Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты в кристаллах дефекты упаковки

Выше отмечалось, что дефекты упаковки, границы зерен и двойников, границы доменов, поверхность кристалла относятся к двухмерным дефектам. Рассмотрение вопросов, связанных с поверхностью и границами доменов, будет проведено в последующих главах. Здесь мы кратко остановимся на дефектах упаковки и границах зерен.  [c.112]

Найти энергию образования винтовой дислокации для ГЦК кристалла с вектором Бюргерса /2 [НО] в зависимости от отношения радиуса ядра к размеру кристалла Сравнить с энергией образования точечных дефектов и энергией дефектов упаковки.  [c.248]


В кристаллах с ковалентной связью проводимость электрического тока может осуществляться как путем перемещения электронов (электронная, или п-проводимость), так и путем перемещения дырок (дырочная, или р-проводимость). Вследствие большой подвижности электронов в идеальных кристаллах химически чистого полупроводника электронная проводимость превалирует. В реальных кристаллах химически чистых германия и кремния может превалировать дырочная проводимость из-за неизбежных дефектов в упаковке атомов (дислокации вакансии границы зерен, блоков и т.д.). Проводимость в химически чистом полупроводнике называется собственной проводимостью. Однако получить химически чистые элементы весьма сложно. Вследствие этого полупроводники всегда содержат примеси, которые изменяют характер и значение проводимости. Электрическая проводимость, обусловленная присутствием примесей в полупроводнике, называется примесной.  [c.587]

В принципе образование стабильного зародыша новой фазы может происходить и в областях кристалла, не содержащих дефектов, в результате возникновения серии благоприятных флуктуаций (гомогенное зарождение), однако в большинстве случаев зародыши в твердой фазе образуются на границах зерен, на дефектах упаковки, дислокациях и т. п., где работа образования зародыша меньше. Образование зародыша в классическом смысле может не требоваться вообще, если в системе имеются какие-либо подходящие готовые зародыши или если такие зародыши могут образовываться из существующих дефектов без термической активации. Кроме того, зародыши, которые неустойчивы при данных условиях из-за того, что они имеют размер меньше критического (докритические зародыши, или эмбрионы), при резком изменении температуры могут стать закритическими. Этот способ зарождения иногда называют атермическим в отличие от термически активируемого образования зародышей.  [c.228]

Б закаленном алюминии. Они закаливали тонкие алюми-ниевые Монокристаллы и подвергали их старению для создания петель дефектов упаковки. Затем во время наблюдения в электронном микроскопе образцы деформировались, причем движущиеся дислокации могли взаимодействовать с петлями. Эти наблюдения показали, что при пересечении движущейся дислокации с несовершенной петлей всегда происходит разрушение дефекта упаковки. Когда такое пересечение происходит в тонких пленках, получающиеся сегменты геликоидальных дислокаций или удаляются в результате скольжения к поверхности, или оставляют за собой небольшие совершенные петли. Они предположили, что при таком пересечении в массивном кристалле за движущейся дислокацией остаются совершенные петли, а сегменты геликоидальной дислокации переносятся на субграницы.  [c.349]


Как хорошо известно, реальные кристаллы обладают различными дефектами и несовершенствами, включая точечные дефекты, примеси, дислокации, дефекты упаковки и т. д. тем не менее, как мы увидим в гл. 7, основные дифракционные эффекты зачастую можно рассматривать так, как если бы они возникали в идеально периодическом усредненном кристалле. Кинематическая дифракция на идеальных периодических кристаллах образует основу важного раздела анализа кристаллической структуры и, таким образом. заслуживает здесь особого внимания.  [c.127]

В области дефекта упаковки каждая из блоховских волн начальной части кристалла действует как падающая волна и порождает две блоховские волны в другой части кристалла  [c.402]

Принципиально важно, что все типы деформационных дефектов в кристаллах являются не просто нарушением периодичности структуры исходного кристалла, а, по существу, элементами других структур. Так, расщепленные дислокации в ГЦК кристаллах представляют собой элементы ГПУ структуры, ограниченные частичными дислокациями, а протяженные дефекты упаковки и двойники в ГЦК кристаллах с низкой энергией дефекта упаковки — планарные ГПУ структуры на плотноупакованных плоскостях. В кристаллах вблизи температур структурных превращений деформация осуществляется путем образования мартенситных ламелей как структур другой фазы. Если кристалл испытывает структурный фазовый переход, его деформация происходит в режиме сверхпластичности.  [c.40]

В гранецентрированных кубических кристаллах дефекты упаковки могут возникнуть по крайней мере по двум причинам  [c.51]

Изучение механических свойств кристаллических веществ привело к необъяснимому результату их фактическая прочность была на несколько порядков ниже, чем рассчитанная теоретически. Исследования показали, что в природе практически не существует идеальных кристаллов, и любая кристаллическая решетка имеет н своей структуре так называемые дефекты упаковки различного рода. При классификации дефектов были выделены [29]  [c.48]

То, что будет излагаться ниже, относится к определению структуры идеальных кристаллов, т. е. кристаллов без дефектов. Реальные кристаллы — это кристаллы с наличием самых разнообразных дефектов (вакансии и междоузельные атомы, дивакансии, дислокации, дефекты упаковки, включения второй фазы и др.). Изучение структуры реальных кристаллов, естественно, представляет более трудную задачу, и в настоящее время во многих лабораториях занимаются исследованием реальной структуры. Эти лаборатории оснащены целым арсеналом современного оборудования, включающего дифракционную, электронно-микроскопиче-скую и другую аппаратуру.  [c.36]

В случае несовпадения решеток поверхность разреза 5 должна иметь, вообще говоря, очень высокую энергию. Поэтому в большинстве кристаллов таких смещений не происходит. Однако в плотноупакованных кристаллах частичные дислокации и связанные с ними дефекты упаковки образуются достаточно легко.  [c.112]

В соответствии с тем, удаляется или внедряется лишняя плоскость, дефекты упаковки называются дефектами вычитания или внедрения. На удаление или внедрение неправильно уложенной плоскости должна быть затрачена определенная энергия, и па этой причине дефекты упаковки обладают характеристической энергией, называемой энергией дефекта упаковки. Характерные-величины этой энергии, например в металлах, 10 —10 эрг/см . Так, для алюминия энергия дефекта упаковки составляет 200,. для меди — 40 эрг/см . Совсем необязательно (да и маловероятно), чтобы неправильно уложенная плоскость проходила через весь кристалл. Если она обрывается внутри кристалла, то вокруг края этой плоскости возникает линейный дефект, который называется дислокацией.  [c.236]

Энергия когерентной границы двойников дв=0,5х Х д.у, поэтому склонность к двойникованию с уменьшением энергии дефекта упаковки увеличивается. Так, в г. ц. к. кристаллах алюминия деформационные двойники не наблюдаются, а в кристаллах меди, деформированных при 4 К и высоких напряжениях в серебре, золоте и никеле, они обнаружены для меди напряжения сдвига составляют 150, а для никеля 3 МПа. Указанные напряжения достигают при низких температурах или при больших скоростях деформации.  [c.137]


Природа металла и степень его чистоты, влияют на протяженность стадии /. Кроме того, существенное влияние оказывает энергия дефектов упаковки д.у. Так, для кристаллов алюминия д.у при комнатной температуре велика, величина уп не превышает 4—5%, а для кристаллов меди Ед.у мала и 7н свыше 20%. Примеси заметно влияют на протяженность стадии /, причем существенное значение имеет форма их нахождения в кристалле. Когда примеси образуют вторую фазу, наблюдается сокращение или полное исчезновение стадии  [c.185]

Металл и степень его чистоты. Влияние энергии дефектов упаковки проявляется и на стадии II. В алюминии при комнатной температуре стадия II упрочнения выражена очень слабо, и стадия / сливается со стадией III. При криогенных температурах все три стадии хорошо выявляются. Напротив, кристаллы меди при /=20° С имеют четко выраженную стадию П. В зависимости от ориентировки она начинается от значений v//=5-f-20% и заканчивается при 7///=15 35%. Начало стадии III связывают с интенсивным поперечным скольжением, которое для меди, обладающей довольно низкой энергией дефекта упаковки, более затруднено, чем для алюминия. Для твердых растворов протяженность стадии II объясняют влиянием добавок на энергию дефекта упаковки,  [c.189]

Для металлов с о. ц. к. решеткой благодаря высокой энергии дефектов упаковки характерной особенностью является сравнительная легкость поперечного скольжения. Макроскопическая плоскость скольжения будет близкой к поверхности, образованной участками плоскостей зоны <111>, по которым критическое приведенное напряжение сдвига максимально. Поэтому неясно, какую кривую для о. д. к. монокристаллов различной ориентации необходимо использовать для расчета как исходную. По аналогии с г. ц. к. кристаллами можно рекомендовать к использованию в расчетах такие ориентации о. ц. к. монокристаллов, в которых наблюдается множественное скольжение. В частности, для монокристалла с ориентировкой <100> с четырьмя системами скольжения расчетная и экспериментальная кривые а — S находятся в приемлемом соответствии,  [c.237]

Тугоплавкие металлы VA группы — ванадий, ниобий и тантал в отличие от металлов VIA группы имеют относительно низкую энергию дефекта упаковки (табл. 9) и почти на два порядка выше равновесную растворимость элементов внедрения [95], что во многом обусловливает специфику их механического поведения в области низких и средних температур [340]. Указанные факторы определяют как уро- вень напряжений сопротивления движению дислокаций в кристалли-  [c.143]

Можно полагать, что н на поверхности кристалла анодный участок образуется из-за разрыва пленки. Химическая неоднородность, дефекты упаковки кристаллической решетки и ее деформация могут привести к разрыву защитной пленки. И в том, и в другом случае па анодных участках начинается быстрое электрохимическое растворение материала. При межкристаллитном растрескивании разъедание происходит но границам зерен, которые более или менее перпендикулярны приложенному напряжению.  [c.179]

В реальных кристаллах источниками и стоками вакансий являются свободные поверхности, границы зерен и блоков, трещины и поры, линейные краевые дислокации и дефекты упаковки атомов, царапины на поверхности и др. При этом т]в = —  [c.74]

Таким образом, механизмы деформации при мартенситном превращении ниже некоторой температуры различаются в зависимости от того, связана ли деформация с инвариантной решеткой с двойниковыми дефектами ипи с дефектами упаковки. Действительно, в сплавах Си—А1—N1 с 71-мартенситом типа 2Н внутренние дефекты явпяются двойниковыми дефектами. Известно, что деформация в этих сплавах развивается посредством двойникования. Однако в сплавах Си—2п—А1 с /32 Мартенситом типа 9/ внутренние дефекты явпяются дефектами упаковки. Известно, что деформация в этих сплавах развивается посредством перемещения поверхности раздела между кристаллами мартенсита. В настоящее время установлено, что и перемещение границы раздела между кристаллами мартенсита разных кристаллографических вариантов осуществляется двойникованием в этом мартенсите.  [c.34]

Дефект упаковки представляет собой часть атомной плоскости, ограниченную дислокациями, в пределах которой нарушен нормальный порядок чередования атомных слоев. Например, в сплавах с ГЦК решеткой чередуются плотноупакованные слои АВСАВСАВ..., а при прохождении через дефект упаковки слои чередуются в последовательности АВСВСАВС... Чередование слоев ВСВС... типично для кристаллов с ГН решеткой, и, таким образом, дефект упаковки представляет собой как бы тонкую пластинку с ГП решеткой в ГЦК решетке.  [c.35]

В книге помещены переводы статей, опубликованных в зарубежной периодической печати в последние годы. В I части книги рассматривается атомная структура различных дефектов в кристаллах полупроводников с решеткой алмаза и цинковой обманки (сфалерита) полные и частичные дислокации, дефекты упаковки, дислокации несоответствия, а также наклонные границы, в том числе двойниковые границы высокого порядка. Во II чаети описаны структура и происхождение некоторых типов дефектов, встречающихся главным образом в эпитаксиальных пленках дефекты упаковки, микродвойниковые ламели и более сложные дефекты типа трипирамид , воэникновение которых обусловливается многократным двойникованием.  [c.335]

Дефекты в кристаллах различаются по типу и происхождению. Значительная их часть (фазовые неоднородности, включения, дефекты упаковки, дислокации) возникают уже в процессе изготовления слитков. Последующая глубокая пластическая деформация, неизбежная при производстве сортового металла, дополнительно порождает дефекты, прежде всего дислокации. В дефектных местах кристаллической поверхности имеют место значительные флуктуации термодинамических свойств решетки и энергии активации электрохимических процессов. Особенно резко изменяются свойства металла в местах включения инородных фаз (карбидов, гидридов, нитридов, окислов и др.). Другим источником энергетической, а следовательно, и кинетической неоднородности, несомненно, являются дефекты пассивирующей пленки. Ясно, что этот фактор тесно связан с дефектами самого металла. Поэтому скорости растворения пассивного металла для разных микроучастков поверхности должны существенно отличаться друг от друга и изменяться с течением времени. Последнее обстоятельство отражает динамику как выхода внутренних дефектов решетки на поверхность растворяющегося кристалла, так и процессов пленкообразования. Представления о неизбежном существовании активных пор в пассивирующей окисной пленке и о роли электрокапиллярных явлений в этих порах развиты Шултиным [27].  [c.69]


Проведенный в рамках кинематической теории анализ рассеяния рентгеновских лучей реальными кристаллами позволил М. А. Кри-воглазу [68] подразделить дефекты на два класса. Правильные отражения, полученные от кристаллов, которые содержат дефекты первого класса, могут быть смещенными и ослабленными на фактор типа ехр (—2М), но не уширенными. При этом возникает диффузный фон. Дефекты второго класса приводят к уширению линий на рентгенограмме. Принадлежность дефекта к тому или иному классу определяется законом убывания смещений и (г) , создаваемых этими дефектами на больших расстояниях (строго говоря, в пределе бесконечного кристалла). Дефекты принадлежат к первому классу, если при больших г величина и (г) убывает как или быстрее, и ко второму классу, если смещение убывает медленнее, чем Г -" К дефектам первого класса принадлежат точечные дефекты, изолированные частицы выделений новой фазы, дислокационные петли и вообще произвольные ограниченные в тргх измерениях дефекты, если их максимальные размеры гораздо меньше размеров кристалла. К дефектам второго класса следует относить дефекты упаковки, если плоскость, в которой нарушаются укладки, пронизывает весь кристалл, а также дислокации и дислокационные диполи, линии которых проходят через весь кристалл и дисклинации.  [c.230]

Все типы деформационных дефектов в кристаллах являются не просто нарушением периодичности структуры исходного кристалла, а представляют собой элементы других структур. Так, расщепленные дислокации в ГЦК-крист аллах есть элементы ГПУ-структуры, ограниченные частичными дислокациями, а протяженные дефекты упаковки и двойники в ГЦК-кристаллах с низкой энергией дефекта упаковки — планарные ГПУ-структуры на плот-ноупакованных плоскостях. В [8] убедительно показано, что и в ОЦК-кристаллах дислокации расщеплены и, следовательно, также являются фрагментами других структур. В кристаллах вблизи температур структурных превращений деформация осуществляется  [c.7]

В совершенном кристалле должно быть правильное периодическое расположение атомов, простирающееся до бесконечности. Но в действительности таких кристаллов не существует. В реальных кристаллах правильное строение всегда имеет определенные нарушения — дефекты. Все дефекты в кристаллах разделяют на четыре группы точечные, линейные, поверхностные (плоские), объемные. Точечные дефекты бесконечно малы в трех измерениях, к ним относятся вакансии — узлы кристаллической решетки, не занятые атомами, дислоцированные атомы, расположенные в междуузлиях, атомы примесей и т. п. Линейные дефекты малы в двух измерениях, а в третьем имеют значительную протяженность. К ним относятся дислокации. Дефекты упаковки — нарушения в чередовании плотноупа-кованных атомных плоскостей, границы двойников и т. д. — от-  [c.278]

Парные дефекты Френкеля возникают легче в кристаллах, содержащих большие межатомные промежутки, чем в плотноупа-кованных. В последних для междоузельных атомов, попросту говоря, нет места. Примером кристаллов первого типа являются кристаллы со структурой алмаза и каменной соли, а кристаллов второго типа—металлы с плотной упаковкой. Так, например, маловероятно встретить при обычных условиях междоузельные атомы в гранецентрированных (ГЦК) металлах. Единственным типом меж-  [c.86]

Дефекты по Шоттки обычно встречаются в кристаллах с плотной упаковкой атомов, где образование междоузельных атомов затруднено и энергетически невыгодно. Процесс образования дефектов в таком кристалле может происходить следующим образом. Некоторые атомы из приповерхностного слоя в результате теплового движения могут оказаться в состоянии частичной диссоциа-.  [c.87]

Возможно расщепление единичной винтовой дислокации с модулем 0,5а [ИТ] на две частичные. В этом случае часть кристалла начиная, допустим, с ряда Е и выше смещается относительно части кристалла от ряда F и ниже (см. рис. 42, б) не на величину вектора тождественной трансляции 0,5а [111], как это было рассмотрено выше, а на одну треть его, т. е. (а/6) [111] (вектор тр). Пусть слои начиная с Е я выше сместились на (а/6) [Ш] (вектор рт). Слой F займет в плоскости (110) положение, аналогичное слою А и D в исходной решетке (см. рис. 42, г). Однако в плоскости (112) с новым положением совпадают плотноупакованные ряды слоя А, поэтому после смещения на (а/6) [ГГ1] слой Е будет уже н осителем признаков слоя А, а при смещении на (а/6) [111] слой С будет носителем признаков слоя Е (см. рис. 42). Дальнейших нарушений кристаллической решетки начиная со слоя Е и выше нет, поэтому чередование слоев в дефекте упаковки (см. рис. 42) будет DEFA FAB ... Таким образом, винтовая дислокация мощностью fei=(a/6) [iTl] (вектор рт) представляет собой одну границу дефекта упаковки. Другой гра-  [c.82]

Для расщепленной, допустим в г. ц. к. кристалле, дислокации дефект упаковки — это прослойка г. п. у. решетки, для которой растворимость примесных атомов будет отличаться от растворимости в г. ц. к. решетке. При высокой температуре диффузионное перераспределение атомов происходит аналогично перераспределению элементов между двумя фазами. Такое перераспределение было названо химическим взаимодействием растянутой дислокации с растворенными атомами. Изменение концентрации вызывает уменьшение энергии дефекта упаковки и увеличение его ширины. Изменение концентрации примесных атомов или атомов легирующих элементов в дефекте упаковки расщепленной дислокации называют атмосферой Сузуки. Энергия дефекта упаковки д.у больше энергии дефекта упаковки д.у.с при наличии атмосфер Сузуки, т. е. д.у> д.у.с. Подставив равновесную ширину дефекта упаковки (55) в (54), получим выражение энергии расщепленной дислокации без р.д и с атмосферой Сузуки р.д.с  [c.93]

Как известно [75, 76], пластическая деформация материалов приводит к значительному увеличению плотности таких дефектов, как дислокации (или их скопления), дефекты упаковки, вакансии (или нх комплексы), междоузельные атомы и т.д. Поля искажений этих дефектов кристаллического строения вызывают смещения атомов из узлов, что приводит к упругим микродеформациям. Если размер блоков достаточно мал (-10" см), это приводит к заметному расширению дифракционных пиков на дифрактограммс. Наличие в поликристал-лическом образце микроискажений (т.е. присутствие кристаллов с вариацией периода решетки) также приводит к расширению пиков на дифрактограмме. В настояи ,ее время развит1)1 три метода (аппроксимации или интегральной ширины, гармонический анализ формы рентгеновских линий, метод моментов), основанные на анализе формы дифракционных линий, с помощью которых могут быть найдены размеры блоков и величина микродеформаций в случае их раздельного и совместного присутствия в исследуемом образце. Зачастую имеется однозначная связь между величиной микродеформаций и плотностью хаотически распределенных дислокаций.  [c.160]

Роль электронов в металлах как фактора, определяющего их прочность и пластичность, подчеркивалась Я. И. Френкелем еще в ранних работах [1] на основе пористой электронной модели. Современные представления о реальной прочности металлов, учитывающие, с одной стороны, кооперативный характер процессов перемещения атомов при деформации, а с другой — локальный характер разрушения, не отрицают роли электронного фактора. Так, справедливо считается, что наблюдаемые различия прочностных характеристик кристаллов определяются их электронной структурой, а роль дефектов упаковки в механизме деформации и разрушения металлов и качественная связь энергии дефектов упаковки с характеристиками электронной структуры [2] общепринятые. Для дальнейшего развития этих представлений стала очевидной необходимость установления закономерностей взаимосвязи процессов деформации и разрушения с электронными свойствами самих дефектов, ответственных за прочностные свойства металлов [.3]. Со времени открытия явления взаимодействия позитронов с дефектами кристаллической решетки [4] стало понятным, что метод позитронной аннигиляции является уникальным для получения информации об электронной структуре дефектов [5]. В основе этой возможности лежит тот факт, что при наличии в кристал.те дефектов с концентрацией 10 все термализованные позитроны захватываются ими и аннигиляция с электронами в дефектах дает информацию об их электронной структуре. Если концентрация дефектов недостаточна, то в позитронную аннигиляцию будут вносить вклад как совершенные, так и дефектные области кристалла. Следовательно, использование метода электронно-позитронной аннигиляции для анализа структурного состояния в области дефектов, образующих-  [c.139]


Несмотря на высокую прочность в плоскости атомных слоев, кристалл может быть легко изогнут вследствие низкого модуля сдвига. Межслоевой сдвиг затрудняется при введении в кристаллическую решетку дефектов. Дефекты внутри слоев типа вакансий, внедрений, дисклинациий и дефекты упаковки соседних слоев приводят к возрастанию межслоевого расстояния. Внутрислоевые и межслоевые дефекты часто взаимосвязаны, поскольку дефекты внутри слоя могут приводить к неправильной упаковке соседних слоев, а вследствие того и к возрастанию межслоевого расстояния, что вызывает неполную делокализацию л-электронов и затрудняет межслоевой сдвиг. Дисклинации также препятствуют сдвигу и приводят к появлению вакансий и неправильной упаковке соседних слоев.  [c.15]

Двухмерными, или поверхностными, Д. являются дефекты упаковки, границы двойников (см. Двойиикова-ние) и зёрен (см. Межаёреи-иые границы), антифазные и межфазные границы в сплавах, сама поверхность кристалла. Поверхностные Д., обрывающиеся внутри кристалла, ограничены полными или частичными дислокациями либо дисклниациями. Трёхмерными, или объёмными, Д. являются поры, трещины, включения др. фаз, тетраэдры из Д. упаковки.  [c.595]

Ядру дислокации с вектором Бюргерса Ь бывает энергетически выгодно расщепиться на нсск. частичных дислокаций с векторами Бюргерса , (ft=2 6,-), соединённых полосками из дефектов упаковки, к-рые лежат в плоскости скольжения или расположены под угло.м к ней. Особенно сложной бывает конфигурация ядра расщеплённой дислокации в объёмноцеитриров. кубических и гексагональных кристаллах, а также в кристаллах с элементарной ячейкой, содержащей много атомов разных сортов.  [c.596]


Смотреть страницы где упоминается термин Дефекты в кристаллах дефекты упаковки : [c.73]    [c.439]    [c.432]    [c.406]    [c.395]    [c.105]    [c.114]    [c.193]    [c.229]    [c.244]    [c.69]    [c.138]    [c.24]    [c.597]    [c.597]   
Физика твердого тела Т.2 (0) -- [ c.254 ]



ПОИСК



Дефекты в кристаллах

Дефекты в кристаллах дефектов

Дефекты в кристаллах, динамическая дифракция ошибки упаковки

Дефекты дефекты упаковки,

Дефекты кристаллов упаковки

Дефекты кристаллов упаковки

Дефекты упаковки



© 2025 Mash-xxl.info Реклама на сайте