Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные молекулы колебательная структура

Инфракрасные вращательно-колебательные спектры (см. также Тонкая структура инфракрасных полос) асимметричных волчков 497 (глава IV, 46) линейных молекул 408 (г.тава IV, 16) молекул со свободным или заторможенным внутренним вращением 527 (глава IV, 56)  [c.601]

Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]


Структура полос запрещенных переходов, которые становятся возможными для магнитного дипольного излучения, совершенно аналогична структуре полос при обычных электрических дипольных переходах (как в линейных молекулах). По этой причине правила отбора для квантовых чисел / и К остаются теми же, тогда как правила отбора для электронно-колебательно-вращательных типов симметрии изменяются А <--> А вместо А <-- А о  [c.242]

В молекулах типа сферического волчка положение вращательных линий в колебательно-вращательной полосе определяется такой же формулой, что и для многоатомных линейных молекул. Взаимодействие колебательного и вращательного движений молекулы обусловливает расщепление трижды вырожденных колебаний и существенно усложняет характер тонкой структуры колебательно-вращательных полос.  [c.11]

Известно, что колебательная энергия атомов в молекуле также квантована. Структура колебательных уровней наиболее проста у двухатомных молекул типа N2, Oj и т. д. В этом случае имеется только один вид колебательного движения — симметричные колебания атомов вдоль оси молекулы. Уровни этих молекул расположены почти эквидистантно. Более сложным молекулам соответствует более сложная структура их колебательных уровней. Молекула, состояш,ая из N атомов, имеет г = 3N — 6 колебательных степеней свободы. Если же она линейна, то г = 3N — 5. Каждой степени свободы соответствуют колебательные уровни энергии с частотой нормальных колебаний v,.  [c.44]

Наконец, изучая изотопический эффект в колебательных спектрах в ряде случаев можно получить информацию о геометрической структуре молекулы. Это обусловлено зависимостью относительной амплитуды колебания атома (заменяемого своим изотопом) от геометрического расположения всей системы атомов. Так, например, относительная амплитуда атома X при антисимметричном колебании симметричной молекулы достаточно велика, если молекула линейна, и уменьшается до нуля, если угол —X—У приближается к нулю. Таким образом, изотопический эффект, вызываемый заменой атома X его изотопом,. существенно зависит от величины угла, которую, в свою очередь, можно определить из наблюденного значения смещения.  [c.247]

Закись азота, N20. Число электронов молекулы N 0 и молекулы СОа одинаково, II поэтому можно было бы также ожидать, что она имеет линейную симметричную структуру. Однако исследование колебательного и колебательно-вращательного спектров однозначно показывает, что молекула К О, хотя и линейна, но не симметрична. Форма молекулы N — N — О. Три наиболее интенсивные инфракрасные полосы имеют частоты  [c.301]


Так как основным электронным состоянием всех известных линейных многоатомных молекул является состояние И, нам не нужно рассматривать влияние на вращательно-колебательный спектр электронного момента количества движения Л. Роль электронного момента играет колебательный момент количества движения I, и поэтому структура инфракрасных полос линейных многоатомных молекул во всех отношениях подобна структуре соответствующих электронных полос двухатомных молекул.  [c.409]

Синглетные полосы. Рассмотрим простейший случай, когда молекула линейна как в верхнем, так и в нижнем состоянии и когда оба состояния являются синглетными. В таких случаях структура полос совершенно подобна структуре полос двухатомных молекул. Это подобие наблюдается между электронно-колебательной симметрией многоатомной молекулы и соответствующей электронной симметрией двухатомной молекулы электронно-колебательная полоса П — 21 имеет ту же структуру, что и электронная полоса П — 2 двухатомной молекулы.  [c.184]

Вращательная структура запрещенных электронных переходов, которые происходят благодаря электронно-колебательному взаимодействию, совершенно такая же, как и соответствующих разрешенных переходов. Например, при изогнуто-линейном переходе Az — в молекуле XYg, который запрещен правилами отбора для дипольного излучения, возможны электронно-колебательные переходы с уровня ООО основного состояния на верхние колебательные уровни, связанные с возбуждением нечетного числа квантов антисимметричного валентного колебания. Поскольку эти верхние состояния относятся к электронно-колебательному тину Bi, тонкая структура соответствующих полос должна быть такой же, как и полос электронных переходов типа В —  [c.221]

Л-ветвь). В отличие от спектров линейных молекул каждая /-линия в этом случае имеет т. и. АГ-структуру, соответствующую последнему члену в (7). Напр., для КНз DJK = —45 МГц и с высокочастотной стороны каждой /-линии наблюдаются Л-линии, отстоящие от линии с К = о на 90(/ + 1)Л МГц. Правило отбора АК — о нарушается при учёте колебательно-вращат, взаимодействия, ангармонизма и нежёсткости молекулы.  [c.202]

В ПК колебательно-вращательном спектре поглощения СОг среднее расстояние между линиями составляет около 1,6 см . Учитывая, что в спектре линии вращательной структуры через одну отсутствуют (это вызвано тем, что ядерный спин кислорода равен нулю, см. Пр иложение IV), определите вращательную постоянную и расстояние между атомами линейной молекулы СОг-  [c.246]

Вспоминая примеры, приведенные в предыдущей главе, мы видим, что из одной только грубой структуры колебательного спектра трудно делать определенные заключения о линейной структуре молекулы, в особенности потому, что некоторые полосы могут не обнаруживаться в наблюденном спектре вследствие их слабой интенсивности, но не вследствие их действительного отсутствия в спектре. Доказательство линейности молекулы на основании тонкой структуры колебательных полос свободно от такого возражения. Более того, наличие или отсутствие чередования интенсивности в такой простой полосе с несомненностью показывает, является ли линейная молекула симметричной (точечная группа Doa h) или несимметричной (точечная группа Соо л)- Таким путем Плайлер и Баркер [703] впервые доказали, что молекула N 0 имеет структуру N — N-—О, а не N-—О —N (см. фиг. 103). Аналогичным образом, наблюдение чередования интенсивности для молекулы С Н. (фиг. 106) и отсутствие половины линий для молекулы СОз (фиг. 105) доказывает, что эти молекулы являются симметричными  [c.414]

Анализ инфракрасных полос, моменты инерции и междуатомные расстояния симметричных волчков. Если в параллельной полосе не разрешена тонкая структура К (т. е. при совпадении всех подполос), полоса имеет в основном ту же структуру, что и перпендикулярная полоса линейной молекулы, и мы можем найти значения вращательных постоянных В и В" таким же способом, как и ранее, а именно из комбинационных разностей (]) = = R J) — P J) и J) = R J— ) — P J- - ) соответственно (см. стр. 419). Применяя этот способ к параллельным полосам, воспроизведенным на фиг. 123 и 124, мы получаем постоянные В 1 наряду с другими величинами, собранными в приводимой ниже табл. 132. Разумеется, разность А,Р" ), полученная иэ различных параллельных полос одной и той же молекулы, должна быть одинаковой при каждом из значений У, если нижнее состояние является общим. Помимо этого, сумма частот двух последовательных линий в чисто вращательном спектре также должна быть точно равна соответствующему значеник> разности во вращательно-колебательном спектре  [c.462]


Легко видеть, что если в спектре линейной молекулы проявляются возбужденные уровни пернендикулярного колебания (например, при испускании света или нри поглощении при высокой температуре), то колебательная структура спектра может оказаться чрезвычайно сложной, если электронно-колебательное взаид1одействие велико. По этой причине колебательный анализ группы полос Сз около 4050 Л (переход П — Ч]) представлял. значительные трудности, хотя молекула линейна как в верхнем, так и в нижнем состояниях. Здесь дело не только в сильном электронно-колеба-тельном взаимодействии, но также и в том, что частота V2 очень мала в основном состоянии (63,5 см ) и значительно больше (307 rлi ) в верхнем состоянии. По этим причинам переходы с Ду — +2, +4, обычно весьма слабые, обладают сравнительно большой интенсивностью, и, кроме того, горячие полосы очень интенсивны даже нри комнатной температуре.  [c.159]

Полосы электронного перехода П — П для линейных молекул также совершенно аналогичны полосам двухатомных молекул при условии, что не возбуждается деформационных колебаний. Если оба состояния П относятся к случаю связи Ь, то дан е электронно-колебательные полосы, обусловленные возбуждением деформационных колебаний, обладают той же структурой, что и соответствующие электронные полосы двухатомных молекул. Конечно, будет наблюдаться и отличие, вызванное тем, что для каждого колебательного перехода из-за расщепления Реннера — Теллера вместо одной полосы в спектре появляется несколько подполос. Однако если в одном из П-состояний (или в обоих состояниях) как спиновое расщепление, так и расщепление Реннера — Теллера будут велики, то структура электронноколебательных полос несколько изменится. Мы рассмотрим здесь только случай, когда в обоих состояниях П имеет место взаимодействие двух типов, т.е. переход П (а) — П (а) с отличным от нуля значением е для обоих состояний. Полоса О—О нри таком переходе нормальная — она состоит из двух подполос П1/2 — Hi/2 и Шз/з — Шз/2, в каждой из которых имеются интенсивные Р- и 7 -ветвн и слабая ветвь Q каждая из этих полос двойная, если разрешено Л-удвоение. Поскольку ( -ветви слабые, в полосе только два четких канта (а не четыре, как нри переходе 2 — Ш).  [c.189]

Наблюдались две системы полос испускания подобного типа упоминавшиеся ранее полосы NH2 в спектрах испускания различных пламен, в спектрах разрядов, а также в спектрах комет. Единственное отличие от спектра поглощения заключается в том, что в спектре испускания появляются полосы, у которых в нижнем состоянии возбуждено по одному или по нескольку квантов одного или большего числа колебаний. Второй является система полос в спектре пламени окиси углерода, которые оставались не отнесенными в течение нескольких десятилетий. Однако недавно Диксон [283] показал, что эти полосы обусловлены изогнуто-линейным переходом в молекуле СОз- Все наблюдавшиеся полосы связаны с переходами с двух самых низких колебательных уровней возбужденного состояния (типа В2), в котором молекула сильно изогнута (0 122°). В нижнем же (в основном) -состоянии, в котором молекула линейна, в переходах участвуют высокие возбужденные колебательные уровни. Наблюдается характерное чередование четных и нечетных подполос в последовательных полосах прогрессии по 2, однако колебательная структура усложнена наличием резонанса Ферми. Переход относится к параллельному типу (фиг. 90, а), т. е. К = I" и были идентифицированы полосы со значениями от О до 4. Определение величины А — В ъ возбужденном состоянии не может быть произведено непосредственно из спектра (поскольку АК = 0), как и в случае спектра поглощения СЗг- Для этого необходимо знать разности энергий между уровнями с различными значениями I в нижнем состоянии. В случае молекулы СО2 такие разности энергий могут быть получены экстраполяцией данных из инфракрасных спектров (Куртуа [246]). Полученные вращательные постоянные верхнего состояния приведены в табл. 64 приложения VI.  [c.218]

В случае НгО вторая область поглощения представляет собой прогрессию диффузных полос, простирающихся от 1411 до 1256 А с расстоянием между полосами порядка 800 см- . Такая низкая частота едва ли может соответствовать какому-либо иному колебанию, кроме деформационного. Наличие протяженной прогрессии по деформационному колебанию свидетельствует о значительном изменении величины угла. Действительно, рассматриваемый переход не согласуется с различными ридберговскими сериями, сходящимися к первому ионизационному пределу (отрыв 1 f i электрона), и, очевидно, является первым членом серии, соответствующим отрыву Засэлектрона (гл. III, разд. 2,г). Соответствующее состояние НгО+ является аналогом А состояния NHz (см. ниже), и поэтому представляется весьма вероятным, что в этом состоянии ион НгО+, подобно NH2, имеет почти линейную структуру. Если к иону Н2О+ в этом состоянии добавляется электрон на ридберговской орбитали, то образовавшаяся молекула НгО должна иметь конфигурацию, аналогичную конфигурации иона ИгО+ (или весьма близкую), что позволяет объяснить наблюдаемую колебательную структуру электронного перехода В - Х.  [c.501]

На фиг. 187 изображена геометрическая структура молекулы H N в четырех электронных состояниях, рассмотренных выше. Состояние С А, вероятно, образуется нз сгя п41-состояния линейной конфигурации и, следовательно, переход С — X должен быть разрешенным. Действительно, интенсивность полос системы С — X значительно превосходит интенсивность полос систем А — X и В — X. К сожалению, из-за возрастающей диффузности колебательная структура полос вблизи вертикального перехода не могла быть проанализирована, что свидетельствует о сильном влиянии квазилинейности молекулы (гл. I, разд. 3). Полосы в области длин волн, меньших 1120 А, до настоящего времени но проанализированы ридберговские серии в спектре H N не наблюдались. Поэтому значение потенциала ионизации молекулы H N, основанное на известно.  [c.506]


Спектры многоатомных молекул гораздо сложнее и зависят от симметрии молекулы. Для линейной молекулы, например СОг, число степеней свободы колебании а=4, а для ПаО а=3. Таким образом, каждая из основных полос по-глощения многоатомной молекулы в н1 фракрасной области соответствует определенному изменению одного илн нескольких колебательных квантовых чисел вме-,Сте с соответствующими вращательными линиями. Детальная структура многО етомных молекул может быт1< очень сложной.  [c.322]

Качественные положения предиссоционной теории, объясняющей сдвиг, расширение и структуру полосы Vs, проиллюстрируем на конкретном примере линейных колебаний комплекса О—Н---0. В первом приближении будем считать, что колебания обеих связей независимы. Тогда колебательную энергию системы можно представить в виде суммы энергий химической связи О—Н Е и водородной связи 0---0 е. Значения Е и е можно рассчитать по формуле (1.28), использовав значения Vso и а, которые определяются по инфракрасным спектрам молекул и комплексов. Для гидроксила энергии первых трех  [c.159]

Синильная кислота, H N. Было бы трудно получить определенные данные о строении молекулы НСЫ только из колебательных спектров. Однако исследование тонкой структуры инфракрасных полос приводит к выводу, что молекула НСК линейна (см. гл. IV, раздел 16). Значения наблюденных инфракрасных и комбинационных частот и их интерпретация приведены в табл. 59, где VI, V2 и —-частоты колебаний, изображенные на фиг. 61, а в данном случае VI является в основном колебанием группы СН как целого <лносительно атома Ы, а vз — колебанием С — Н. Оба они относятся к одному и тому  [c.301]

Вода, Н2О. Изучение интенсивного инфракрасного вращательного спектра, а также структура этого спектра (см. гл. I) вместе со структурой вращательно-колебательного спектра (см. гл. IV) однозначно приводят к выводу, что молекула HjO не линейна. Этот вывод находится в согласии и со структурой колебательного спектра. В комбинационном спектре водяных паров имеется одна интенсивная линия с частотой 3654,5 см (Джонстон и Уолкер [475], Ренк, Ларсен и Борднер [716], Бендер [135]). Она соответствует, очевидно, симметричному колебанию (фиг. 25, а), так как комбинационные линии для несимметричных колебаний должны быть слабыми. С другой стороны, частота 3654,5 весьма близка к частоте колебания радикала ОН (AGj = 3568,4) и поэтому не может принадлежать второму симметричному колебанию Vj, т. е. изменению угла между связями ОН. Наблюдались или не наблюдались другие комбинационные частоты водяных паров пока еще не ясно.  [c.304]

Ацетилен, С На. Очень большое число работ было посвяп1ено исследованию комбинационного и особенно инфракрасного спектров молекулы ацетилена. Как колебательная, так и вращательная структуры спектра однозначно доказывают, что молекула ацетилена линейна и симметрична (точечная группа /> )  [c.311]

В основном состоянии X Bi молекула NHg сильно изогнута, так же как и молекула Н2О в своем основном электронном состоянии, в то время как в возбужденном состоянии A i молекула NH2 почти линейна (см. стр. 217). Снова, как и для других дигидридов, из-за сильного электронно-колебательного взаимодействия (эффект Реннера — Теллера) из одного П. -состояния линейной конфигурации возникают два состояния. Благодаря значительному изменению угла при электронном переходе в сиектре наблюдается длинная прогрессия полос с чередующейся интенсивностью для четных и нечетных значений К (так же как и в случае красных полос ВНг и СН2). Разности Д гС для уровней с i = О в верхнем состоянии сначала увеличиваются и только к концу прогрессии начинают уменьшаться. Дублетная структура электронного перехода обнаруживается в незначительном расщеплении почти всех линий (фиг. 95). Так же как и для красных полос ВН2 и СНг, момент перехода для рассматриваемой системы NH2 перпендикулярен плоскости молекулы (полосы типа С). Джонс и Рамсей [638а] проанализировали ряд горячих полос в спектре NH2 с целью определения значения частоты деформациоипого колебания V2 в основном состоянии. Вращательные и колебательные постоянные NH2 приведены в табл. 62.  [c.504]

С8г. В спектре молекулы сероуглерода, имеющей такое же количество валентных электронов, что и молекула СОг, наблюдается весьма характерная область поглощения в интервале длин волн от 4000 до 3500 А, которая ири увеличении давления расширяется как в сторону коротких, так и в сторону болое высоких длин волн. Даже на спектрограммах, полученных на приборах со средней дисперсией, эта область поглощения имеет вид линейчатого спектра. Дн<енкинс [626] впервые отметил, что каждая линия представляет собой кант полосы с простой тонкой структурой. Детальный анализ вращательной структуры ряда полос этой системы был выполнен Либерманом [746]. Несмотря на то что молекула СЗг в основном состоянии имеет линейную структуру, колебательный анализ полос встретил значительные трудности. Клеман [680] получил спектр Sg  [c.513]

В области длин волн, не достигающих границы первой ридберговской серии, Танака, Джурса и Ле Блан [1190] наблюдали две другие серии Ридберга, сходящиеся к пределу при 132 230 сж , и в еще более коротковолновой области — четыре серии с пределом при 162 165 Разница между пределом при 132 230 и самым низким пределом при 104 ООО см.- составляет 28 230 сл1 , что достаточно хорошо согласуется с величиной энергии возбуждения состояния 2 для которой Калломон рекомендует значение 28 229,8 см . Таким образом, предел 132 230 см >- соответствует удалению электрона 7а из электронной оболочки с электронной конфигурацией основного состояния КгО, в то время как предел при 162 165 отвечает удалению электрона со следующей, более низкой орбитали. Ридберговская серия, сходящаяся к среднему пределу, сопровождается рядом колебательных полос. Это и не удивительно, так как изменение в значении В при переходе из основного состояния молекулы КгО в состояние 2+ иона КаО+ значительно больше, чем при переходе в основное состояние П иона КгО+. В связи с тем что ион N20+ линеен в обоих электронных состояниях — основном и возбужденном,— в данном случае не вызывает сомнений предположение о том, что молекула N20 имеет линейную структуру во всех наблюдаемых ридберговских состояниях, включая, очевидно, и состояние, отвечающее наиболее высокому из наблюдаемых ридберговских пределов.  [c.517]


Смотреть страницы где упоминается термин Линейные молекулы колебательная структура : [c.300]    [c.317]    [c.359]    [c.409]    [c.482]    [c.624]    [c.625]    [c.503]    [c.509]    [c.533]    [c.533]    [c.751]    [c.782]    [c.312]    [c.213]    [c.218]    [c.505]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.33 , c.44 ]



ПОИСК



Колебательная структура электронных вырожденных в линейных молекула

Колебательные

Линейные молекулы

Линейные молекулы колебательная (электронно-колебательная) структура

Линейные молекулы тонкой структуры вращательно-колебательных полос

Структура линейная



© 2025 Mash-xxl.info Реклама на сайте