Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поток энергии в электромагнитной волне

Здесь будет рассмотрен вопрос о поляризации света, испускаемого атомами. Мы воспользуемся классической моделью электрона, связанного с тяжелым ядром. Электрон колеблется и испускает классические электромагнитные волны такой атом можно сравнить с небольшой радиоантенной. В классической картине мы пренебрегаем тем, что свет испускается и поглощается порциями (фотонами). Несмотря на пренебрежение зернистой структурой света, большинство результатов классической теории находит подтверждение в более сложной квантовой теории. Основное различие между обеими теориями в том, что в классической теории поток энергии в электромагнитной волне считается непрерывным, а в квантовой теории он состоит из отдельных порций — фотонов. Однако уравнения Максвелла (уравнения классической электромагнитной теории) дают правильное описание среднего потока энергии. В классической теории электрическое и магнитное поля электромагнитного  [c.383]


При распространении электромагнитной волны происходит перенос (течение) энергии, подобно тому как это имеет место при распространении упругой волны. Вопрос о течении энергии в упругой волне был впервые (1874 г.) рассмотрен Н. А. Умовым ), который доказал общую теорему о потоке энергии в любой среде. Поток энергии в упругой волне может быть вычислен через величины, характеризующие потенциальную энергию упругой деформации и кинетическую энергию движения частиц упругой среды. Плотность потока энергии выражается с помощью специального вектора (вектор Умова). Аналогичное. рассмотрение плодотворно и для электромагнитных волн. До известной степени можно уподобить энергию электрического поля потенциальной энергии упругой деформации, а энергию магнитного поля — кинетической энергии движения частей деформированного тела. Так же как и в случае упругой деформации, передача энергии от точки к точке в электромагнитной волне связана с тем обстоятельством, что волны электрической и магнитной напряженностей находятся в одной фазе. Такая волна называется бегущей. Движение энергии в бегущей упругой или электро-магнитной  [c.37]

Электрический пробой в воздухе наступает примерно при напряженности электрического поля 3 МВ/м. Ири какой плотности потока энергии плоских электромагнитных волн можно наблюдать искру в воздухе  [c.54]

Плотности потоков энергии. Плотность потока энергии плоской электромагнитной волны, усредненная по периоду, дается формулой (15.10), которую в векторной форме удобно представить в виде  [c.107]

Поток энергии в плоской волне. Плотность энергии электромагнитного поля в вакууме равна  [c.322]

Однако с ним связана электромагнитная часть потока энергии (см. 4), соизмеримая с потоком энергии в упругой волне. Возникновение магнитного поля в акустоэлектрической волне — не исключение, а правило, и это обстоятельство особенно существенно нри распространении волн в ограниченном пьезокристалле. Мы рассмотрели примеры распространения сдвиговых волн перпендикулярно оси симметрии кристалла.  [c.20]


Полезно напомнить, что здесь, как и всюду, речь идет об измерении коэффициента отражения, который, по определению, равен отношению среднего потока электромагнитной энергии в отраженной волне к среднему ее потоку в падающей. Но так как для падающего неполяризованного света имеет место осевая симметрия, т.е. <( оо) > = то целесообразно говорить  [c.87]

Благодаря этому электроны в металле начинают раскачиваться , амплитуда их вынужденных колебаний возрастает. При достижении достаточно большой энергии электрон покидает катод, т. е. происходит внешний фотоэффект. Однако объяснить количественные закономерности фотоэффекта оказалось невозможно. Амплитуда вынужденных колебаний электрона в волновой картине излучения пропорциональна амплитуде колебаний вектора напряженности электрического поля падающей на катод электромагнитной волны. Плотность светового потока энергии прямо пропорциональна квадрату амплитуды колебаний напряженности электрического поля волны. Следовательно, максимальная скорость покидающих катод фотоэлектронов должна увеличиваться с возрастанием плотности светового потока энергии. В действительности же скорость фотоэлектронов не зависит от нее. Не согласуется также с волновыми представлениями очень малое время запаздывания в фотоэффекте. Время запаздывания, которое дают расчеты, оказывается во много раз большим экспериментальной верхней оценки времени запаздывания. Наличие граничной частоты  [c.21]

При нагревании тел часть тепла в результате атомных возмущений неизбежно преобразуется в лучистую энергию. Носителями лучистой энергии являются электромагнитные волны или в другом представлении фотоны (кванты энергии). Скорость перемещения этих носителей в вакууме составляет около 300-10 м сек. Результирующий тепловой поток от излучающей среды с абсолютной температурой К к поверхности, средняя абсолютная температура которой равна Тс определяется по формуле, построенной на законе Стефана-Больцмана  [c.135]

Вырабатываемая ими электроэнергия преобразуется в электромагнитные волны в микроволновом диапазоне частот и направляется на Землю. Приемная антенна площадью около 3 км могла бы обеспечить прием мощности примерно 3 ГВт при интенсивности излучения 1 кВт/м, Поскольку эта интенсивность близка к освещенности при солнечном излучении, в случае нарушений в системе микроволнового излучения существенного вреда не будет. Единственным биологическим эффектом микроволнового изучения, определенно установленным на сегодняшний день, является нагрев. Человек может продолжительно переносить воздействие теплового потока интенсивностью 10 Вт/см, что примерно соответствует уровню энергии у приемной антенны. Однако считается, что необходимо проводить дальнейшие исследования биологического влияния микроволнового излучения. Следует отметить, что энергия микроволнового излучения лрн трансформации в полезную работу переходит во вторичную теплоту и, рассеиваясь, будет вызывать постепенное повышение температуры земной поверхности. О практической реализации этого направления в ближайшие годы еще рано говорить, поскольку созданные к настоящему времени преобразовательные устройства обладают очень малым КПД, а их масса и стоимость слишком велики.  [c.36]

Как видно, тепловое излучение относится к инфракрасной части спектра. Причиной теплового излучения может быть внутренний или внешний источник энергии. Так, любое тело, имеющее температуру выше 0° К, излучает тепловую энергию. Встречая на своем пути какое-либо вещество, лучистый поток воздействует на него, при этом происходит превращение энергии излучения в тепловую энергию. Таким образом, теплообмен излучением характеризуется двойным превращением энергии тепло — электромагнитные волны — тепло.  [c.79]

Учитывая, что и в электромагнитной волне имеется вектор Пойнтинга потока энергии 5 = (с/4тг) [ЕН, причем  [c.95]


Комплексное выражение для среднего по времени потока энергии. Скорость счета у детектора фотонов, помещенного в пучок электромагнитных бегущих волн, пропорциональна среднему по времени потоку энергии в пучке. Более точно если частота излучения равна со, то средняя скорость счета Я для детектора с площадью сечения Л и эффективностью фотокатода б будет равна (в единицах фотоны/сек)  [c.361]

Световым потоком Ф называется мощность видимого излучения (IV.4.4.Г), которая оценивается по действию этого излучения на нормальный глаз. Иными словами, Ф есть энергия световых электромагнитных волн, переносимая в единицу времени через некоторую площадь поверхности и оцениваемая по зрительному ощущению. Для монохроматического света (IV.4.2.5°), соответствующего максимуму спектральной чувствительности глаза (> =5500 А), световой поток равен 683 люменам (лм) ( 11.6.2 "), если мощность излучения равна одному ватту.  [c.356]

В диэлектрических материалах электромагнитные колебания распространяются с фазовой скоростью, зависящей от диэлектрической проницаемости, и, естественно, со скоростью, меньшей чем в вакууме. Распространение электромагнитной энергии в среде сопровождается взаимодействием с атомами вещества. Точнее, происходит определенное воздействие электромагнитной волны на электрические заряды атома, что приводит к изменению либо скорости распространения, либо интенсивности потока.  [c.117]

Перенос энергии электромагнитными волнами удобно характеризовать плотностью потока энергии, численно равной количеству энергии, переносимой в единицу времени через единицу поверхности,  [c.25]

Проникновение электромагнитной энергии во вторую среду при полном внутреннем отражении. Уравнения (3.25) и (3.28) на первый взгляд противоречат друг другу во второй среде присутствует электромагнитная энергия, в то время как весь поток падающей энергии возвращается в первую среду. В действительности же в данном случае никакого парадокса не существует. Фактически при полном внутреннем отражении часть потока энергии, проникая во вторую среду на очень маленькую глубину (порядка длины волны,  [c.55]

Прибор магнетронного типа — электровакуумный двух- и многоэлектродный прибор, в котором преобразование энергии происходит в результате взаимодействия электронного потока с электромагнитной волной в постоянных скрещенных электрическом и магнитном полях при использовании прибора в генераторном режиме энергия постоянного напряжения источника питания преобразуется в энергию высокочастотных колебаний. ,  [c.151]

Легко показать, что при отражении электромагнитной волны от металлической поверхности должна возникать сила светового давления, совпадающая по направлению с вектором плотности потока электромагнитной энергии S (рис. 2.24). Для количественного описания этого эффекта нужно воспользоваться формулами Френеля с подстановкой в них комплексных значений диэлектрической проницаемости, характеризующих отражение от металла электромагнитной волны. Такие довольно громоздкие вычисления могут явиться полезным упражнением для закрепления понятий, введенных в 2.5. Ниже мы получим выражение для светового давления в самом общем случае. Этот простой вывод будет базироваться на элементарных представлениях электронной теории.  [c.108]

Преобразуем выражение для силы, действующей на электрон, введя единичный вектор нормали к фронту электромагнитной волны п, который в изотропной среде совпадает по направлению с вектором плотности потока электромагнитной энергии S. Очевидно, что Н = [пЕ], и так как скорость заряда v коллинеарна Е, то (v п) = О. Тогда  [c.108]

Вместе с тем вектор S -= [EH], определяющий направление распространения потока энергии (а также единичный вектор Si = S/S), перпендикулярен векторам Е и Н и не совпадает с направлением к , так как известно, что D и Е не коллинеарны. Рис. 3. 14 иллюстрирует эти следствия решения уравнений Максвелла. Следовательно, при распространении электромагнитной волны в кристалле фазовая скорость и ( направленная по kj) U лучевая скорость U (совпадающая по направлению с вектором  [c.126]

Если измерять потоки электромагнитной энергии (в случае световых волн измеряется поток световой энергии или освещенность какой-либо поверхности), то надо учесть инерционность измерительной аппаратуры, которая обычно довольно велика. Во всяком случае, весьма трудно осуществить безынерционное измерение процессов, имеющих длительность того же порядка, что и время пребывания атома в возбужденном состоянии, хотя в современной физике для этих целей используют приборы, в миллион раз менее инерционные, чем человеческий глаз (инерционность зрительного восприятия человека обычно оценивается по порядку величины в 0,1 с).  [c.176]

При формулировке основных положений теории необходимо в первую очередь учесть поглощение электромагнитной волны, чего мы не делали при рассмотрении диэлектриков, предполагая, что сумма потоков энергии для отраженной и преломленной волн всегда равна потоку падающей энергии. Однако любая среда в большей или меньшей степени поглощает электромагнитное излучение, что ведет к затуханию электромагнитной волны, амплитуда которой будет постепенно уменьшаться. Для волны, распространяющейся вдоль оси 2, в слое малой толщины 2 поглощается определенная часть падающего света, пропорциональная толщине слоя (И——кМг. В соответствии с этим интенсивность света убывает по мере проникновения в поглощающую среду по закону  [c.26]


Теоретически вопрос о давлении света был исследован Максвеллом (1873). Рассматривая процесс распространения электромагнитных волн в веществе, Максвелл показал, что волны должны оказывать на вещество давление, определяемое величиной электромагнитной энергии, которая приходится на единицу объема. Сила давления зависит от интенсивности светового потока и составляет очень малую величину. Вычисления показывают, что в яркий солнечный день световое давление на 1 м- черной поверхности при нормальном падении лучей равно примерно 4,3-10 5 дин/см = 4,3-10 Па. Блестящим экспериментальным подтверждением этих результатов явились опыты Лебедева (1899).  [c.182]

Теплообмен излучением характеризуется тем, что некоторая часть внутренней энергии тела преобразуется в энергию излучения и передается через пространство. Носителями теплового излучения являются электромагнитные волны (фотоны), которые распространяются в пространстве в соответствии с законами оптики. Тепловое излучение тел определяется только их температурой и оптическими свойствами их поверхности. Излучение, соответствующее всему спектру длин волн (частот), называется интегральным излучением. Поток излучения, проходящий через единицу поверхности по всем направлениям (в пределах полусферического телесного угла), называется поверхностной плотностью потока интегрального излучения E dQ/dF.  [c.114]

Необходимо располагать неисчерпаемым дешевым и возобновляемым источником энергии, не загрязняющим окружающую среду. Таким источником является Солнце. Поток солнечного излучения составляет около 3,8Х X10 Вт и представлен всем спектром электромагнитных волн. Однако основная его масса приходится на ультрафиолетовую, видимую и инфракрасную части спектра. Энергетическая освещенность земной атмосферы составляет примерно 1,4 кBт/м , а поверхности Земли-— около 1 Вт/м . Пока не существует экономичного способа преобразования этой энергии в электрическую в настоящее время проходят испытания несколько маломасштабных установок для отработки такой технологии преобразования.  [c.34]

Величины, характеризующие энергетическую сторону излучения электромагнитных волн, измеряются общими энергетическими единицами, которыми измеряются энергия, объемная плотность энергии, поток энергии и т.п. В названии некоторых из этих величин отразилось то, что они явились расширением понятий, применяющихся в светотехнике, хотя они могут относиться к таким областям спектра, которые нашим глазом не воспринимаются. Энергетический характер соответствующих величин отмечается индексом э при обозначениях этих величин. Терминология энергетических величин не вполне установилась. Поэтому, наряду с обычно применяемыми названиями, мы в скобках приводим те, которыми предполагается их заменить, а также те, которые иногда встречаются в литературе.  [c.283]

Рассмотрим в общих чертах задачу о рассеянии и поглощении теплового излучения на отдельной сферической частице. Поток теплового излучения является, как известно, потоком электромагнитной энергии в определенной области длин волн. Величина его, т. е. количество энергии, протекающее в единицу времени через единицу поверхности, расположенной перпендикулярно направлению потока, определяется, как известно из электродинамики, вектором Умова — Пойнтинга  [c.12]

Если представить себе условную замкнутую сферическую поверхность S, находящуюся в электромагнитном поле падающей волны, то полный поток электромагнитной энергии через эту поверхность, подобно потоку несжимаемой жидкости, будет равен нулю.  [c.13]

Поток теплового излучения является, как известно, потоком электромагнитной энергии в определенной области длин волн. Величина его, т. е. количество энергии, протекающее в единицу времени через единицу поверхности, расположенной перпендикулярно направлению потока, определяется, как известно, из электродинамики, вектором Умова — Пойнтинга  [c.145]

ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ (ЭМЛП) — превращение части энергии эл.-магн. волн на границе проводника в энергию упругих колебаний той же или кратных частот, меньших дебаевской частоты (см. Дебая теория). Характеристиками ЭМЛП служат амплитуда возбуждаемого ультразвука и и эффективность преобразования Т1, определяемая отношением потоков энергий в упругой и эл.-магн. волнах. Обычно г iO -lO" , причём наиб, интенсивная генерация ультразвука происходит в присутствии пост. магн. поля Но. В случае генерации продольного ультразвука вектор Но направляют вдоль границы проводника (рис. 1, а), а в случае генерации поперечного ультразвука (см. Упругие во.ты) — по нормали к ней (рис. 1, б). Эл.-магн. поле создаётся катушками индуктивности, расположенными вблизи поверхности (при работе на высоких частотах образец помещают в объёмный резонатор). Преобразователем эл.-магн. и упругой энергий в задачах ЭМЛП выступает собственно приповерхностный слой проводника. Формируя разл. конфигурации и эл.-магн. полей у поверхности проводника (рис. 2), можно возбуждать в нём не только объёмные упругие волны, распространяющиеся иод любым углом к поверхности, но и разл. типы поверхностных акустических волн.  [c.538]

Электромагнитные волны характеризуются колебанием двух век-торов электрической напряженности Е и магнитной напряженности Я. "Оба вектора колеблются во взаимно перпендикулярных плоскостях в одинаковых фазах. Направление движения потока энергии электро-магнитной волны определяется направлением вектора Умова—Пойн-тинга, перпендикулярного к векторам электрической и магнитной силы.  [c.17]

Плотность потока энергии волн описывается вектором Пойнтинга (3.1). Следовательно, поток энергии отсутствует в точках, где либо Е, либо В равнь нулю. Это означает, что поток энергии в стоячей электромагнитной волне отсутствует через узлы и пучности в волне, поскольку пучность напряженности электрического поля совпадает с узлом индукции магнитного поля и наоборот. Поэтому с течением времени энергия движется между соседними узлами и пучностями, превращаясь из энергии магнитного поля в энергию электрического поля и обратно. С помощью (4.11) и (4.14), пользуясь формулой для объемной плотности энергии электромагнитного поля  [c.36]

Поток импульса в бегуньей волне давление электромагнитного излучения. Когда электромагнитное излучение поглощается без отражения веществом, последнему передается энергия W, а также импульс (вдоль направления распространения). покажем, что величина передаваемого импульса равна Wj . Если пучок отражается на 180° от зеркала (без какого-либо поглощения), то зеркалу передается удвоенное значение иьЛтульса, равное 21Г/с. Таким образом, излучение оказывает давление на предметы, которые поглощают илн отражают его. Это давление называется давлением излучения. Бегущей электромагнитной плоской волне с энергией W соответствует импульс Р, равный  [c.324]

При X = 0 = 0 и полный поток энергии на границе является электромагнитным, а при хО, <Стак что поток энергии в основном звуковой. Поскольку среднее за период изменение суммарной энергии W, + We равно нулю, суммарный поток Р Рх = onst = Psi )- Таким образом, в пригранияной области пьезоэлектрика происходит трансформация электромагнитной энергии в звуковую. Обмен энергией между носителями тока и волной электрического поля определяется стандартными условиями. При Al > О носители в среднем поглощают втекающую энергию и отраженный поток энергии меньше падающего, т. е. / < 1 при Ai<0 носители тормозятся волной и отдают энергию полю, так что Рн меняет знак, и Рхотр > пад, l-nl >1. Усиление акустоэлектрической волны будет тем значительнее, чем больше поток энергии, втекающей в пьезоэлектрик из полупроводника. Последний, в свою очередь, определяется значениями Ф и Z)x на границе. При малых индукция на границе существенно увеличивается из-за больших градиентов концентрации носителей в плазме полупроводника, что и приводит к заметному усилению (или ослаблению) отраженной акустоэлектрической волны.  [c.78]


Связь между люменом и ваттом. Чувствительность человеческого глаза. На практике часто приходится выражать световой поток через единицы мощности. По этой причине возникает необходимость установить связь между люменом и ваттом. Следует отметить, что такая связь из-за специфичности физиологического воздействия света не является универсальной. Дело в том, что свет разных длин воли при одинаковом потоке энергии вызывает различное зрительное ощущение. Поэтому в зависимости от длины волны одному люмену соответствуют разные мощности. Чувствительность человеческого глаза заметно меняется в зависимости от длины волны падающего излучения. Наибольшая чувствительность для нормальных (не страдающих дефектами зрения) глаз наблюдается при длине волны А, = 5550 А. Одинаковое количество лучистой энергии других (как больших, так и малых) длин волн вызывает сравнительно меньшее ощущение. Свет с длинами волн, меньшими 4000 А и большими 7600 А, совершенно не вызывает зрительного ощущения вне зависимости от интенсивности. По этой причине часть иакалы электромагнитных волн в интервале от 4000 А до 7600 А называется видимой областью.  [c.15]

Мы пришли к выводу, что плотность потока энергии пропорциональна квадрату амплитуды электрического поля. Это общее и очень важное соотношение, на котором фактически основывается возможность регистрации распространяющихся электромагнитных волн различными приемниками. Практически все ггриемники света в той или иной степени инерционны. Поэтому они регистрируют среднее значение квадрата амплитуды Применяя радиофизическую терминологию, можно говорить, что приемники оптического излучения работают как квадратичные детекторы.  [c.41]

Исследование преломленной волны. Утверждение, что поток электромагнитной энергии не попадает во вторую среду, полностью отражаясь от границы раздела, нельзя считать точным. Покажем, что при полном внутреннем отражении (ф > > Фпрсд) во второй среде появляется электромагнитная волна, распространяющаяся вдоль границы раздела. Для этого запишем выр 1жение для преломленной волны, направленной вдоль оси Х во второй среде (рис. 2.17). Для волны, движущейся в среде 2 по [см. (2.6)], имеем  [c.94]

Соотношение между потоками отраженной и поглощенной энергий должно зависеть от электропроводимости металла ст. Опыт показывает, что чем больше электропроводимость металла, тем лучше он отражает световые волны (благородные и щелочные металлы служат хорошими отражателями). Хуже проводящие ток металлы характеризуются низким коэффициентом отражения (например, Fe). Потери на джоулеву теплоту для хорошего проводника доллсны быть ничтожно малыми. Будем называть идеальным (ст >) проводник, который полностью отражает электромагнитную волну (./ - I). В дальнейшем изложении мы уточним это определение.  [c.100]

В заключение попытаемся качественно объяснить явление рассеяния света различными средами. Мы видели, что дифракция электромагнитной волны на неправильной плоской (двумерной ) структуре приводит к отклонению части потока энергии от его первоначального направления, т.е. к рассеянию света. Аналогичный процесс должен происходить и при дифракции на неправильной пространственной (трехмерной) структуре — дифракция света на каждой частице приведет к отклонению части пучка. Интерференция отклонившихся от первоначального направления волн (обусловливающая возникновение острых дифракционных максимумов) в данном случае не происходит. Весь эффект пропорционален когщентрации рассеивающих центров.  [c.352]

В терминах электронной теории можно следующим образом охарактеризовать механизм процесса. Электрическое поле падающей волны раскачивает заряженные частицы (электроны), и возникает рассеянное излучение, которое в грубом приближении можно описать полученными ранее соотношениями для гармонического осциллятора, излучающего под действием вынуждающей силы (см. 1.5). В частности, сразу понятно, почему наиболее интенсивно рассеивается коротковолновое излучение. Известно, что интегральная интенсивность излучения диполя пропорциональна четвертой степени частоты (ш lA ). Следовательно, голубой свет рассеивается значительно сильнее красного (Хкр/ гол = 1,6). Индикатриса рассеяния похожа на распределение потока электромагнитной энергии в пространстве (см. 1.5), полученное на основе очевидного положения об отсутствии излучения в направлении движения осциллирующего электрона.  [c.353]

В спектре электромагнитных колебаний рентгеновы лучи занимают промежуточное положение между наиболее жёсткими ультрафиолетовыми лучами и у-лучами радия. Они возникают, когда поток электронов в поле высокого напряжения падает на твёрдое тело (обычно металлическое), что приводит к превращению части кинетической энергии падающих электронов в энергию рентгеновых лучей сплошного спектра. Применяемые на практике рентгеновы лучи имеют длины волн  [c.153]


Смотреть страницы где упоминается термин Поток энергии в электромагнитной волне : [c.133]    [c.503]    [c.183]    [c.26]    [c.263]    [c.160]    [c.25]    [c.42]    [c.42]   
Колебания и волны Введение в акустику, радиофизику и оптику Изд.2 (1959) -- [ c.248 ]



ПОИСК



Волны электромагнитные

Волны электромагнитные (см. Электромагнитные волны)

Поток энергии

Поток энергии электромагнитных вол

Электромагнитные

Энергия в волне

Энергия электромагнитная

Энергия электромагнитных волн



© 2025 Mash-xxl.info Реклама на сайте