Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокно, влияние на механические свойства

Волокно, влияние на механические свойства 953  [c.1642]

Величина суммарной деформации при ковке оказывает положительное влияние на механические свойства поковок из сплавов рис. 9. По мере увеличения суммарной деформации вдоль волокна наибольших значений достигает предел прочности и твердость. Предел текучести с увеличением деформации изменяется незначительно и относительное удлинение достигает максимальных значений при деформации 50—70%, а при больших деформациях (80—90%) оно значительно понижается.  [c.73]


Вследствие волокнистого строения древесины она по-разному сопротивляется в различных направлениях внешним силам. Древесина обладает наибольшим сопротивлением растяжению и сжатию вдоль волокон и оказывает наименьшее сопротивление в направлении, перпендикулярном к волокнам. Механические свойства древесины зависят не только от породы дерева, но также и от возраста, влажности и времени рубки. Особенное влияние на механические свойства древесины оказывают различные пороки, снижающие ее прочность и долговечность.  [c.708]

Если эффективная прочность упрочнителя в композите снижается в результате реакции на поверхности раздела, то дальнейшим объектом исследования должно служить изменение распределения прочности отдельных волокон. Розен [31] показал, что предел прочности композита зависит и от среднего значения, и от коэффициента вариации прочности волокон. Он пришел к выводу что при одинаковой средней прочности волокон распределение с большим коэффициентом вариации отвечает большей прочности композита. Иными словами, коэффициент вариации в определенной степени характеризует способность более прочных волокон принимать на себя нагрузку, высвобождаемую при разрушении более слабых волокон. Кроме того, увеличение коэффициента вариации может привести к росту энергии разрушения, поскольку увеличивается вероятность того, что дефектное место волокна перед развивающейся трещиной удалено от плоскости трещины.. Эта ситуация приводит либо к отклонению трещины в направлении места потенциального разрушения следующего волокна, либо к вытягиванию волокна из матрицы в обоих случаях энергия разрушения растет. Таким образом, характер влияния реакции между матрицей и волокном на механические свойства зависит как от среднего значения, так и от коэффициента вариации прочности волокон по завершении реакции.  [c.27]

Наибольшая склонность к замедленному разрушению проявляется в деформированном материале в высотном направлении волокна. На склонность к замедленному разрушению сталей, содержащих водород, значительное влияние оказывает прочность и структура чем выше прочность, тем больше отрицательное влияние водорода на механические свойства сталей [69].  [c.56]

Наиболее ярко выраженное влияние низких температур на механические свойства титановых сплавов проявляется в очень значительном увеличении пределов текучести, прочности и пропорциональности (см. рис. 2). Повышение указанных характеристик на 100 % и более в интервале 298—4 К является типичным как для титана промышленной чистоты с относительно низкой прочностью, так и для более прочных титановых сплавов. При 298 К модуль упругости составляет 96,5—110,2 ГПа в зависимости от сплава и направления волокна и возрастает до 117—131 ГПа при 4 К.  [c.272]


Влияние влаги на механические свойства эпоксидных смол, армированных стеклянным и углеродным волокнами, исследовано в недавних работах [14]. Композит Л5/3501-6 из эпоксидной смолы и углеродного волокна был изготовлен в виде 18-слойных (0°, 45° 90° 8 8 2) панелей и выдержан при следующих условиях 60 °С, относительная влажность 98 % — влажностно-тепловое старение в течение 3 сут. при 60 °С и относительной влажности 98 % — 2 ч при 127 °С. Увеличение влагосодержания материала в результате выдержки во влажной среде в течение 90 сут и после 40 циклов теплового воздействия показано на рис. 19.3 и 19.4.  [c.287]

Армирующие волокна обладают не только механическими свойствами, превосходящими механические свойства матрицы, но и более высокой теплопроводностью и отличными от матрицы электрическими свойствами. Очевидно, что ориентация волокон относительно вектора потока энергии должна оказывать влияние на соответствующие свойства композиционных материалов. Наблюдаемая при этом анизотропия свойств, связанных с явлениями переноса, является одной из характерных особенностей таких материалов и отличает их от большинства металлических материалов конструкционного назначения. Теплопроводность в продольном направлении композиционного материала (вдоль оси волокна) даже в случае изотропного армирующего наполнителя может быть на 30% выше, чем в поперечном направлении (перпендикулярном оси волокна). Композиционные материалы на основе углеродных волокон имеют отношение теплопроводности в осевом направлении к теплопроводности в поперечном направлении около 50 1.  [c.286]

На механические свойства пластика существенное влияние оказывает дисперсность наполнителя, в частности длина волокна асбеста. Чем больше остается на контрольном сите асбеста, тем выше качество этого асбеста и тем прочнее будут изделия, получаемые с его применением.  [c.27]

Влияние расположения волокна на механические свойства стали. ................................. 952  [c.756]

ВЛИЯНИЕ РАСПОЛОЖЕНИЯ ВОЛОКНА НА МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛИ  [c.952]

Очевидно, что механические свойства поверхности раздела также оказывают значительное влияние на прочность адгезионной связи. Поэтому, для того чтобы свести до минимума напряжения, возникающие в композитах, необходимо при их разработке учитывать размер волокна, его содержание, модули упругости полимерной матрицы и волокна, а также температурно-временные режимы изготовления материала.  [c.263]

Композиционные материалы являются гетерогенными системами которые состоят из нескольких фаз различной природы. Термодинамическая нестабильность большинства композиционных материалов приводит к межфазному взаимодействию компонентов как в процессе изготовления, так и в условиях эксплуатации. Некоторое взаимодействие на поверхностях раздела в композиционных материалах необходимо, так как через них осуществляется связь между составляющими композиции и передача напряжений. Однако интенсивное взаимодействие приводит к взаимному растворению компонентов, возникновению промежуточных фаз, которые во многих случаях образуют хрупкие зоны, ускоряющие появление трещин в волокне и оказывающие влияние на уровень механических свойств композиционного материала. Это вызывает необходимость детального изучения вопросов, связанных с взаимодействием матрицы и волокон при повышенных температурах.  [c.29]

Механические свойства кованого и штампованного металла характеризуются анизотропностью — вдоль направления волокна они, как правило, выше, чем поперёк. При этом как продольные, так и поперечные свойства с увеличением степени уковки изменяются [10]. Следовательно, при установлении технологии и для оценки качества металла, подвергнутого определённой степени деформации, необходимо руководствоваться данными О влиянии степени уковки на про-  [c.283]

Следовательно, рассмотрению подлежат только некоторые механические свойства, результаты испытаний типичных сосудов высокого давления и труб общего назначения, а также некоторые теоретически полученные значения. В многочисленных областях применения этих изделий важную роль играют их химические и электрические свойства, а также влияние окружающей среды на композиционный материал. Однако эти вопросы не рассматриваются в данной главе. Химические и электрические характеристики полученных намоткой волокном композитов в значитель-226  [c.226]


Предел прочности при растяжении современных коммерческих углеродных волокон с плотностью —1,8 г/см колеблется в зависимости от их сорта в интервале от 1380 до 3450 МН/м (141 — 352 кгс/мм ), хотя предел прочности волокон, полученных в лабораторных условиях —6,9 ГН/м (704 кгс/мм"- ). Эти з начения обусловливают чрезвычайно высокий уровень удельных механических характеристик углеродных волокон. Обзор механических свойств коммерческих углеродных волокон приведен в работах [31, 32, 83, 85]. Следует отметить, что, хотя углеродные волокна представляют собой поликристаллические тела, они характеризуются высокой степенью преимущественной ориентации пачек углеродных слоев, определяющей высокий уровень прочности и модуля упругости вдоль оси волокон и оказывающей влияние на плотность, теплофизические и электрофизические свойства.  [c.341]

При соединении труб из термопластов и других деталей из изотропных материалов способ формования резьбы не оказывает существенного влияния на прочность соединения. При этом приходится соблюдать некоторые общие правила, справедливые и для формования других деталей из термопластов избегать острых кромок у витков резьбы, применять скругления и т. п. [54]. В деталях из слоистых пластиков резьбу рекомендуется выполнять так, чтобы волокна армирующего наполнителя располагались перпендикулярно к направлению действующей нагрузки. При нарезке резьбы в таких деталях (трубах и оболочках) слои наполнителя оказываются перерезанными, и прочность резьбового соединения определяется не столько механическими свойствами пластика, сколько прочностью матрицы при сдвиге (равной приблизительно 5-10 МПа) [22, с. 72 107]. Наибольшая прочность резьбовых соединений достигается в тех случаях, когда волокна наполнителя повторяют рисунок профиля резьбы. При этом разрушающее напряжение материала при сдвиге, а следовательно, и несущая способность резьбы повышаются в 3-4 раза [22, с. 72]. Резьбы такого типа создают формованием различными методами.  [c.302]

Чтобы устранить вредное влияние изменяющейся (уменьшающейся) силы натяжения нити на равномерность физико-механических свойств вискозной текстильной нити, формующейся по центрифугальному способу на современных прядильных центрифугальных машинах, применяют переменные в течение наработки съема скорости формования и вытяжки волокна.  [c.204]

Вторым по значению (после связующих) исходным материалом при изготовлении деталей из пластмасс являются наполнители, оказывающие весьма существенное влияние на физико-механические свойства готовых деталей. В качестве наполнителей применяют следующие материалы порошкообразные (древесную муку, измельченный кварц, сажу, графит и т. д.) волокнистые (волокнистый асбест, хлопковые очесы, стеклянное волокно) листовые (хлопчатобумажные ткани, стеклоткань, асбестовые листы, бумажные листы, древесный шпон). Пластмассы с листовыми наполнителями называют слоистыми пластиками.  [c.282]

Волокно, состоящее из 50% кремнезема и 50% глинозема, при 1260° С не теряет своих свойств. Волокно, содержащее 98% окиси кремния, сохраняет температуроустойчивость до 1100° С. Температуроустойчивость стеклянного волокна обычного состава 450° С, так как температура спекания его 480° С. При отрицательных температурах до — 170° С волокно имеет максимальную прочность. По мере увеличения температуры нагрева при последующем охлаждении прочность стеклянного волокна снижается, оно становится хрупким и разрушается при малых механических воздействиях. Уменьшить отрицательное влияние нагрева на прочность волокон можно увеличением их диаметра. Поэтому при высоких температурах целесообразно применять стеклянные волокна большого диаметра.  [c.109]

Асбест обладает огнестойкостью, однако под влиянием высоких температур он претерпевает ряд изменений, которые влияют на его физические свойства понижаются прочность и эластичность. Это объясняется главным образом потерей гигроскопической воды, которая содержится в кристаллах асбеста. При вылеживании на воздухе асбест восстанавливает первоначальные свойства, так как волокна его поглощают влагу из воздуха восстанавливается также и механическая прочность материала.  [c.351]

Влияние на механические свойства бороволокяита содержания волокна приведено на рис. 226, а влияние различных матриц — на рис. 227.  [c.480]

И в будущем большое внимание будет уделяться оптимизации системы покрытие/подложка с целью достижения максимального защитного эффекта при минимальном влиянии на механические свойства подложки. Это будет стимулировать применение в качестве подложки материалов новых классов, таких как упрочненные волокнами суперсплавы, сплавы, упрочненные дисперсными оксидами, и т.д., что, в свою очередь, потребует, чтобы взаимодействие подложки с покрытием не влияло на стабильность упрочняющих фаз. И, наконец, такое же, если не большее, внимание должно уделяться проблеме испытания всех вновь разработанных покрытий. Особенно это относится к случаю относительно хрупких покрытий, таких как ТЗБП, когда термомеханические циклические испытания, применяемые для оценки циклической стойкости покрытий, должны быть как можно более близкими к реальности и, в то же время не быть чересчур жесткими, что может свести на нет все возможные преимуш ества таких испытаний. Как всегда, окончательное заключение о пригодности той или иной системы покрытия будет получено лишь после натурных испытаний в реальных условиях эксплуатации двигателя в рабочем режиме.  [c.121]

Углеродные волокна формируются из трех различных ис ходных материалов вискозы, акриловых сополимеров и мезо фазной смолы. Исходным материалом для формирования угле-родо-графитовой матрицы таких композитов служат угольны деготь и нефтяные смолы, некоторые синтетические смолы или углерод, химически осажденный из паровой фазы. Исходные материалы не оптимизированы по своему составу. В процессе карбонизации угольного дегтя и нефтяных смол (при каталитическом крекинге сырой нефти) происходит образование некоторых упорядоченных фаз, оказывающих влияние на механические свойства композита. Большинство синтетических смол после карбонизации превращаются в хрупкий стекловидный углерод. Углерод, полученный химическим осаждением из паровой фазы, может суш.ествовать в нескольких морфологических модификациях (аморфной, столбчатой или пластинчатой), и конкретный вид морфологии матрицы определяется в основном условиями проведения эксперимента.  [c.322]


Так, Мерсей [5] указывает, что при ковке труб специального назначения придерживаются степени обжатия, равной 4. В тех случаях, когда требовались изделия с более высо-кими механическими свойствами, степень обжатия часто повышалась до 7—9. Автор указывает на опыт французских заводов Хольтцера, Шнейдера и др., ко-т орые на таких изделиях как труба, кольца и поршень затвора наблюдали, что с увеличением степени обжатия до некоторого предела механические свойства стали на образцах с поперечным напряжением волокна чаще всего улучшаются. Такие результаты были получены при исследовании сталей, прокованных с обжатием 3,5—4. При применении стали хорошего качества (высокой чнст оты) даже более интенсивная проковка не оказывала вредного влияния на механические свойства образцов с поперечным направлением волокна. Наряду с этим при изготовлении ковкой бандажей для вагонных колес применялась степень обжатия, равная 6, а для бандажей паровозных колес— 10. Для судовых валов, от которых требуются высокие механические свойства, одним из заводов применялась степень обжатия, равная 7.  [c.19]

Аналогичные теории и представления о прочности поверхности раздела при растяжении и сдвиге были развиты применительно к композитам первого класса. Приведенные Купером и Келли примеры композитов (таких, как медь — вольфрам) подтверждают справедливость выполненного ими анализа поведения систем с металлической матрицей. В системах второго и третьего классов на границе волокно — матрица появляется зона конечной ширины, отличающаяся по свойствам как от матрицы, так и от волокна. Анализ систем второго класса был начат Эбертом и др. [16]. Они использовали дифференциальные методы для оценки влияния диффузии в зоне раздела на механические свойства компонентов. Эта работа является одновременно и первым анализом немодельных систем, хотя она и была ограничена лишь системами с химическим континуумом, т. е. непрерывным изменением состава (см. гл. 2). В системах третьего класса наличие продукта реакции приводит к химическому дисконтинууму — прерывистому измене-  [c.19]

Книга посвящена рассмотрению результатов изучения поверхности раздела упрочнитель — полимерная матрица в композиционных материалах волокнистого строения. В ней подробно обсуждаются проблемы, которые были только затронуты в книге Современные композиционные материалы . Среди них такие, как химия поверхности армирующих волокон, природа связи на поверхности раздела, роль различных обработок поверхности волокон (в основном силановыми аппретами) в формировании границы раздела полимер — минеральные волокна, механизм передачи напряжений через поверхность раздела, влияние начальных термических напряжений на механические свойства композитов, стабильность композитов при воздействии влаги.  [c.5]

Исследование на модельной системе было проведено Петрасе-ком и Уитоном [18] с целью изучения влияния легирующих элементов на механические свойства и микроструктуру композиционных материалов, упрочненных металлическими волокнами. Двой- ны е медные сплавы использовали в качестве матрицы для компо-" зиций с волокнами вольфрама. Легирующие элементы выбирались таким образом, чтобы получаемые двойные медные сплавы позволили выявить влияние отдельных элементов на взаимодействие матрицы с волокном. Данные, полученные для растворимых элементов в модельной системе, могут быть связаны с поведением этих элементов в жаропрочных сплавах. Эти данные служат основой для модифицирования состава жаропрочного сплава матрицы с тем, чтобы контролировать взаимодействие меязду матрицей и волокном.  [c.240]

Вследствие существенного различия между механическими свойствами компонентов армированные пластики крайне чувствительны к разориентации и искривлениям волокон. Под разориента-цией понимается отклонение направления волокон в слоях материала от проектируемого. Такие отклонения обусловлены несовершенством технологии и могут быть одной из причин большого разброса результатов испытаний, особенно у однонаправленных материалов, армированных высокомодульными волокнами. Представление о влиянии разориентации на механические свойства композита дают диаграммы изменения упругих свойств при повороте осей, а также экспериментальные данные.  [c.45]

Максимальный эффект при аппретировании волокна, определяемый по повышению прочности композитов как в исходном, так и во влажном состояниях, достигается при использовании неполярных смол. Хотя сами смолы весьма устойчивы к воздействию влаги, силы Ван-дер-Ваальса между ними и стеклом очень чувствительны к действию воды, присутствующей на поверхности минерального наполнителя. Влияние силановых аппретов наглядно подтверждается данными Вандербильта [50] для стеклопластиков на основе аппретированных и необработанных волокон и различных смол (рис. 6). Абсолютные значения прочности стеклопластиков на основе аппретированной силаном стеклоткани в исходном и влажном состояниях оказались примерно равными (- 56 кгс/мм ). Это дает основание полагать, что силанолы обеспечивают на поверхности раздела высокую концентрацию гидроксильных групп, защищающих стеклопластики от воздействия воды в процессе изготовления. Наличие силанольных групп на поверхности раздела позволяет в наибольшей степени использовать свойства смолы. Если передача напряжений через поверхность раздела препятствует дальнейшему улучшению механических свойств и водостойкости композитов со стеклянными наполнителями, то с помощью силановых аппретов отрицательное воздействие этого фактора устраняется или уменьшается.  [c.199]

Повышение поверхностной энергии волокна, по-видимому, связано с наличием на его поверхности кислородсодержащих групп, о чем свидетельствуют кислая реакция поверхности и увеличение на ней количества атомов углерода, которые, вероятно, соединяются с кислородом воздуха, образуя группы с высокой реакционной способностью. Кроме того, Форест [35] показал, что механические свойства высокопрочных углепластиков при высокой температуре ухудшаются под воздействием внешней среды в течение нескольких месяцев. Согласно результатам исследований Бонка и Титселя [18], прочность стеклопластиков при комнатной температуре уменьшается вследствие старения в теплой влажной атмосфере. Влияние старения на прочность волокнистых композитов 1То 1р<)бн6 рассматривается в разд. III.  [c.266]

Почти все известные термопласты в сочетании с упрочняющими волокнами применяются в деталях, изготовляемых различными методами. При этом назначение детали, требования к ее внешнему виду, условия эксплуатации, а также экономичность и механические свойства оказывают решающее влияние на выбор материалов матриц. Например, термореактивные смолы используют в основном для тех деталей кузова, которые требуют окраски в готовом виде. Термопласты в большей степени склонны к пигментации, поэтому их применяют в формованных деталях, внешнему виду которых придается важное значение. Улучшение физических характеристик деталей из термопластов, изготовляемых методом иижекционного прессования, обычно достигается путем добавления в матрицу умеренного количества волокна-упрочнителя. В случае применения формования прессованием для упрочненных полиэфирных смол показана возможность производства крупных партий деталей больших размеров при сравнительно невысоких затратах. Например, отдельные детали кузова из композиционного материала автомобиля Шевроле Корвет имели размеры 1,8 X 3,0 м при массе около 24 кг.  [c.13]


Если менять материалы, из которых изготавливается волокно, или метод их изготовления, то можно получить волокна бора с различными свойствами. Исследование механических свойств нескольких борных волокон было осуществлено в [22] полученные результаты дали большой разброс прочностных свойств для каждого типа волокна. Этот разброс есть следствие потери пластичности, когда дефекты в материале приводят к катастрофическому разрушению при относительно низких напряжениях. Гистограмма значений прочности на растяжение для двух типов непрерывных борных волокон показана на рис. 3. Один тип низкого качества, а другой — высокого. Приведены результаты для волокон в состоянии поставки и для протравленных волокон, в которых влияние поверхностных дефектов сведено к минимуму. При анализе временньгх свойств прочности волокнистых композитов, армированных борными волокнами, необходимо помнить о форме функции распределения прочности.  [c.272]

Влияние толщины ткани на прочность стеклопластика отражено на рис. 45. Как правило, слоистые стеклопластики, армированные рогожкой, можно считать изотропными, как и материалы, армированные неупорядоченными стеклянными волокнами. Ортотроп-ными же следует считать стеклопластики из специальных ориентированных рогожек и стеклянных тканей всех видов. На рис. 46 приведен пример ортотропии полиэфирного стеклопластика с тканевым наполнителем модуль упругости при растяжении и сжатии одинаков, тогда как пределы прочности при растяжении и сжатии в зависимости от направления сил различны. Механические свойства некоторых слоистых стеклопластиков приведены в табл. 4. Значения отдельных показателей армированных пластиков в  [c.45]

Рассмотрим влияние условий получения углеродных волокон на их механические свойства. Модуль упругости углеродных волокон возрастает с увеличением температуры прогрева (рис. 2.4) [6]. Прочность при растяжении возрастает с ростом температуры прогрева на стадии карбонизации и снижается на стадии графитизации (рис. 2.5) [6]. Улучшение свойств в процессе карбонизации связывают с ростом ароматических фрагментов, из которых состоят углеродные волокна, с процессом взаимного сшивания этих фрагментов, повышением степени ориентации, усложнением текстуры волокон и другими факторами. Снижение прочности в процессе дальнейшего повышения температуры происходит вследствие порообразования, связанного с выделением газов при реакции неор-  [c.33]

ВОЛОКОН связующим. Обычно полимерные связующие хорошо смачивают поверхность армирующих волокон при использовании металлических связующих проблема смачиваемости приобретает особое значение. И борные, и углеродные волокна плохо смачиваются расплавами металлов и сплавов. Поэтому, для того чтобы металлическое связующее достаточно хорошо проникало в межволоконное пространство, необходимо проводить специальную обработку поверхности волокон. Однако такая обработка элементарных волокон в пучке затруднена контактом волокон друг с другом это обстоятельство характерно для углеродных армирующих материалов, состоящих из большого числа элементарных волокон. Следует отметить, что вещества, нанесенные на поверхность тонких волокон, оказывают заметное влияние на свойства матрищ>1. Так, при нанесении поверхностного слоя толщиной 0,5 мкм на волокна диаметром 5 мкм площадь поперечного сечения поверхностного слоя составляет 44% площади поперечного сечения волокон. Это приводит к заметному изменению механических и физических свойств матрищ>1. Площадь поперечного сечения поверхностного слоя такой же толщины, нанесенного на борные волокна диаметром 100 мкм, составляет всего лишь 2% площади поперечного сечения волокон и его влияние на свойства матрицы менее значительно.  [c.269]

Армирующие каркасы. Для армирования в УУКМ используют углеродные волокна (УВ), на основе которых формируют пространственные структуры, обеспечивающие направленную анизотропию свойств конечного материала. В достижение требуемьк физико-механических свойств УУКМ свой вклад вносят не только характеристики УВ, но и тип пространственного армирования композита, изменение которого оказывает влияние на процесс заполнения каркаса углеродной матрицей, что, в свою очередь, отражается на свойствах материала в целом.  [c.228]

Исследования тонкой структуры углеродных волокон, полученных из полиакрилпитрильного сырья [7, 30, 43 и 92], подтвердили сходство основных элементов их структуры. Размер элементарных фибрилл в этих волокнах колеблется от 250 до 1000 А, в волокнах также присутствуют различные внутренние дефекты (рис. 9), наличие которых требует тш,ательного 1 онтроля механических характеристик углеродных волокон потребителем. Помимо внутренних дефектов, на механические характеристики углеродных волокон и, следовательно, на свойства получаемых на их основе композиционных материалов оказывают большое влияние различные поверхностные дефекты и морфология поверхности волокон (удельная поверхность, шероховатость, распределение поверхностной пористости), а также химические и термодинамические характеристики поверхности (природа функциональных групп — наличие оксинитридов, атомарного кислорода или карбоксильных групп, смачиваемость и адсорбционные свойства). Поверхностные характеристики углеродного волокна чрезвычайно важны для оценки возможности взаимодействия волокон с металлической матрицей. Некоторые данные о поверхностных свойствах углеродных волокон приведены в обзоре [19].  [c.353]

Метод производства оказывает большое влияние на прочность стеклянных волокон высокой прочностью обладают волокна, вытянртые с большой скоростью из расплавленного стекла (вытягивание из фильер), наименьшей прочностью— волокна, полученные штабиковым способом и раздувом. При формовании волокна из фильер образуется меньше поверхностных дефектов и трещин, чем обусловливаются их лучшие механические свойства, главным образом прочность.  [c.410]

В любом композиционном материале должны быть по крайней мере две различные фазы, разделенные межфазной границей или областью (слоем). Хотя влияние границы раздела на свойства композиционных материалов может быть значительным, его не следует переоценивать. Однако недооценивать его также не следует. Причина, по которой чрезвычайно трудно значительно улуч-щать одновременно такие свойства композиционных материалов как жесткость, механическая прочность и стойкость к росту трещин, кроется, по крайней мере частично, в особенностях и свойствах граничных областей. Так, в простейшем случае, облегчая отслаивание полимерного связующего от стеклянного волокна в полиэфирных стеклотекстолитах, можно добиться повышения стойкости к росту трещин, но при этом прочность понизится, и наоборот, повышая прочность сцепления полимер — наполнитель, можно добиться повышения прочности, но за счет снижения энергии роста трещин. Повысить энергию роста трещин наряду с другими способадми можно классической остановкой трещины (рис. 1.8), тогда как прочность можно повысить путем равномерной передачи усилий с матрицы на волокна, возможной только при прочной адгезионной связи между фазами [25]. При этом следует пом-  [c.41]

Способ получения углеалюмипия пропиткой каркаса из армирующих волокон матричным расплавом позволяет использовать большую номенклатуру алюминиевых сплавов в качестве матричных. Как ун е отмечалось, эвтектический сплав А1—12% Si был выбран из-за своей низкой температуры плавления. Усовершенствование процесса изготовления углеродных волокон и их поверхностной обработки дает возможность применять сплавы с более высокой температурой плавления без заметного ухудшения механических характеристик углеродных волокон. В связи с этим последующие исследования были направлены на изучение влияния состава матрицы на свойства углеалюминия, в то же время был организован промышленный выпуск более качественных волокон Торнел-75 и эти волокна стали использоваться в качестве упроч-нителя. Исследовали матрицы следующего состава технический алюминий, сплав с 7% Mg, сплав с 7% Zn и сплав с 13% Si.  [c.382]


Смотреть страницы где упоминается термин Волокно, влияние на механические свойства : [c.168]    [c.165]    [c.4]    [c.5]    [c.200]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.953 ]



ПОИСК



141 — Влияние на свойства

Волокна

Волокна механические свойства

Волокна свойства

Волокниты Свойства

Волокниты — Механические свойств

Волокниты — Свойства механически

Волокно, влияние на механические свойства хрупкое разрушение



© 2025 Mash-xxl.info Реклама на сайте