Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий-окись — Свойства

Когда нет необходимого оборудования или когда процесс вакуумного раскисления не подходит по каким-либо причинам, добавляют элементы, которые сами реагируют с кислородом, такие, как кремний, алюминий, титан, ниобий, ванадий или цирконий (марганец также действует как раскислитель). Эти металлы, особенно когда они присутствуют в избытке, оказывают значительное влияние на окончательные свойства стали. Наиболее часто используется в качестве раскислителя кремний, который присутствует в виде твердого раствора в феррите и оказывает заметное влияние на ударную вязкость при низкой температуре. Алюминий влияет на свойства стали по-разному. Он очищает зерна стали от кислорода и реагирует с азотом, увеличивая тем самым ударную вязкость углеродистых сталей, но, будучи добавлен в заметном количестве, способствует графитизации и ослаблению границ зерен, действуя тем самым на прочность и свариваемость. Окись алюминия, которая является продуктом реакции с кислородом, может оставаться в стали во, взвешенном состоянии, образуя неметаллические включения. Другими возможными раскислителями могут быть титан, цирконий, ниобий и ванадий, которые в одних случаях могут оказаться полезными, а в других— вредными, поэтому использование этих элементов ограничивается созданием определенных сортов сталей, где их влияние проявляется с положительной стороны.  [c.51]


Извлечение бериллия из руды затруднено вследствие химической инертности берилла. Прежде всего из него извлекают чистую окись бериллия, что является длительной и трудоемкой операцией из-за наличия в берилле алюминия, близкого по свойствам к бериллию.  [c.451]

Алюминий-окись — Свойства 2 Алюминирование — см. Алитирование  [c.539]

Свойства композитов титан — окись алюминия будут обсуждаться более подробно в гл. 8, посвященной композитам, упрочненным окислами.  [c.169]

Примером прямой линейной корреляции между скоростью изнашивания, рассчитанной по эмпирической формуле, связывающей износ с коэффициентом трения и механическими свойствами материала, и полученной на лабораторной установке, является график на рис. 76. Он заимствован из работы [50], проведенной для исследования изнашивания в отсутствие смазки керамических материалов торцевых уплотнений. К плоскости вращавшегося диска из керамического материала прижимались три неподвижных образца (материал образцов — окись магния, окись бериллия, окись алюминия). Давление при испытании повышалось ступенями от 0,35 до 3,5 кгс/см, а скорость диска была 0,5 и 1 м/с.  [c.104]

Керамику из окиси алюминия применяют для изготовления металлорежущих резцов, фильер для протяжки главным образом искусственных волокон. Исследуется возможность использования ее в качестве трущихся деталей. Окисная керамика находит применение в качестве жаростойкого, химически стойкого покрытия в ракетной и реактивной технике. В атомном реакторостроении широко используется окись бериллия благодаря благоприятным ядерным свойствам.  [c.492]

Химические соединения металлов с неметаллами образуются при строго определенных Соотношениях входящих в них элементов, соответствующих нормальным валентностям. Атомы металлов в таких соединениях отдают свои валентные электроны неметаллам. Химические соединения металлов с неметаллами не обладают металлическими свойствами. Примерами могут служить АЬОз (окись алюминия) и FeO (закись железа).  [c.17]

Из приведенных в табл, 3 коэффициентов аддитивности для модуля упругости видно, что особенно вредное влияние на упругие свойства оказывают окислы алюминия и натрия, тогда как кремнезем, борный ангидрид и окись магния, наоборот, оказывают благоприятное действие.  [c.25]

Китайгородский И. И. и Ланде Л. С. Окись алюминия в стекле и ее влияние на химическую стойкость. Сб. Влияние химич. состава на некоторые физико-химические свойства стекла, № 27, 1934.  [c.168]


Окись алюминия, физические свойства 86  [c.394]

Для изготовления режущих инструментов применяют также режущую керамику (кермет) марок ВЗ ВОК-60 ВОК-63, представляющую собой оксидно-карбидное соединение (окись алюминия с добавкой 30...40% карбидов вольфрама и молибдена). Введение в состав минералокерамики карбидов металлов (а иногда и чистых металлов — молибдена, хрома) улучшает ее физико-механические свойства (в частности, снижает хрупкость) и повышает производительность обработки в результате повышения скорости резания. Получистовая и чистовая обработка инструментом из кермета деталей из серых, ковких чугунов, труднообрабатываемых сталей, некоторых цветных металлов и сплавов производится со скоростью резания 435... 1000 м/мин без подачи СОЖ в зону реза-  [c.37]

Металлический хром получают алюми-нотермически — взаимодействием окнси хрома с металлическим алюминием. Окись хрома Сг Оз образуется при непосредственном взаимодействии хрома и кислорода при нагревании. Окись хрома не растворяется в воде и кислотах растворяется в щелочах, образуя гидрат окиси хрома Сг(ОН)з, обладающий амфотерными свойствами. Для хрома наиболее характерны соединения, в которых он шестн-валентен.  [c.382]

Из работы [178] также следует, что в контакте с молибденом и вольфрамом эта же керамика проявляет значительно большую устойчивость взаимодействие практически отсутствует до 2000 °С. Что же касается рения, то этот материал с AI2O3 взаимодействует даже в меньшей степени, чем молибден и вольфрам. Применяется рений чаще всего не в чистом виде, а в виде сплавов с молибденом и вольфрамом. Рассмотренные тугоплавкие металлы довольно хорошо смачиваются медью, в то время как их окислы, наоборот, не смачиваются. Плохо смачивается и окись алюминия [182]. Эти свойства при выборе материала подложки для конструкции генераторов (и также конденсоров) необходимо было учитывать. Из проведенного выше анализа следует, что из металлов большой пятерки , применяемых в производстве изделий электронной техники, требованиям к материалу подложки генераторов наиболее полно отвечают молибден и рений.  [c.41]

Хегедюс и Кюрти [15], прокаливая окись алюминия в токе сухого водорода при 1600° С, получали продукт серого или черного цвета, представляющий окись алюминия с дефицитом кислорода по сравнению с формулой А12О3. Такая пестехиометрическая окись алюминия обладает полупроводниковыми свойствами.  [c.18]

В стеклокерамических материалах в процессе длительного нагревания при высоких температурах могут происходить значительные изменения, связанные не только с частичным растворением наполнителя в стекле и заруханием стекловидной составляющей, но и с химическим взаимодействием между стеклом и наполнителем, которое приводит к образованию новых химических соединений [121]. Такие изменения контролируют методом рентгенографического анализа. Было исследовано несколько стеклокерамических композиций. В качестве наполнителей в таких композициях были использованы окись алюминия, окись хрома, двуокись кремния или окись магния, а в качестве стекловидной составляющей — свинцовосиликатная, бариевосиликатная и стронциевосиликатная эмали, которые применяли в виде порошкообразных фритт с максимальным размером частиц 20—30 мкм или в виде нитратных полуколлоид-ных растворов (метод растворной керамики ) [132, 137]. Стекло и наполнитель брались в равных количествах по массе, поскольку стеклокерамические составы, содержащие не менее 50% наполнителя, обладают хорошими диэлектрическими свойствами при высоких температурах. Смеси стекол и наполнителей растирались в фарфоровой ступке, запрессовывались в брикеты и обжигались в сили-  [c.72]

БЕРИЛЛИЯ СОЕДИНЕНИЯ. Бериллий во всех соединениях двувалентен как наиболее легкий элемент второй группы он занимает D ней первое место имея много сходственных свойств с ближайшими гомологами той же группы, он несколько от них отличается, но ряду свойств приближаясь к алюминию. Окись бериллия ВеО — единственное соединение Ве с кислородом —м. б. получена прокаливанием выше 280° гидроокиси бериллия Be(OH)j или же прокаливанием солей бериллия BeSOi 4HjO Ве(КОз)а 3H. 0 и др. Получающийся белый порошок ВеО является кристаллическим, как это установлено рентгеноскопич. методом. При прокаливании при очень высокой темп-ре (в электрич. печи) ВеО возгоняется пары ее конденсируются на холодных местах в виде красивых гексагональных кристаллов. Плотность ВеО а 3,00 г/см . ВеО в виде больших кристаллов обладает большой твердостью, близкой к твердости корунда. лежит в интервале  [c.272]


При полировании металлов применяются разнообразные порошки, как, например, венская известь, крокус, окись хрома, окись алюминия, окись кремния. Они обладают полирующими свойствами, если их изготовление было произведено рационально. Как для крокуса, идущего на нолирование стекла, существует оптимальная температура прокалки, дающая наиболее дисперсный материал, так и для полирования металлов необходимо иметь порошок достаточной степени дисперсности.  [c.239]

Анодные покрытия можно получать и на магнии [8], однако здесь они не обладают такими защитными свойствами, как на алюминии. Окись магния более растворима в воде, чем окись алюминия, и растворимость сильно возрастает в присутствии двуокиси углерода. Закупорка пор для анодных покрытий на магнии более трудна. Один из видов анодной обработки магния, который имел значительное распространение, основан на применении электролита, содержащего ЫНзСгаО, и КаНдРО . Покрытие получается тонкое, однако оно существенно увеличивает коррозионную стойкость, если сочетается с соответствующим красочным покрытием. Покрытие значительной толщины и износостойкости может получаться путем анодной обработки магния в растворе едкого натра с добавками других веществ или без них [9, 10]. Дополнительная обработка в растворе соли хромовой кислоты увеличивает защитную способность пленки и создает хорошую основу для нанесения защитных красок [9].  [c.928]

Из данных табл. 1 следует, что при 1500° С лучшими электроизоляционными свойствами обладают окислы бериллия и алюминия. Ввиду значительной токсичности бериллия приходится отдавать предпочтение окиси алюминия. При температуре 2000° С хорошими электроизоляционными свойствами обладают окись бериллия, окись магния и тория. Значительная летучесть окрюи магния при повышенных температурах ограничивает возможность его применения. Высокие электроизоляционные свойства и стабильность А12О3 при повышенных температурах (вплоть до 1850° С) указывают на перспективность применения этого материала в качестве электроизоляционного.  [c.215]

Изложено влияние способа подготовки поверхности металла, и условий нанесения оксидных покрытий плазменным методом на некоторые их свойства. Описана установка для оценки проницаемости покрытия в жидких и газообразных средах. Изучено влияние термообработки на взаимодействие между различными компонентами покрытия. Проведено металлографическое изучение границы раздела металл—покрытие. Показана перспективность нанесения двухслойных покрытий для защиты металла, в частности стали, от воздействия атмосферы при повышенных температурах, а также от действия расплавленных сред, не растворяющих окись алюминия. Библ. — 2 назв., рис. — 3, табл. — 4.  [c.344]

Композиционные покрытия никель—двуокись циркония, никель—двуокись церия, медь—окись алюминия получены методом химического восстановления из суспензий, в которых дисперсионной средой являются щелочные растворы химического никелирования или меднения, а дисперсной фазой — один из вышеуказанных окислов. Изучены условия образования и ряд физико-механических свойств покрытий. Показано, что введение окисных добавок в растворы химической металлизации изменяет скорость осаждения покрытий и приводит к сдвигу стационарного потенциала. Лит, — 3 назв., ил. — 2.  [c.258]

Судя ПО этим данным, наименьшая скорость реакции характерна для бора, далее следуют карбид кремния и окись алюмл-ния. Легирование матрицы может увеличивать или уменьшать скорость реакции. Если волокно состоит из одного элемента (бора), то количество образующегося продукта реакции, видимо, прямо пропорционально количеству прореагировавшего бора. Однако для волокон из соединений или волокон с покрытием эта зависимость не соблюдается. Небольшое количество элементов внедрения из соединений AI2O3 или Si переходит в матрицу и, растворяясь н ней, вызывает упрочнение и охрупчивание, и тем не менее скорость взаимодействия матрицы с такими волокнами выше, чем с борным волокном. Тресслер и Мур [46] отмечают, что в композите титан — окись алюминия допускается большая степень химического взаимодействия, чем в материалах титан — бор и титан — карбид кремния. Этот вопрос будет обсуждаться в гл. 4 в связи с анализом механических свойств при растяжении и в гл. 8, посвященной композитам с окисным упрочнением.  [c.125]

Помимо требований к механическим свойствам, первым шагом при выборе материала волокна является, согласно Линчу и Бёрту [27], оценка изменения свободной энергии при возможных реакциях между волокном и матрицей. На рис. 1 приведена температурная зависимость изменения свободной энергии AF для некоторых реакций между окисью алюминия и металлами. Металлы, которые легко восстанавливают окись алюминия до алюминия с образованием окисла металла, имеют отрицательное значение А/ для соответствующей реакции. В этом предварительном анализе, однако, не учитываются такие важные реакции, как образование тройных соединений и интерметаллидных фаз, простое растворение волокна в матрице (или наоборот), а также изменение IS.F при образовании твердого раствора в матрице. Термодинамические данные часто оказываются непригодными для расчета именно по этой причине.  [c.309]

КИМ смолам добавляют гидратированную окись алюминия, придающую системе огнегасящие свойства при сохранении дугостой-кости благодаря наличию гидратированной воды. Однако в этом случае эффект упрочнения незначителен и такие свойства композита, как прочность и относительное удлинение при растяжении, оказываются хуже, чем при использовании других наполнителей.  [c.155]


Другие исследователи изучали действие ультрафиолетового и рентгеновского излучения на напряжение ную, коэффициент рассеяния и удельное сопротивление диэлектриков из окиси алюминия [83]. Алокс (99% AI2O3) был облучен рентгеновскими лучами (50 кв) в вакууме 10" мм рт. ст., при этом изменение свойств для переменного тока не было отмечено, но были обнаружены небольшие изменения удельного электросопротивления на постоянном токе. Окись алюминия приобретала высокую электропроводность во время облучения протонами [98].  [c.151]

Изменения механических свойств кажутся менее выраженными, чем изменения эпектро- и теплопроводности. Кристаллы сапфира и спеченная окись алюминия, облученные интегральным потоком 1,6-10 нейтрон/см Е > 100 эв) примерно при 50° С, понизили модуль Юнга меньше чем на 10% [57]. Изменений внутреннего трения отмечено не было [29]. Данные по влиянию облучения на другие свойства AI2O3, например оптическую  [c.151]

Печатные бороуглеродистые и циркониево-углеродистые сонротивления на подложках из окиси алюминия и форстерита не изменились при Y-облучении до дозы 2-10 эрг г. Электрические свойства золото-палладиевых пленок, нанесенных на окись алюминия, заметно не изменились при дозе 10 эрг г. Сопротивления пленок, нанесенных на сапфир и монокри-сталлическую шпинель, после облучения до дозы 10 эрг1г изменились примерно на 20%. Эти изменения были временными, и через неделю после облучения наблюдалось полное восстановление сопротивления.  [c.355]

Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]

Минералокерамические твердые сплавы обладают твердостью HRA 92—93 и сохраняют режущие свойства при температуре до 1200° С. Этот инструментальный материал ие со,держит таких дефицитных и дорогостоящих металлов, как вольфрам, кобальт и титан, его основой является спеченная окись алюминия. Из минералокерамики изготовляются иластипки двух марок ТВ—48 (термокоруид) и ЦМ—322 (микролит), которые, так же как и пластинки из других инструментальных материалов, при.меняются при различных видах обработки.  [c.328]

В результате содержание углерода уменьшается до 0,003%, а-окись кремния образует с окисью магния стекловидную массу. Затем лист проходит через вторую печь, где отжигается при 1150° С в атмосфере сухого водорода. При этом отжиге завершается рекристаллизация металла и до 0,001% уменьшается содержание серы. После этого лист подвергают термической рихтовке и фосфатируют при 800° С. Края листя окончательно обрезают, а лист разрезают по длине для отправки на трансформаторные предприятия. Точный контроль толщины проката достигается при использовании методов неразрушающего контроля. Стали с прекрасными электрическими свойствами, заменяющие холоднокатаную кремнистую сталь, были разработаны совсем недавно. Один из таких материалов — японская сталь Hi-B — получается при одностадийной холодной прокатке 3%-ной кремнистой стали, к которой добавлен нитрид алюминия для стабилизации границ зерен [12]. Характеристики листа в дальнейшем улучшаются заменой фосфатного покрытия другим, которое состо-  [c.246]

Вязкость. Вязкость — свойство, характеризующее сопротивление тел течению (для жидкостей) и развитию остаточной деформации (для твердых тел). Вяз1Кость стекла зависит от его химического состава и температуры. Окислы натрия, калия, лития, свинца и бария, а также фто1р и борный ангидрид снижают вязкость стекломассы, а двуошсь Кремния окись алюминия сильно повышают ее.  [c.107]

Рассмотренный способ описания кристаллической решетки окислов позволяет легко представить, что подавляющая часть катионов искажает анионную подрешетку, снижает ее устойчивость, повышает диффузионную проницаемость в отношении ионов кислорода и катионов. Из табл. 2, в которой приведены величины ионных радиусов, следует, что окись алюминия и двуокись кремния отличаются от других тугоплавких окислов неискаженностью анионной подрешетки. Эта кристаллографическая особенность играет немаловажную роль, так как все другие окислы, даже с более высокой термодинамической стабильностью (например, СаО, LajOs, ZrOj) имеют низкие защитные свойства. В то же время  [c.13]

Полученные результаты показывают, что окись алюминия, в отличие от окиси хрома, препятствует проникновению углерода в металл. С повышением температуры скорость науглероживания никель-хромовых сплавов резко возрастает. Защитные свойства окалины Fe- r-Al сплавов с повышением температуры также ухудша-1ртся, в связи с чем предельная рекомендуемая температура их применения в углеродсодержащих атмосферах ниже, чем в  [c.111]

Считается, что металлический ниобий впервые был получен Бломстраи-яом в 1866 г. [72] восстановлением хлорида ниобия водородом. Позже Муас-саи (1051 получил ниобий восстановлением его окиси углеродом в электропечи. Еще позже Гольдшмидт [511 восстановил окись порошком алюминия. В 1905 г. и в последующие годы возрос интерес к ниобию и танталу, как потенциальным материалам для производства нитей ламп накаливания вместо применявшихся тогда графитовых нитей. Однако для этой цели окончательно был выбран тантал. В этот же период времени Болтон [1511 получил сравнительно чистый ниобий путем восстановления фторониобата калия натрием и определил некоторые более важные свойства металла. Первые образцы ниобиевых прутков и листов были изготовлены Балке [8], применившим методы порошковой металлургии этот металл впервые был представлен Американскому химическому обществу в 1929 г.  [c.429]

Наиболее огнеупорная, а также наименее химически активная окись — окись тория. Она пригодна для применения в тиглях, предназначенных для сплавов с очень высокой температурой плавления. Тигли, набитые окисью тория, могут быть применены до 2700°. Окись магния, окись бериллия и окись циркония тоже представляют собой материалы с высокими огнеупорными свойствами, но они более химически активны и поэтому менее пригодны, чем окись тория. Окись алюминия имеет максимальную температуру службы до 1900—1950°, что является пределом, до которого можно применять оптический пирометр с исчезающей нитью, смотровой трубой из корундиза и экраном как источником излучения абсолютно черного тела. Современное производство прямых непористых смотровых труб из окиси тория значительно расширяет область применения этого метода. При более высоких температурах возможно измерение лучеиспускания непосредственно поверхности металла только оптическим пирометром или фотоэлектрическим элементом. В этом случае поверхность металла не удовлетворяет условиям излучения абсолютно черного тела, и поэтому такой метод можно применять только в том случае, если известны данные об эмиссионной способности металла и если для градуировки имеются в распоряжении металшы с известной точкой плавления и эмиссионной способностью, близкой к исследуемому сплаву. Однако точность такого метода не очень высока. Подробности мы рассматриваем ниже при описании метода Мюллера. Вольфрам-ирридиевые, вольфрам-мо-либденовые и различные другие термопары могут быть применены для измерения высоких температур однако эти термопары нельзя считать удовлетворительными ввиду трудности получения повторимых результатов (см. ниже).  [c.179]


Основное условие создания конструкций — жесткость и устойчивость материала. Важным свойством последнего является удельный модуль упругости (отношение модуля упругости к плотности). Промышленные материалы, такие, как сталь, алюминий, титан и стекло, имеют близкие значения удельного модуля упругости. Органические материалы характеризуются более низкими величинами отношения модуля упругости к плотности. Для повышения удельного модуля упругости конструктор вынужден в основном использовать материалы с более низкой плотностью и увеличивать размер сечения, чтобы обеспечить жесткость при изгибе без превышения массы. Однако для ряда конструкций этот выбор практически невозмон ен и требуется материал, обладаю-ш,ий повышенным отношением модуля упругости к плотности. Бор и углерод, которые обладают ковалентной связью, имеют более высокий удельный модуль (15 X 10 см) по сравнению с материалами, которые имеют металлическую или ионную связь. Другие материалы, имеющие высокую долю ковалентной связи, такие, как карбид бора, карбид кремния, окись алюминия, также обладают высоким удельным модулем упругости.  [c.12]

Рядом свойств, необходимых для упрочнения металлических матриц при высоких температурах, обладает моиокристалличе-ская окись алюминия (а — AlaOg, сапфир). Важнейшими из них являются высокий модуль упругости, низкая плотность (по сравнению с плотностью большинства металлических матриц), высокая прочность в волокнистой форме, высокая температура плавления, сохранение прочности при высоких температурах и стабильность в окислительных средах.  [c.167]

В табл. 8 обобщены сравнительные данные для композицион-пых материалов, изготовленных с применением основных армирующих волокон. Прочность и жесткость оценены по сравнению со свойствами типичного титанового сплава Ti—6% А1—4% V. В ряде случаев они сравнены с перспективными свойствами, дости-н ение которых предполагается, если будут преодолены производственные трудности. Высокотемпературная удельная прочность относится к 600—1200° F (316—649 С), к этому же температурному интервалу относится характеристика стабильности. Четыре последних армирующих материала — бор и бор, покрытый карбидом кремния, карбид кремния и окись алюминия — располагаются в порядке возрастания плотности и снижения прочности. Однако потенциальная прочность при комнатной температуре у композиционных материалов, изготовленных из первых трех видов волокна, примерно одинакова и оценена одинаковым показателем. Значительно более высокая плотность окиси алюминия (4 г/см ) отрицательно влияет на потенциальную прочность и нсесткость композиционных материалов, изготовленных с этим армирующим волокном.  [c.330]


Смотреть страницы где упоминается термин Алюминий-окись — Свойства : [c.254]    [c.680]    [c.342]    [c.80]    [c.490]    [c.271]    [c.404]    [c.348]    [c.361]    [c.55]    [c.372]    [c.105]   
Чугун, сталь и твердые сплавы (1959) -- [ c.2 ]



ПОИСК



Алюминий окись

Алюминий — Свойства

Конструирование на основе окиси алюминия — Свойства 225, 226 — Химический состав

Окиси

Окись алюминия, физические свойства

Окись алюминия, физические свойства цемент нэ А1аОз

Окись алюминия—алюминий

Свойства композиций алюминий—окись кремния

Термодинамические свойства Кенисарин, В. Я. Чеховской Исследования температуры равновесия между твердой и жидкой фазами окиси алюминия



© 2025 Mash-xxl.info Реклама на сайте