Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы Макроструктура

Потребитель проката вправе рассчитывать на получение металла, макроструктура которого не содержит трещин, расслоений, шлаковых включений, дендритов, флокенов и т. п. То же можно сказать о поверхности проката, где не допускаются трещины, закаты, плены и другие подобные дефекты. Общеизвестны требования потребителей к чистоте стали по неметаллическим включениям, к однородности химического состава и ограничению ликвации химических элементов, к снижению в стали содержания серы, фосфора и других вредных примесей. Перечисленные и другие аналогичные требования входят в понятие металлургическое качество проката. Уровень его определяется главным образом совершенством технологии производства проката по всему металлургическому циклу — от исходных шихтовых материалов, используемых при выплавке чугуна и стали, до отделочных операций готовой продукции.  [c.415]


Еще большие подробности о структуре можно получить при помощи макроанализа. От детали, которую хотят подвергнуть макроанализу, например, от вала, отрезают пластину так, чтобы в нее попало все поперечное сечение детали или, по крайней мере, большая его часть. Пластину прострагивают на строгальном стайке, а потом полученную плоскость шлифуют наждачной бумагой, начиная с самой грубой и кончая тонкими номерами. Получается (ровная, гладкая, блестящая поверхность. Если ее протравить специальными реактивами, то на полученном макрошлифе можно увидеть макроструктуру металла. Макроструктуру изучают невооруженным глазам.  [c.45]

Другим способом определения строения металла является и с-следование его макроструктуры. Образец металла разрезают и для получения ровной поверхности плоскость разреза шлифуют наждачной бумагой. После такой обработки в металле можно обнаружить невооруженным глазом или в лупу пузыри, пустоты, трещины, крупные неметаллические включения и другие дефекты. После травления подготовленной поверхности образца кислотами или специальными реактивами можно наблюдать кристаллическое строение, химическую и физическую неоднородность металла. Макроструктуру изучают не только на образцах, но и на слитках и деталях.  [c.9]

На рис. 19 приведена структура металла при увеличении в 100 раз, так называемая микроструктура. Иногда требуется рассмотреть более грубые детали структуры — конгломераты отдельных более или менее однородных зерен и т, д, В этом случае после глубокого травления шлиф рассматривают глазом (или при помощи лупы). Выявленная таким образом структура называется макроструктурой (а шлиф— макрошлифом) (см. ниже рис. 30, 32).  [c.37]

Рис. 3.3. Макроструктура металла после обработки давлением Рис. 3.3. Макроструктура металла после обработки давлением
Если слиток загрязнен неметаллическими включениями, обычно располагающимися по границам кристаллитов, то в результате обработки давлением неметаллические включения вытягиваются в виде волокон по направлению наиболее интенсивного течения металла. Эти волокна выявляются травлением и видны невооруженным глазом в форме так называемой волокнистой макроструктуры (рис. 3.3, а). Полученная а результате обработки давлением литого металла во-  [c.58]


Металл с явно выраженной волокнистой макроструктурой характеризуется анизотропией (векториальностью) механических свойств. При этом характеристики прочности (предел текучести, временное сопротивление и др.) в разных направлениях отличаются незначительно, а характеристики пластичности (относительное удлинение, ударная вязкость и др.) вдоль волокон выше, чем поперек их.  [c.59]

Существенное преимущество штамповки в закрытых штампах — уменьшение расхода металла, поскольку пет отхода в заусенец. Поковки, полученные в закрытых штампах, имеют более благоприятную макроструктуру, так как волокна обтекают контур поковки, а не перерезаются в месте выхода металла в заусенец. При штамповке в закрытых штампах металл деформируется в условиях всестороннего неравномерного сжатия при больших сжимающих напряжениях, чем в открытых штампах. Это позволяет получать большие степени деформации и штамповать малопластичные сплавы.  [c.81]

Каждый металл состоит из очень мелких зерен. Эти зерна можно видеть на изломе.-Совокупность всех зерен металла называется его структурой. В металле различают макро- и микроструктуру. Макроструктура рассматривается невооруженным глазом и при небольших (до 10—15 раз) увеличениях. Структура металла, изучаемая при увеличениях более чем в 60—100 раз, называется микроструктурой.  [c.29]

Сварные соединения, выполненные сваркой плавлением, можно разделить на несколько зон, отличающихся химическим составом, макро- и микроструктурой и другими признаками сварной шов, зону сплавления, зону термического влияния и основной металл (рис. 13.1). Сварной шов характеризуется литой макроструктурой металла. Ему присуща первичная микроструктура кристаллизации, тип которой зависит от условий кристаллизации щва (см. гл. 12).  [c.490]

Строение металлов, изучаемое при помощи макроанализа, называется макроструктурой.  [c.302]

Макроструктуру можно рассматривать и на изломах. Изломы основного металла и сварных швов исследуют после механических и технологических испытаний образцов, а также после разрушения сварных деталей конструктивных элементов обследуемого аппарата. По излому можно определить характер разрушения - пластическое или хрупкое, усталостное, а также дефекты, которые способствовали разрушению изделия - поры, раковины, неметаллические включения, не-провары и трещины. Волокнистый серый излом без блеска характеризует хрупкий металл с пониженной ударной вязкостью. Светлые пятна (окисные плены) в изломе также являются одним из дефектов, которые не выявляются практически  [c.307]

Рис. 7. Схематическое изображение макроструктуры а - истинные кристаллы ОЦК 6 - реальные металлы Рис. 7. <a href="/info/286611">Схематическое изображение</a> макроструктуры а - истинные кристаллы ОЦК 6 - реальные металлы
Наличие такой неоднородной структуры приводит к анизотропии механических свойств, понижению пластичности литого металла, а также к уменьшению сопротивления его деформации по сравнению с деформированным состоянием. Размеры кристаллитов в слитке зависят от скорости кристаллизации. Увеличение скорости кристаллизации на два порядка (от 0,2 до 20 см/мин) приводит к уменьшению расстояния между дендритными осями примерно в 50 раз от 2 до 0,04 мм. Скорость кристаллизации обратно пропорциональна размерам слитка, соответственно в крупном слитке образуется более крупнозернистая структура. Типичная макроструктура слитка — трехзонная структура, определяемая различной скоростью кристаллизации по сечению слитка.  [c.501]

Обработкой давлением получают заготовки из достаточно пластичных металлов. Механические свойства таких заготовок всегда выше, чем литых. Обработка давлением создает волокнистую макроструктуру металла, которую нужно учитывать при разработке конструкции и технологии изготовления заготовки. Например, в зубчатом колесе, изготовленном из проката (рис. 3.1,а), направ-  [c.22]


Совершенно иную макроструктуру имеют отливки, формировавшиеся в условиях пуансонного прессования почти полностью исчезает зона столбчатых кристаллов (за исключением небольших участков, затвердевших до наложения давления), так как она частично разрушается движущимся потоком. По всему сечению получается мелкозернистая равноосная структура. Это объясняется большой скоростью охлаждения и интенсивным движением затвердевающего металла [10].  [c.114]

Известно, что при направленной кристаллизации достигается столбчатая или монокристаллическая макроструктура отливок. Обычно границы зерен в металле расположены неупорядоченно, что ослабляет его, особенно при переменных тепловых нагрузках. Поэтому стремятся выправить в отливке границы зерен в продольном направлении. Это достигается в значительной степени в процессе литья за счет направленной кристаллизации отливок [78]. При такой кристаллизации уменьшается также пористость литых деталей и удаляются вредные примеси.  [c.113]

Для выявления макроструктуры цветных металлов и их сплавов специальные реактивы используют гораздо реже, чем для сплавов железа.  [c.183]

Макроструктура цветных металлов дает представление о форме кристаллизации, деформации, явлениях рекристаллизации и дефектах (усадочных раковинах, газовых пузырях, трещинах, включениях и др.). В большинстве случаев для выявления макроструктуры применяют те же реактивы, что и для травления микроструктуры. При этом увеличивают либо продолжительность травления, либо концентрацию травителя.  [c.183]

Макроструктура металла состояла из зерен феррита и перлита. Количество легирующих элементов, связанных в карбидах, по отнощениЮ к общему содержанию их в стали (Сг=1%, Мо=0,47%) составляло 1/3 хрома и 2/3 молибдена. Кратковременные характеристики прочности находились на уровне требований ТУ (при 20 °С сто,2 262 МПа, 0 =480 МПа) при довольно высоких значениях пластичности ( =32%, у/=1в%).  [c.74]

Р а у 3 и н Я- Р- Влияние макроструктуры металла на контактную выносливость и долговечность подшипников качения. — В сб. Контактная прочность машиностроительных материалов . М., Наука , 1964.  [c.261]

Исследуя литой и кованый металл, Аносов выделил несколько типов макроструктур. Иногда кристаллы металла представляли вытянутые прямые или волнистые полосы. В других случаях узоры покрывали поверхность сплошной сеткой или имели коленчатую форму. Ученый доказал, что при сетчатом или коленчатом расположении узоров обеспечиваются наиболее высокие механические качества стальных изделий. Это его положение является очень важным для современной металлообработки.  [c.50]

Поэтому методы обработки второй группы находят широкое применение для холодной и горячей обработки давлением относительно малопластичных сплавов (алюминиевых, магниевых, титановых и др). При обработке давлением этими методами пластичность обрабатываемых металлов и сплавов оказывается достаточно высокой. Процесс обработки осуществляется на одной машине за одну-две операции, без образования зйусенцев и при значительных деформациях. Последнее исключает возможность обработки давлением при критических деформациях и обеспечивает получение в деформированном металле правильно ориентированной в направлении течения металла макроструктуры и высоких механических свойств. Вследствие возрастания сопротивления деформированию при данном напряженном состоянии и применении высоких деформаций во многих случаях целесообразно применять для обработки давлением такими методами ковочноштамповочные, кривошипные и гидравлические прессы, а также гори-зонтально-ковочные машины и машины для импульсных методов обработки.  [c.59]

Назначение и методика макроскопического анализа. Макроско-1ический анализ применяется для изучения строения металла [макроструктуры) в том случае, когда исследование можно про-юдить невооруженным глазом или при небольших увеличениях до 30 раз).  [c.17]

Чушки, слитки и фасонные отливки — это изделия, полученные способом литья, и поэтому их можно назвать общим термином отливки . Отливки формируются из расплава, заполняющего лнтейи ю форму. Этот сложный процесс называется затвердеванием. Он включает в себя кристаллизацию жидкого металла, явления теплопередачи между отливкой и формой и в самой отливке, взаимодействие металла с материалом формы и с газовой средой, движение жидкого расплава относительно растущих кристаллов, термическое изменение размеров формы и отливки и др. Качество отливок определяется очень сложным взаимодействием всех этих процессов. Из них непосредственно к металловедению относятся процессы, связанные с проявлением так называемых литейных свойств сплавов./Литейные свойства являются технологическими характеристиками и оцениваются н измеряются с помощью специальных технологических проб. Основными литейными свойствами сплавов считаются жидкотекучесть, объемная и линейная усадка, проявление ликвации, трещнноустой-чивость, а также вид и размеры кристаллов в твердом металле (макроструктура), На проявление всех литейных свойств и вообще на процесс затвердевания отливки очень большое влияние оказывает характер кристаллизации сплава. Внешние условия — материал формы, определяющий скорость отвода тепла от отливки, способ ее заполнения, начальная температура расплава, возможность питания усадки — также существенно сказываются иа количественных и качественных показателях литейных свойств и на ходе затвердевания Отливок,  [c.121]

Микроскопическим анализом называется исследование структуры металлов с помощью микроскопа. Структура металлов, наблюдаемая при этом исследовании, называется микроструктурО й. В отличие от макроанализа, при котором строение металла (макроструктуру) изучают либо невооруженным глазом, либо через лупу при максимальном увеличении до 30 раз, при микроанализе изуч ают структуру металла с общим увеличением от нескольких десятков до 2000—ЗООО раз. Увеличение выбирается при этом в зависиморти от цели соотвегствующего исследования и характера изучаемой структуры.  [c.52]


Методом макроанализа изучается макроструктура, т.е. структура, видимая невооруженным глазом или с помощью лупы, при этом выявляются крупные дефекты трещины, усадочные раковины, газовые пузыри и т. д., а также неравномерность распределения примесей в металле. Макроструктуру определяют по изломам металла, по макрошлифам. Макрошлиф - это образец металла или сплава, одна из сторон которого отшлифована, тщательно обезжирена, протравлена и рассматривается с помошью лупы с увеличением в 5—10  [c.12]

На ркс. 76 представлена структура деформированного алюминия. Деформацию создаыали растяжением, а затем металл рекристаллизовался при 550°С в течение 30 мни. При отсутствии деформации (макроструктура сфотографирована без увеличения) структура настолько мелкозерниста, что отдельные зерна нсразлнчнмы без увеличения. Наиболее крупное зерно получается ирн минимальной деформации (остаточное удлинение 3%), которая, очевидно, близка к критической деформации. По мере увеличения степени деформации размер зерна в рекристаллизованном металле уменьшается. Следовательно, средний размер зерна после рекристаллизации зависит от температуры ре-  [c.94]

Различают макроструктуру (строение металла или силава, видимое невооруженным глазом или ири небольшом увеличении (в 30--40 раз)] и микроструктуру (строение металла или сплава, наблюдаемое с помощью микроскопа при болы1П1х увеличениях)  [c.11]

Зона термического влияния (ЗТВ) — участок основного металла, примыкающий к сварному шву, в пределах которого вследствие теплового воздействия сварочного источника нагрева протекают фазовые и структурные превращения. Это часто приводит к тому, что ЗТВ имеет отличные от основного металла вторичную микроструктуру и величину зерна. В ЗТВ выделяют околошовную зону (ОШЗ). Она располагается непосредственно у сварного шва и состоит из нескольких рядов крупных зерен, в том числе оплавленных. Поверхность сплавления отделяет металл шва, имеющий литую макроструктуру, от ЗТВ в основном металле, имеющем макроструктуру проката или рекристаллизо-  [c.490]

Исследование макроструктуры. Макроструктурный анализ является предварительной оценкой качества металлов и сплавов.  [c.302]

Макроструктура основного металла и сварных соединений исследуется невооруженным глазом или при увеличении до 30-ти раз на поверхности макрошлифоа, вырезанных и подготовленных из выбранной поверхности или сварного соединения.  [c.302]

Качество наплавленного металла полученных швов оценивалось согласно инструк1щи по визуальному и измерительному контролю РД 34.10.130-96. Затем из выполненных швов вырезались образщ>1, по которым контролировались макроструктура и величина угла загиба.  [c.304]

Необходимо отметить, что применение полуавтоматической сварки в среде углекислого газа обеспечивает меньшую глубину проплавления по сравнению с ручной электродуговой сваркой. Макроструктура зон заварки повреждений при этом более дисперсная, поверхности швов чистые и ровные с плавными переходами наплавленного металла в основьсой металл с оптимальной высотой усиления шва (рис. 5.7, д, е). Наиболее оптимальными параметрами режима свари являются сила сварочного тока ПО...120 А, напряжение дуги 21...23  [c.306]

Исследование микроструктуры. Исследование микроструктуры дает возможность более глубоко изучить структуру основного металла и характерных зон сварного соединения, чем исследование макроструктуры. По микроструктуре обследуемого объекта можно установить 1) характер изменения структуры металлов и сплавов после деформации, различных видов термической обработки и других технологических операций, а также коррозионных или эрозионных воздействий на материал рабочей среды в аппарате 2) установить форму и размер структурных составляющих, микроскопических трещин и т.п. повреждений металла 3) структуру наплавленного металла, структуру, образовавшуюся в зоне термического влияния 4) примерное содержание углерода в основном и наплавленном металле и в различных участках шва 5) приблизительный режим сварки и скорость ох.1тажде-ния металла шва и зоны термического влияния 6) количество слоев сварного шва и дефекты шва и структуры.  [c.308]

Зарождение центров кристаллизации происходит в результате локального флуктуационного превышения концентрации какого-либо параметра. При формировании макроструктуры нефтяного пека зарождение спиральных криоаллитов должно проислодить в результате локального увеличения концентрации нескомпенсированных спиновых моментов. В качестве гипотезы можно предположить, что возникновение винтовых дислокаций в металлах происходит по той же причине.  [c.206]

Вследствие ошибок при нагреве заготовки возможно образование завышенного слоя окалины, обезуглероженного П0верхн0стн01 0 слоя, изменение микроструктуры металла (перегрев, пережог). В процессе ковки возникают различные искажения формы, забоины, вмятины, вогнугые торцы, увеличивающие концевые припуски. При несоблюдении температурного режима ковки возможно образование наружных к внутренних трещин (расслоение), неблагоприятной макроструктуры поковки.  [c.107]

Значительная часть заготовок производится из цельных или кольцевых заготовок методом накатки зубьев в холодном или горячем состоянии. В этом случае исключается черновое зубонаре-зание и формируется наиболее благоприятная макроструктура металла. Для передач невысокой точности вообще исключается механическая обработка.  [c.237]

Иная картина получается при воздействии кругообразной вибрации, передаваемой расплаву через матрицу прессформы. Отличительной особенностью макроструктуры отливок, закристаллизованных при одновременном воздействии кругообразной вибрации и давления, является полосчатость, аналогичная полосчатости, иногда встречающейся у центробежнолитых заготовок. Это вызвано тем, что кругообразная вибрация нарушает ход последовательной кристаллизации расплава от стенок матрицы и разрушает фронт растущих кристаллов. Однако это разрушение происходит периодически, причем в зоне, где металл находится уже в твердо-жидком состоянии, а фронт кристаллизации и жидкая фаза переместились ближе к центру сечения отливки. Для достижения положительного влияния кругообразной вибрации, по-видимому, необходимо непрерывное разрушение фронта кристаллизации, что может быть осуществлено путем использования вибраторов с широким частотноамплитудным диапазоном.  [c.143]

Во втором издании (первое — в 1980 г.) описаны современные методы определения химического состава продуктов металлургиче-скогр производства, анализа газов и неметаллических включений в сталях и сплавах, контроля макроструктуры и свойств металла.  [c.27]

Интроскоп предназначен для визуализации внутренней макроструктуры промышленных толстостенных объектов из металлов, сплавов и пластмасс, характеризующихся широким диапазоном. KO )O ieii ультразвука (1500-6000 м/с).  [c.273]

В работе [31 также исследованы зависимости изменения скоростей упругих волн от направления их распространения. Рас- " гы проведены для кристаллографической плоскости (010), по-скольку анализ результатов металлографических исследований пока,зал, что в сварных швах (основной металл—сталь 12Х18Н10Т, 5),яектроды ЭА-400/10У) кристаллиты вытянуты в ос в пяяеречио.м направлении (см. рис. 6.15). Для продоль-но [ О сечения шва характерна макроструктура с примерно равновесными зернами, которые представляют собой поперечные сечения кристаллит<5 .  [c.320]

С помощью электрохимического способа отпечатков можно получить макроструктуру ряда металлов и сплавов, исключая вольфрам, ванадий и хром, которые пассивируются. Хруска [35] в качестве изолирующей подложки использует стеклянную пластину., На нее кладут металлическую пластину (катод), которая в данном электролите нейтральна, например алюминий при исследовании стального шлифа. На катод кладут фильтровальную бумагу, с помощью которой электролит (раствор соляной кислоты) подводят к образцу. Затем прижимают образец, который соединен с положительным полюсом батареи, поверхностью шлифа к бумаге и прикладывают подобранное напряжение (0,1—6 В). Возникает эффект электрохимического отпечатка, во время которого ионы электролита образуют с ионами испытываемого металла окрашиваемый осадок. А. Глазунов [36] для обнаружения никеля в железных сплавах рекомендует в качестве электролита спиртовый раствор диметилглиоксима и уксусной кислоты. Уже при содержании в сплаве 1% Ni отпечаток вследствие образования диметилглиоксима никеля четко окрашивается в красный цвет.  [c.39]


Несмотря на то, что количественные критерии, определяющие как вязкое, так и хрупкое разрушение композиционных материалов при комбинированном нагружении, еще далеки от завершения, состояние этого вопроса достигло такого уровня, при котором возможно достаточно точно предсказать поведение проектируемых или рассчитываемых конструкций, если известны основные характеристики композиционного материала. В отличие от металлов слоистый композиционный материал обладает такими особенностями, как неоднородность и анизотропия. По микроструктуре материал является двухфазным и состоит из волокон и матрицы или связующего (полимерного, металлического и др.), а макроструктура материала образуется из ориентированных слоев волокон, заключенных в связующем (рис. 3). Явления, протекающие на микроуровне, определяют формы разрушения и другие подобные характеристики материала, рднако механизм и взаимодействие этих явлений изучены еще недостаточно полно. Большинство инженерных расчетов основано поэтому на макромодели, согласно которой основным элементом материала, в котором происходит разрушение, является армированный слой.  [c.67]

В металле отливок жаропрочные свойства стали зависят не только от микроструктуры, сформировавшейся после термической обработки, но и от макроструктуры отливки. Глубокое травление металла корпусных деталей турбин в поперечном сечении выявляет присутствие в основном двух макрозон, отличающихся своим строением, — поверхностной мелкозернистой зоны и зоны столбчатых кристаллов. Испытания длительной прочности  [c.37]

Были исследователи, которые совершеппо обоснованно считали, что узоры на булатной стали являются следствием кристаллического строения металла. Однако они не смогли установить зависимость свойств металлов от узоров на его поверхности. Эта важная задача была успешно решена П. П. Аносовым. Своими опытами он доказал, что узоры на металле отражают его кристаллическое строение, которое зависит от многих причин, прежде всего от химического состава металла, способа выплавки, условий затвердевания и характера последующей механической (обработки. Аносов первым показал влияние так называемой макроструктуры металла на его мсханичоскне качества.  [c.50]

Однако не всегда узоры на булате выявляются сами собою. Чтобы сделать их более четкими, необходимо протравить поверхность металла какой-нибудь кислотой. Аносов разрабатывает подробную методику травления металлов для выявления их макроструктуры. Он исследует действие на металл лимонного сока, соляной, серной и других кислот и приходит к выводу, что их действие на железо, углерод и другие элементы, входящие в состав стали, неодинаково. Используя метод Аносова, современные исследователи тпироко применяют травление для изучения макроструктуры металлических сплавов.  [c.50]


Смотреть страницы где упоминается термин Металлы Макроструктура : [c.48]    [c.202]    [c.490]    [c.179]   
Чугун, сталь и твердые сплавы (1959) -- [ c.200 , c.203 ]



ПОИСК



Изучение макроструктуры металлов и сплавов (макроанализ)

МЕТАЛЛЫ Макроструктура - Фотографирование

Макроструктура

Макроструктура металлов и сплаво

Макроструктура металлов и сплавов

Металлы Макроструктура — Влияние ковки



© 2025 Mash-xxl.info Реклама на сайте