело человека течет ток зарядки II, который для предотвращения несчастных случаев не должен превышать нескольких миллиампер. Как видно из рис. 23.2, токи, вызывающие несчастный случай, возможны только при большой длине трубопровода I и при расстоянии а до 100 м.  [c.426]

Наибольшая опасность для людей наблюдается бесспорно при работах с применением строительных машин в непосредственной близости от токоведущих проводов. При сооружении трубопроводов и при ремонтных работах необходимо тщательно следить за тем, чтобы были выдержаны достаточные безопасные расстояния с целью исключить прямое прикосновение к проводу или проскакивание электрической дуги (рис. 23.3). В рекомендациях [1] в случае рабочего напряжения ПО кВ и более предписано единое во всех случаях минимальное расстояние в 5 м, которое должно соблюдаться и при колебательных движениях проводов под действием ветра. Опасности в общем случае не должно быть, если при параллельной прокладке трассы трубопровода ее расстояние от проекции на землю самого крайнего фазового провода составляет не менее 10 м и если строительные машины работают преимущественно на стороне траншеи, противоположной высоковольтной линии. При пересечениях с высоковольтными линиями в местах наименьшей высоты проводов над грунтом, т. е. примерно в середине высоты между двумя соседними мачтами земляные работы по выполнению колодцев и траншей должны проводиться вручную. По воздушным линиям с напряжением более 10, но менее ПО кВ в рекомендациях [1] нет указаний. Здесь по возможности следует выдерживать расстояние не менее 3 м. Может быть целесообразным ограничение высоты  [c.426]


Расстояние в свету между трубопроводами и угловыми стойками или заземлителями мачт воздушных линий должно быть по возможности не менее 2 м. Уменьшение этого расстояния не менее чем до 0,5 м возможно лишь при взаимном согласии. Работы Исследовательского объединения по высоковольтному и сильноточному оборудованию [2] показали, что при минимальном расстоянии до заземления 0,5 м даже при неблагоприятных условиях в случае неполадки в высоковольтной сети не произойдет дугового разряда и, следовательно, не будет опасности для трубопровода.  [c.427]

Металлических соединений между трубопроводом и мачтами воздушных линий электропередач или их заземлителями ни в коем случае делать нельзя. На мачтах скрещивания (разветвления) линий электропередач потенциалы под влиянием рабочих токов могут получиться более высокими [3].  [c.428]

Мешающее индуктивное влияние на трубопроводы возможно только при тесном сближении на большой длине или параллельном прохождении с высоковольтными воздушными линиями электропередач или с контактными проводами железных дорог с тягой на переменном токе. Для кабелей телефонной связи эта проблема известна примерно с 1920 г., для трубопроводов она приобретает все большее значение в связи с увеличением рабочих токов и токов короткого замыкания в электрических установках и с улучшением качества изоляционного покрытия трубопроводов. Электромагнитные поля переменных токов, текущих в высоковольтных воздушных линиях или в контактных проводах железных дорог, наводят в близрасположенных проводниках электрического тока (независимо от того, находятся ли они на поверхности или под землей) соответствующее напряжение, которое при сквозном электрическом соединении всех труб трубопровода влечет за собой в появление токов вдоль трубопровода и ощутимой разности потенциалов между трубопроводом и окружающим его грунтом.  [c.429]

Прежде обычно имело значение только воздействие токов короткого замыкания на землю в высоковольтных воздушных линиях с низкоомным заземлением нейтральной точки, т. е. при появлении дефекта с несимметричной нагрузкой и большими токами через грунт, а также  [c.429]

Рис, 23.12. Напряженность наведенного продольного поля в идеально изолированном проводнике при его расположении параллельно воздушной линии электропередачи трехфазного тока с дунайским размещением проводов на мачтах  [c.435]

Влияние рабочих токов в воздушных линиях трехфазного тока с частотой 50 Гц  [c.436]

Расчет продольной напряженности поля I bI, наведенного в идеально изолированном проводнике, возможен и по методике 018]. На рис. 23.12 в качестве примера представлены значения для трехфазной воздушной линии с мачтами дунайского типа при одном определен-  [c.436]

При воздействии токов короткого замыкания на землю следует подставлять 1=1 к, а при воздействии рабочих токов в линии — соответственно 1=1 в- Для воздушных линий с рабочими напряжениями ПО и 220 кВ при оценке влияния их рабочих токов получается несколько меньший допустимый угол пересечения а.  [c.440]

Совершенно гибкой называется нить, которая способна сопротивляться только растяжению. Из шести компонентов внутренних сил в поперечных сечениях такой нити только осевая растягивающая сила не равна нулю. В инженерной практике широко распространены системы, которые с известным приближением могут рассматриваться как гибкие нити. Таковы воздушные линии электрических проводов, провода телеграфной сети, контактные провода электрифицированных железных дорог и трамваев, цепи висячих мостов, тросы канатных дорог и кабелькранов и т. п.  [c.146]

Проводниковый алюминий используется для изготовления токопроводящих жил обмоточных, монтажных и установочных проводов, а также неизолированных проводов для воздушных линий электропередачи, прессованных жил кабелей различного назначения и т. д. Для этих же целей может использоваться алюминий специальных марок А75К, А8К и А8КУ, в которых суммарное содержание примесей Ti+V+Mr-f r уменьшено по сравнению с марками А7 и А8.  [c.122]

Сталь как проводниковый материал используется также в виде шин, рельсов трамваев, электрических железных дорог (включая третий рельс метро) и пр. Для сердечников сталеалюминиевых проводов воздушных линий электропередачи (см. выше) применяется особо прочная стальная проволока, имеюи ая 0 =1200—1500 Л Па и А/// = 4—5 %. Обычная сталь обладает малой стойкостью к коррозии даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком. Непрерывность слоя цинка проверяется опусканием образца провода в 20 %-иый раствор медного купороса при этом на обнаженной стали в местах дефектов оцинковки откладывается медь в виде красных пятен, заметных на общем сероватом фоне оцинкованной поверхности провода. Железо имеет высокий температурный коэффициент удельного сопротивления (см. табл. 7-1 и рис. 7-15). Поэтому тонкую железную проволоку, помещенную для защиты от окисления в баллон, заполненный Еюдородом или иным химическим неактивныи газом, можно применять в бареттерах, т. е. в приборах, использующих зависимость сопротивления от силы тока, нагревающего помещенную в них проволочку, для поддержания постоянства силы тока при колебаниях напряжения.  [c.204]

Образцы для коррозионных испытаний вырезали из несущего стального провода воздушной линии электропередачи, бывшей в эксплуатации в промьпипенной атмосфере в течение 25 пет. Эта линия состояла из несу.-щих Стальных оцинкованных проводов, на которые были намотаны алюминиевые проводники. Вся пиния была смазана консистентной смазкой и не имела видимых следов коррозии. Вырезанные образцы очищали от смазки вначале механически, а затем в парах трихлорэтана. Образцы имели диаметр 3,18 мм, толщина горячецинкового покрытия составляла 40 мкм.Примерно половину толщины составляло интерметаппическое соединение железа с цинком ( - фаза), наружный спой покрытия представлял собой почти чистый цинк ( 9 - фаза).  [c.23]


В послевоенные годы развертывается дальнейшая автоматизация энергосистем. Автоматические устройства для включения резервных трансформаторов и линий передач (АВР), применявшиеся в отдельных] случаях еще до войны, находят широкое распространение. С 1945г. стало обязательным трехфазное автоматическое повторное включение (АПВ) для всех воздушных линий напряжением 35 кв и выше, в некоторых случаях стали применять их пофазное отключение и повторное включение. С 1950 г. началось массовое внедрение самосинхронизации генераторов при включении. Значительный размах получили комплексная автоматизация и телемеханизация гидростанций (на каскаде гидростанций Узбек-энерго осуществлено к 1949 г., на Широковской гидростанции — в 1950 г., на Храмской — в 1951 г.). Управление работой этих станций стало осуществляться с центрального диспетчерского пункта [14, 31].  [c.26]

Еще в 1918—1920 гг. предпринимались опыты воздушных перевозок почты между Москвой, Петроградом и Харьковом на самолетах серии Илья Муромец . В январе 1921 г. В. И. Лениным был подписан декрет Совета Народных Комиссаров О воздушных передвижениях в воздушном пространстве над территорией РСФСР и над ее территориальными водами — первый законодательный акт, регламентировавший воздушные сообщения в нашей стране. Годом позднее начались регулярные рейсы самолетов смешанного советско-германского акционерного общества Дерулюфт на международной линии Москва — Кёнигсберг, продолженной позднее до Берлина, а в июне 1923 г. открылась первая внутренняя воздушная линия Москва — Нижний Новгород длиной 420 км. С этого времени по мере развития отечественного авиастроения, количественного увеличения и совершенствования самолетного парка Гражданского воздушного флота последовательно увеличивалось число воздушных трасс, возрастали объемы и дальность авиационных перевозок.  [c.320]

В восстановительный период были открыты почтово-пассажирские воздушные линии Харьков — Киев — Одесса и Харьков — Ростов, Москва — Ростов — Минеральные Воды — Баку — Тбилиси, Ташкент — Алма-Ата, Бухара — Душанбе, Красноярск — Туруханск — Дудинка, международные авиалинии Улан-Удэ — Улан-Батор и Ташкент — Кабул с 1924 г. велась воздушная разведка ледовой обстановки на трассе Северного морского пути. В годы предвоенных пятилеток сеть воздушных сообщений распространилась на все центральные области страны, на территории национальных республик и на районы Якутии, Восточной Сибири и Дальнего Востока. В эти годы открылось движение на авиатрассах Москва — Иркутск — Хаба-  [c.320]

В 1955 г. самолет Ту-104 прошел летные испытания и тогда же был передан в серийное производство. Весной 1956 г. серийные пятидесятиместные машины Ту-104 стали поступать в подразделения Аэрофлота, а 15 сентября того же года рейсом из московского аэропорта Внуково в Иркутск была начата их регулярная эксплуатация на воздушных линиях большой протяженности. В том же году, последовательно улучшая конструкцию самолета, коллектив А. Н. Туполева передал на летные испытания семндесятиместный самолет  [c.380]

Решая задачу, поставленную Программой КПСС,— превратить воздушный транспорт в массовый вид пассажирского транспорта, охватывающий все районы страны, и обеспечить в этой области дальнейшее быстрое совершенствование реактивной техники,—советские авиастроители передали в регулярную эксплуатацию на внутренних и международных воздушных линиях различные типы реактивных самолетов, выполнявших к 1965 г. около 80% всего объема перевозок, осуществляемых Аэрофлотом. Значительно расширилась сфера применения авиации в народном хозяйстве СССР самолеты и вертолеты используются для несения лесопатрульной службы, для геологической разведки и аэрофотосъемки, для доставки срочных грузов в труднодоступные области страны и оказания помощи населению отдаленных районов, для проведения сельскохозяйственных авиационно-химических работ ИТ. д. крупнотоннажные вертолеты все шире применяются при производстве сложных строительно-монтажных операций. Получив высокую оценку за рубежом, советские самолеты пользуются большим спросом на мировом авиационном рынке.  [c.403]

Развитие ЭК влияет на другие отрасли и через них — на атмосферу, гидросферу и литосферу. Среди источников загрязнения атмосферы окислами серы и азота, а также твердыми частицами электростанций котельные и отопительные установки занимают большое место. Связи комплекса с окружающей средой и экономикой в целом проявляются и через массовое водонотребление тепловых и атомных электростанций, через изъятие земель из-за расширения открытой добычи угля, сооружения крупных равнинных ГЭС, воздушных линий электропередач, мощных газо- и нефтепроводов. Усиливаю-  [c.30]

Для проектирования станции катодной защиты необходимо иметь следующую исходную документацию и знать следующие параметры план расположения трубопровода с указанием размещения арматуры, запорных станций и станций регулирования расхода, футляров, дюкеров, мостовых переходов, изолирующих элементов, компенсаторов, размеров всех труб и вида изоляции данные о близости, параллельном пролегании или пересечениях с высоковольтными воздушными линиями, железными дорогами переменного и постоянного тока, о расположении питающих подстанций и точек отсоса блуждающих токов, а также посторонних трубопроводов, данные о виде и удельном электросопротивлении грунта,  [c.252]

Емкостное воздействие на трубопроводы имеет лишь второстепенное значение. Оно проявляется только в непосредственной близости от высоковольтных воздушных линий или контактных проводов электрифи-  [c.425]

Взаимная индуктивность Л/зависит от частоты f, расстояния а между высоковольтной воздушной линией и трубопроводом и удельного сопротивления грунта р. В качестве примера на рис. 23.12 показано влияние р на отношение Ек 1к в функции от расстояния а для высоковольтной воздушной линии эле тропередачи с заземляющим тросом алюминий — сталь Al/St 240/40 (для которого л=0,65). Значения Ek I Ik практически не зависят от формы мачты и от рабочего напряжения высоковольтной воздушной линии.  [c.436]

Все последующие расчеты могут быть выполнены по формулам, приведенным в разделе 23.3.1. При этом следует учитывать, что высокое напряжение прикосновения может возникнуть только в течение короткого времени (нескольких десятых долей секунды), пока не произойдет аварийное ускоренное отключение высоковольтной воздушной линии. Кроме того, расчеты дают существенно завыш ге -значения, поскольку в них не учитывается зависимость соиротИ Л Йя заземления трубопровода от величины напряжения. В случае трубопроводов с битумной изоляцией можно исходить из того, что получается естественное ограничение напряясения и более высокие напряжения прикосновения, чем 1200 (и,яи в крайнем случае 1500) В невозможны даже и при неблагоприятных условиях (большая длина участка параллельного прохождения высоковольтной линии и трубопровода при малом расстоянии между ними и большие токи короткого замыкания на землю). Естественное ограничение напряжения может ожидаться и на трубопроводах с полимерной изоляцией. Однако здесь возможные напряжения прикосновения выше и при большом удельном электросопротивлении изоляции могут достигать нескольких киловольт.  [c.436]

При нормальной работе трехфазной воздушной линии с симметричной нагрузкой геометрическая сумма токов во всех проводах равна нулю, однако ввиду конечности расстояния токоведущих проводов между собой и от поверхности земли поблизости от воздушной линии электропередачи образуется магнитное поле, впрочем сравнительно быстро убывающее с расстоянием. Это магнитное поле наводит в расположенном поблизости проводнике поле с продольной напряженностью Ев, величина которой зависит не только от частоты f, величины рабочего тока I /в I, положения объекта, испытывающего влияние, и удельного электросопротивления грунта. В дополнение к этому здесь играют некоторую роль геометрическое расположение и расстояния между фазовыми проводами, между проводами и заземлительными тросами и между теми и другими и землей, а в случае многопроводных передач также и расположение фазовых проводов (форма мачты), нагрузка на отдельные токовые цепи и углы сдвига фаз между отдельными токовыми цепями.  [c.436]



Смотреть страницы где упоминается термин Воздушные линии : [c.90]    [c.169]    [c.154]    [c.324]    [c.223]    [c.424]    [c.425]    [c.430]    [c.439]    [c.440]    [c.440]    [c.35]   
Смотреть главы в:

Справочная книжка энергетика Издание 3 1978  -> Воздушные линии


Справочная книжка энергетика Издание 3 1978 (1978) -- [ c.280 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте