Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы образования дефектов

Процессы образования дефектов  [c.50]

Представляя процесс образования дефектов в кристалле при пластической деформации как образование фазы а в матрице р, получаем, что в закрытой системе свободная энергия AF = = —АР(Р) AW2. Тогда из. формулы (102) следует, что AG л —AV АЯ<Р>, где AV — увеличение объема системы и АР(3> — давление, развиваемое в матрице вследствие образования дефектов (V< ) < У(Р)). Переходя в последнем выражении к величинам, относящимся к единичному дефекту, получаем активационный объем V == —[d(Ag-)/(5 (АР(Р>)].  [c.54]


В связи с тем что при реакторном облучении процессы образования дефектов и накопления гелия идут одновременно, долгое время  [c.15]

Второе направление на основе представлений о физической сущности процесса образования дефектов составляются уравнения, описывающие процесс. Используя экспериментально определенные характеристики материала, рассчитывают параметры оптимального режима.  [c.142]

Третье направление на основе уравнений, описывающих процесс, методами теории подобия находятся критерии, определяющие процесс образования дефектов. Экспериментальным путем определяются критические значения этих критериев и увязываются с параметрами режима сушки.  [c.142]

Первичная рекристаллизация заключается в образовании новых зерен. Это обычно мелкие, можно даже сказать очень мелкие зерна, возникающие на поверхностях раздела крупных деформированных зерен. Хотя в процессе нагрева и происходили внутризеренные процессы устранения дефектов (возврат, отдых), все же они, как правило, полностью не заканчиваются, с другой, стороны, вновь образовавшееся зерно уже свободно от дефектов.  [c.90]

Классификация дефектов. В процессе образования сварного соединения в металле шва и зоне термического влияния могут возникать дефекты, т, е. отклонения от установленных норм и требований, приводящие к снижению прочности, эксплуатационной надежности, точности, а также ухудшению внешнего вида изделия. Де фекты сварных соединений различают по причинам возникновения и месту их расположения (наружные и внутренние)  [c.145]

Обработка результатов применения автоматизированной базы данных методами факторного и регрессионного анализов позволила оценить влияние основных факторов на коррозионные процессы в трубопроводах. Матрица наблюдений, с помощью которой построены модели прогноза образования дефектов, состояла из одиннадцати параметров и включала характеристики дефектов и труб, а также режимов работы трубопроводов. Особенность прогнозирования заключается в подготовке  [c.106]

Вероятность образования дефектов с учетом их потенциальной опасности характеризует надежность технологического процесса производства изделия. Чем ниже надежность технологического процесса производства, тем больше должна быть надежность применяемых средств контроля.  [c.15]

Проявление следов дефектов представляет собой процесс образования рисунка в местах наличия дефектов, для чего используют один из способов проявления индикаторных следов  [c.168]

Образование дефектов в изделии зависит от характера технологического процесса, его режимов, методов контроля параметров, степени автоматизации и других характеристик. Для каждого технологического процесса имеются, как правило, типичные виды дефектов, связанные с теми или иными нарушениями хода процесса или неблагоприятным сочетанием факторов.  [c.468]


Основной причиной ухудшения свойств плоскостных транзисторов является влияние излучения на объемные рекомбинационные процессы. При инжекции неосновных носителей через область базы особенно важно, чтобы они не рекомбинировали прежде, чем пройдут эту область. Поэтому транзисторы с очень узкой областью базы могут выдержать большее облучение, чем транзисторы с широкой областью базы. Величина изменения времени жизни зависит от числа созданных дефектов и от сечения рекомбинации дефектов. Экспериментальные наблюдения наводят на мысль, что сечение рекомбинации дефектов в кремнии, облученном быстрыми нейтронами, значительно больше, чем в германии, даже с учетом большей скорости образования дефектов в кремнии.  [c.284]

В работах Ю. М. Полукарова с сотр. [82] установлено, что увеличение перенапряжения катода при электроосаждении меди вызывает переход от слоисто-спирального роста осадка к образованию и росту двумерных зародышей с появлением дефектов упаковки двойникового типа добавки к электролиту меднения поверхностно активных веществ резко повышают вероятность образования дефектов упаковки, увеличивают искажения кристаллической решетки и плотность дислокаций. Заряд двойного электрического слоя ускоряет процессы возврата в тонких осадках меди (эффект Ребиндера), приводящие к появлению внутренних напряжений растяжения. Влияние электрохимических условий осаждения на состояние кристаллической решетки осадков становится определяющим при достаточно большой толщине осажденного слоя на пластически деформированной монокристал-лической подложке дефектность слоев осадка постепенно уменьшалась при утолщении слоя, а при росте осадка на подложке из граней совершенного монокристалла, наоборот, увеличивалась до значений, соответствующих условиям электролиза.  [c.93]

Уравнения (2) и (3) дают зависимость между плотностью дислокаций и, амплитудой пластической деформации Ёпл (напряжения Оа) и числом циклов N нагружения. Эти уравнения подобны уравнению (1) кинетики дислокаций для статического и квазистатического нагружений. Характерной особенностью кинетики размножения дислокаций при нарастающем квазистатическом нагружении является то, что образовавшийся источник сразу начинает работать, а число действующих источников определяется величиной пластической деформации. При воздействии знакопеременных напряжений малой амплитуды на кристаллический материал, дислокации в котором закреплены точечными дефектами, работа источников становится возможной только после отрыва дислокаций от точечных дефектов. Отрыв дислокаций от точечных дефектов может быть достигнут сразу при приложении достаточно большого напряжения или после определенного числа циклов знакопеременного напряжения малой амплитуды. Предполагается, что после отрыва потенциальных дислокационных источников от точечных дефектов процесс образования новых источников и размножение дислокаций происходят так же, как и при квазистатическом нагружении.  [c.179]

Усадочные явления, возникающие в полимерных материалах в результате химических, термических и механических процессов, оказывают существенное влияние на качество изделий, так как они изменяют не только геометрические размеры и форму изделия, но и физико-механические характеристики. Образование дефектов структуры вследствие усадочных явлений обусловлено нарушением условий протекания технологических процессов формирования изделий.  [c.11]

Наиболее ответственным этапом технологического процесса изготовления изделий типа тел вращения является операция намотки армирующего материала на оправку. Основными источниками образования дефектов в готовом изделии при намотке являются нарушения угла намотки и скорости вращения оправки, несоблюдение режима натяжения армирующего материала, неточность согласования стыков полотна армирующего материала, неравномерность уплотнения слоев материала прижимным валком и неоднородность температурного поля поверхности оправки.  [c.15]


Образование дефектов в процессе эксплуатации. Одним из важнейших факторов, влияющих на образование различных дефектов полимерных композиционных материалов, является процесс эксплуатации изделий. Основными причинами, вызывающими образование дефектов, являются следующие несоблюдение режимов эксплуатации изделия, влияние условий окружающей среды, моральный и физический износ изделия.  [c.17]

Окисление при одновременном воздействии на систему графит — газ облучения нейтронами и у-кванта-ми вызывает ионизацию молекул газа, что наряду с образованием дефектов в графите существенно изменяет кинетику процесса.  [c.209]

Одной из причин возникновения пор в металлах является асимметрия поглощения точечных дефектов дислокациями. Наличие атомов гелия, возникающего в процессе ядерных реакций при облучении, также стимулирует процесс образования пор, поскольку атомы гелия являются эффективными ловушками вакансий и сильно конкурируют с другими стоками вакансий. Вакансионные кластеры, стабилизированные атомами гелия, можно рассматривать как зародыши пор.  [c.62]

Микроскопические модели радиационного роста а-урана. Поскольку структура пиков смещения в явлении радиационного роста а-урана способствует образованию скоплений точечных дефектов различного знака, это обстоятельство может служить основой для объяснения процесса образования зародышей петель дислокаций межузельного и вакансионного типов. Учитывая большую вероятность образования пиков смещения в уране при облучении осколками деления, гипотезы радиационного роста а-урана, основанные на предположении о зарождении дислокационных петель вне пиков смещения, следует считать, по-видимому, менее оправ-  [c.202]

Дефекты по Шоттки обычно встречаются в кристаллах с плотной упаковкой атомов, где образование междоузельных атомов затруднено и энергетически невыгодно. Процесс образования дефектов в таком кристалле может происходить следующим образом. Некоторые атомы из приповерхностного слоя в результате теплового движения могут оказаться в состоянии частичной диссоциа-.  [c.87]

Для расширения области контролируемых объектов применяют сильноточные импульсные рентгеновские аппараты Торнадо 100/240, ПИР-600, ПИР-1200. Цифры обозначают амплитуду ускоряюп1,его напряжения (кВ). В данных аппаратах имеется возможность получения необходимой информации за один импульс, длящийся 40...70 не. Поэтому при использовании в качестве детектора рентгенотелевизионной трубки можно наблюдать в реальном масштабе времени быстройротекаюшие процессы образования дефектов сварки.  [c.157]

На катоде окись РеЗ+ восстанавливается до окиси Ре , которая переходит в раствор. Это явление известно под названием восстановительного растворения. Этот механизм, связывающий удаление окислов высшей валентности с поверхности металла не с непосредственным растворением гематита и магнетита кислотой, а с восстановительным растворением, был убедительно доказан Прайэром и Эвансом [140, с. 14]. Изучая растворимость окисла РегОз, авторы нашли, что непосредственное действие кислоты было медленным, а в растворе было обнаружено много ионов Ре +, хотя окисел формально состоял из РегОз. Изучение модели короткозамкнутого элемента, составленного из окисла железа РегОз и Ре, подтвердило, что железо является аподо.м, а окисел — катодом. При этом наблюдалось очень сильное растворение окисла с накоплением в катодном пространстве Ре2+, Таким образом, катодная реакция может рассматриваться как процесс образования дефектов структуры в решетке окисла РеЗ+ (увеличение концентрации Ре-+). Поскольку растворение окиси происходит предпочтительнее в дефектах структуры, то появление Ре в растворе понятно.  [c.221]

Первый член в правой части (7.4) представляет собой энергию упругого взаимодействия частицы с петлей второй — энергию дислокационной петли, третий — энергию, связанную с изменением концентрации точечных дефектов. Из этого выражения следует, что зарождение петли требует термоактивируемого преодоления энергетического барьера, который существенно зависит от параметра 1п(с/со), определяемого вакансионным пересыщением в случае образования вакансионной петли и вакансионным недосы-щением 1п(со/с) в случае образования петли внедрения. Как было показано в [601], экспериментально наблюдаемой высоте энергетического барьера 7 эВ соответствует значение параметра 1п(со/с) - 15. Это указывает на то, что вблизи частиц выделений практически нет свободных вакансий. При отжиге в электронном микроскопе тонкой фольги (до 3 мкм), приготовленной из закаленного кристалла, процесс образования дефектов развивается иначе [602]. В первые минуты отжига наблюдается образование преципитатов, однако в дальнейшем петли ими не генерируются. По-видимому, снятие напряжений около частиц обеспечивается вакансиями, диффундирующими к преципитатам с поверхности фольги, и отсутствует необходимость создания внутренних источников вакансий в виде дислокационных петель. Это, очевидно, также указывает на то, что для возникновения петель внедрения, помимо упругих напряжений, необходимо вакан-сионное недосыщение, которое в тонкой фольге не может достигнуть критической величины, необходимой для зарождения петли, из-за поверхности, являющейся источником вакансий.  [c.205]

Процесс образования дефектов но Френкелю и по Шоттки имеет термофлуктационный характер, т. е. максимумы флуктуаций температуры позволяют атомам преодолевать энергетические барьеры. Энергия образования дефектов но Френкелю приблизительно равна сумме энергий образования вакансии и внедрения [259, 260.  [c.26]

Еще в 30-х годах Френкель показал, что колебательная энергия, вьщелившаяся при захвате свободного электрона решетки на дефект, может стимулировать его перестройку или рождение нового дефекта. Основываясь на электронно-колебательном механизме захвата, Емельянов и Кашкаров (1982) предложили электронно-деформацион-но-тепловую модель поверхностного дефектообразования при фотовозбуждении полупроводника. Она учитывает понижение энергии активации Ет чисто термофлуктуационного процесса образования дефекта благодаря вибронным взаимодействиям фотогенерируемых носителей заряда с решеткой Еэ) и вызванным нагревом поверхности при освещении дГ термоупругим деформациям (Етд)- Концентрация рождающихся дефектов описывается уравнением  [c.261]


Совершенно аналогичные соображения применимы и в случае гранецентрированной кубической структуры, для. которой нормальной последовательностью упаков-ки является АВСАВС..., а. при возникновении частичной дислокации образуется, например, дефект с последовательностью упаковки слоев АБА (т. е. такой, которая характерна для. плотноупакованной гексагональной структуры). В этом случае ширина дефектной области будет снова зависеть от относительной величины энергии, соответствующей процессам образования дефекта и дислокаций. Эти энергии у различных. металлов с гранецентрированной. кубической решеткой могут различаться очень сильно,. и предп.ола-гается, что такое различие механических свойств золота и алюминия обусловл.ивается. намного большей энергией образования дефектов упаковки в алюминии, чем в золоте.  [c.87]

Когда Прайэр помещал тот же самый порошок окиси на ртутный электрод (фиг. 53) и соединял сосуд с помощью мостика из фильтровальной бумаги (через промежуточный сосуд) с другим сосудом, содержащим кислоту, в которую погружался кусок железа, соединенный электрически со ртутью, то наблюдалось очень сильное разрушение пленки железо в правом сосуде работает как анод короткозамкнутой ячейки, а ртуть с окислом железа на ней — как катод катодная реакция может рассматриваться как процесс образования дефектов решетки в окисле Ре +, так что растворение происходит легче. В такого рода опытах ионы Ре + появлялись.в левой части при катодном растворении окисла Ре + и в правой части при анодном разрушении железа. Ячейка, изображенная на фиг. 53, действительно представляет собой модель локального элемента, действующего каждый раз при разрыве пленки из окиси Ре + на окисленном железе (фиг. 54). Несплошность пленки показана на диаграмме как вполне четкий разрыв в пленке, но практически может быть просто место, где структура окисла будет иметь достаточные дефекты, для того чтобы начался быстрый переход катионов железа в кислоту. Помещая миллиамперметр,  [c.214]

Последующее поведение локального объема и процесс образования несплош-ности в этом объеме можно рассматривать как взаимосвязанную цепь элементарных процессов разрыва связей. Так, например, пересечение дислокаций, которое становится возможным при достижении некоторой пороговой плотности дислокаций, приводит к следующим связанным процессам образование порогов на дислокациях —> движение дислокаций с порогами —> порождение точечных дефектов -> объемная самодиффузия диффузия моновакансий и внедренных атомов. Таким образом, процесс необратимого разрыва межатомных связей можно рассматривать как цепную реакцию, состоящую из взаимосвязанных элементарных процессов, а следовательно удовлетворяющую функции самоподобия  [c.196]

Проблема образования дефектов и их влияния на свойства материалов-одна из важнейших. Особенно актуален вопрос дефектообразования. Несмотря на огромное количество статей и работ, посвященных описанию дефектов и процессам их образования в кристаллах разной природы, аспектам физики твердых тел, связанных с дефектами кристаллической структуры, теория этого процесса до конца не разработана [21].  [c.50]

Как подчеркивается в [21], многообразие дефектов кристаллической структуры и причин их образования говорит о невозможности единого процесса дефектообразования дефекты образуются как в процессе роста кристаллов, так и при последующей их обработке или в результате внешних воздействий. Например, такие дефекты, как дендриты, могут возникать только в процессе к-ристаллизации, а сдвиг возникает только в процессе деформации.  [c.50]

Таким образом, природа процесса образования поликристаплических сплавов при кристаллизации из расплава такова, что в структуре сплавов изначально закладываются элементы, являющиеся "зародышами разрушения" твердого тела, то есть области скопления различных дефектов кристаллической структуры.  [c.98]

Процессы образования дефеш-ов Проблема образования дефектов и их влияния на свойства материалов-одна из важнейших. Особенно актуален вопрос дефектообразования. Несмотря на огроьшое количество статей и работ, посвященных описанию дефектов и процессам их образования в кристаллах разной природы, аспек-  [c.268]

Полученные результаты объясняются на основе представлений о возникновении регулярных диссипативных структур (РД< ) дефектов в Процессе образования остаточного нарушенного слоя При множественном локальном микроразрушении поверхности кристалла. РДС формируется из метастобильных комплексов неравновесных точечных дефектов, взаимодействующих через упругие и электрические поля и профиль распределения которых промодулирован дислокационным каркасом в области вдавливания абразивных гастиц. Переход кристалла после обработки в новое квазиравновесное состояние сопровождается распадом РДС, при котором возможны локальные фазовые переходы, проявляющиеся как отрицательная мнкрог10лзу4есть кремния. Обсуждаются аспекты практического использования обнаруженного явления для оптимизации механической обработки монокристаллов.  [c.91]

Напомним, что аналогичная ситуация наблюдается н в переохлажденных парах, где зародышами служат частицы пыли и ионы. Нечто подобное происходит и в сверхпроводниках, где зародышами могут служить дефекты металла. Существование связи между дефектами и переохлаждением было убедительно доказано Фабером [37]. В его залючательных опытах оловянный стержень, на котором в различных точках располагались короткие катушки, помещался в продольное магнитное поле и слегка переохлаждался. Пропуская ток через одну нз катушек, можно было снизить поле в некоторой области образца до значений, лежащих еще ниже критического, пока в этой области не начинала быстро расти сверхпроводящая фаза, заполняя весь образец. Степень переохлаждения очень сильно менялась от точки к точке это доказывает, что процесс образования зародышей в данной области обусловлен местным дефектом. Переохлаждение образца в цо.лолс определяется самым слабым местом, что и объясняет малость обычно наблюдаемого переохлаждения. Минимальное значение S для олова равно 0,45.  [c.658]

При низкотемпературной пластической деформации, когда полигонизационные процессы затруднены, пространство между возникшими на ранних стадиях пластической деформации сплетениями быстро заполняется дислокациями, причем с понижением температуры однородность такого распределения нарастает. Дальнейшая пластическая деформация сопровождается исключительно высокой концентрацией точечных дефектов благодаря пересечению движущихся дислокаций с дислокациями леса высокой плотности (Л/д= 10 —10 м ) и образованию значительного количества порогов, порождающих при дальнейшем перемещении дислокаций вакансии и межузельные атомы. После низкотемпературной деформации всего лишь на 10% концентрация точечных дефектов возрастает до 10 —10 ° см т. е. nlN= = (10 —10 " ). Таким образом, достигается концентрация, равная концентрации вакансий Ю"" при температуре плавления. Рост концентрации точечных дефектов и особенно вакансий приводит к увеличению объема при пластической деформации на величину до 0,25%. Процессу образования разориентированной ячеистой структуры в области низких температур (0,2—0,3) Гпл способствует хаотическое распределение дислокаций высокой плотности, приводящее к возникновению точечных дефектов. Увеличение точечных дефектов способствует переползанию краевых дислокаций и, следовательно, как и при полигонизации с развитым неконсервативным движением дислокаций, возможно образование разориентированной ячеистой структуры. При этом пластическая деформация при низкой температуре сопровождается уменьшением размеров ячейки в направлении деформирующего усилия и ее увеличением в направлении вытяжки при прокатке, прессовании, волочении. В связи с этим возникает слоистая ячеистая структура. Особенностью дислокационного строения такой структуры является то, что плотность дислокаций внутри таких ячеек сущ ественно не изменяется, т. е. дислокации, вызывающие изменение формы слоистой ячейки, выходят на ее поверхность или поверхность зерна.  [c.254]


Дислокации — не единственные дефекты кристалла известны также вакансии и межузельные атомы, образующиеся при переходе атома из узла кристаллической решетки в пространство между узлами. Межузельные атомы образуются в кристалле самопроизвольно, вследствие термических флуктуаций. Поэтому число их зависит от температуры при пониже1п и температуры число вакансий и межузельных атомов в чистом, т. е. не содержащем примесей, кристалле убывает до нуля. Дислокации, наоборот, не исчезают с уменьшением температуры. Можно считать, что число дислокаций с изменением температуры меняется незначительно, если только температура достаточно удалена от температуры плавления. При приближении к точке плавления число дислокаций быстро уменьшается. Дислокации не возникают в кристалле сами по себе, они образуются в процессе образования кристалла или в результате внешнего воздействия на кристалл. Дислокации являются важными характеристиками кристаллического состояния. В ядре дислокации (т. е. в окрестностях ее оси) атомы смещаются из положения равновесия, и в решетке возникают внутренние напряжения. С этой точки зрения дислокацию можно считать источником внутренних напряжений.  [c.368]

Часто различные варианты технологического процесса, приводящие к одинаковым, с точки зрения требований качества, результатам, при более глубоком изучении обнаруживают разные склонности к образованию дефектов. В качестве примера на рис. 150 приведены электронные микрофотографии поверхностей из стали 12Х18Н9Т с хромонитридным уйрочнением, обработанных шлифованием, полированием и алмазным выглаживанием (по данным канд. техн. наук А, С. Чабана). С точки зрения предъявляемых требований все три метода обработки им удовлетворяют, обеспечивая 10-й класс шероховатости. Однако электронно-микроскопический анализ показал существенную разницу в состоянии поверхностей. Шлифованная поверхность имеет большое число рисок глубиной порядка 1 мкм. На полированной поверхности рисок значительно меньше и их глубина не превышает 0,05 мкм. Выглаженная поверхность обладает однородным микрорельефом с относительно гладкими плато, занимающими 5—10% площади. При этом рисок обнаружено не было.  [c.469]

Второй возможный механизм образования вакансий вообще не связан с появлением внедренных атомов. Он заключается в том, что один из атомов, занимающих узел в поверхностном слое кристалла, в результате теплового возбуждения приобретает энергию не столь большую, которая необходима для испарения, а несколько меньшую, но достаточную для перемещения в узел нового наруншого слоя кристаллической решетки. Если теперь освободившийся узел будет заполнен атомом, лежащим в более глубоком атомном слое, то на его месте возникает вакансия, уже полностью окруженная занятыми узлами. Эта вакансия путем последовательного замощения ее соседними атомами может перемещаться внутри кристалла. Очевидно, и межузельные внедренные атомы могут возникать независимо от вакансий, если атом, занимающий поверхностный узел, перейдет в соседнее межузельное положение и затем будет перемещаться между узлами в глубь кристаллической решетки. При этом вакансии внутри кристалла не образуется, а возникает лишь неровность на его поверхности. Рассмотренные процессы образования вакансий и внедренных атомов теперь не связаны между собой, и число образующихся дефектов того и другого типа не обязательно должно быть одинаковым.  [c.37]

Наряду с энергпей образования дефекта Е) большое значение, например, при рассмотрении процессов диффузии имеет энергия, необходимая для его перемеш ения в соседнее равновесное положение, или так называемая энергия миграции (или активации перемегцення) Равновесные положения дефекта соответствуют минимумам потенциальной энергии системы, а некоторое промежуточное полон ение — большему ее значению, соответствующему вершине потенциального барьера. Разность энергий тела с дефектом в таком промежуточном положении II в полон ении устойчивого равновесия является энергией миграции  [c.97]

Соотношение структурных элементов коксов (сферолнтов, игольчатых частиц и т. д.) заметно влияет на размерную стабильность при высокотемпературном облучении большими флюенсами. Это находит свое объяснение в различии размеров кристаллитов. Радиационные размерные изменения графитов с малыми размерами кристаллитов происходят с большими скоростями, так как наиболее вероятным оказывается захват возникающих дефектов на несовершенствах кристаллической решетки (так называемый гетерогенный процесс образования скоплений).  [c.165]

Для первого случая Кестл и Мастерсон [62] вывели параболическое уравнение в предположении, что контролирующей стадией является перенос раствора через внутренний слой. Для пленок типа Блюма Мур и Джонс [56] показывают, что наблюдаемая кинетика не является результатом блокировки пор, которая, как может быть показано, дает логарифмический закон. Более того, они доказывают, что кинетика следует из того факта, что по мере протекания коррозии более реактивная поверхность покрывается защитными магнетитовыми кристаллами. Доказательство защитной природы этих кристаллов было представлено Вэрзи и др. [57]. Так как этот процесс аналогичен по своему действию образованию дефектов в поверхности раздела металл — окись при сухом окислении металла с катионным транспортом, Мур и Джонс [56] сделали вывод, что логарифмический закон, выведенный для таких процессов, применим к результатам их опытов.  [c.261]

Изменение механических свойств облученных и облучаемых материалов зависит в основном от характера взаимодействия дислокационной структуры со сложными комплексами радиационных дефектов. Процессы образования и коалесценции радиационных дефектов существенно зависят от условий облучения и структурного состояния металлов. Поэтому для установления общих закономерностей изменения механических свойств и прогнозирования поведения материалов и конструкций при облучении необходимо прежде всего изучить процессы возникновения и эволюции дефектной структуры облучаемых кристаллических тел. Это чрезвычайно трудная задача, поскольку еще нет единой микроскопической теории механических свойств кристаллических тел в обычных условиях деформации. Предложенные механизмы движения дислокаций в поле дефектов кристаллической решетки являются очень сложными, неуни-версальными и еще не полностью понятными.  [c.54]


Смотреть страницы где упоминается термин Процессы образования дефектов : [c.16]    [c.146]    [c.61]   
Смотреть главы в:

Физическая природа разрушения 1997  -> Процессы образования дефектов

Физическая природа разрушения  -> Процессы образования дефектов



ПОИСК



Франке Р., Клейнерт В., Шмидт В. К образованию точечных дефектов в поликристаллическом никеле в процессе одного цикла деформации



© 2025 Mash-xxl.info Реклама на сайте