Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нити для ламп накаливания

Примеры применения порошковых сплавов тугоплавкая нить для ламп накаливания из вольфрама контакты и детали приборов из молибдена и других тугоплавких металлов антифрикционные подшипниковые сплавы из порошков железа и графита постоянные магниты из порошков железа, никеля, алюминия, кобальта твердые сплавы для режущих инструментов, фильеры из порошков карбидов вольфрама, титана и кобальта и т. д.  [c.130]


В тех случаях, когда чувствительность определяется для экспонирования белым светом, очень важно учитывать спектральный состав белого света , используемого для получения характеристической кривой, поскольку большинство эмульсий имеет равномерную чувствительность в диапазоне видимого света. Спектральный состав белого света определяется величиной его цветовой температуры, которая для дневного света равна приблизительно 5500 К, а для ламп накаливания с вольфрамовой нитью, применяемых в сенситометрии, обычно лежит в пределах от 3200 до 3400 К. Более того, цветовая температура дневного света, получаемого с помощью вольфрамового источника, корректируется фильтром, который ослабляет длинноволновые составляющие спектра, обеспечивая требуемый баланс спектральных составляющих от красного до синего.  [c.111]

Металлами и сплавами с высоким сопротивлением пользуются, когда хотят электрическую энергию превратить в тепловую. Количество теплоты, выделяемое в проводнике током определенной силы, прямо пропорционально сопротивлению проводника. Сплавами для элементов обычных нагревательных приборов (электропечей, плит, чайников, утюгов, электропаяльников) служат нихром и др. Для нити в лампах накаливания применяют вольфрам, который, не плавясь, выдерживает температуру более 2000°. Однако такую нить можно нагревать лишь в вакууме. Кислород воздуха ее окисляет.  [c.79]

Для достижения высокой контрастности и хорошей яркости интерференционной картины плотность рассеивающего покрытия должна быть небольшой. Один из способов контроля достижения оптимальной плотности покрытия состоит в следующем. Через приготовленный диффузор напрямик рассматривают светящуюся нить удалённой лампы накаливания или нить расположенной невдалеке светящейся лампочки от карманного фонарика и наблюдают картину от большого числа хаотически распределённых по поверхности диффузора непрозрачных шариков — спор одинакового размера. Картина эта имеет вид центрального ахроматического нулевого круга и прилегающих к нему нескольких окрашенных колец. По своей геометрии она сходна с картиной дифракции в параллельных лучах от круглого одиночного отверстия, диаметр которого совпадает с диаметром спор ликоподия, отличаясь лишь тем, что за счёт перекрывания множества первичных картин она имеет большую яркость, сочетающуюся с зернисто-волокнистой структурой интерференционного поля и с изображением источника света в средней части нулевого круга [21а, с. 162 216, с. 149-150]. В зависимости от плотности рассеивающего покрытия меняется соотношение световых потоков, один из которых распределяется в области дифракционной картины, а второй — в области центрального изображения источника света. Подходящей плотностью покрытия можно считать такую, при которой изображение источника резко выделяется по яркости на слабом фоне нулевого круга и первого кольца картины. При этом второе кольцо едва видно, а третье кольцо картины практически не видно совсем.  [c.41]


Тугоплавкие металлы имеют применение и в более старых отраслях техники вольфрам (с добавкой тория) в качестве нитей электрических ламп накаливания вольфрам и молибден в качестве нагревателей вакуумных или газонаполненных печей ниобий и тантал — для деталей электронных ламп, в химической промышленности, в хирургии. О применении циркония в атомной технике будет сказано ниже.  [c.347]

Сплавы WMo используются и вакуумной технике в виде проволок или лент для пружин, крючков или петелек, держателей катодов прямого накала и нитей накала ламп накаливания, а также для подогревателей катодов косвенного подогрева (см., например, рис. 4-5-1). Рабочая температура таких накаливаемых проволок обычно не превышает 1 500° С.  [c.81]

Наиболее важными металлами группы платины являются платина и палладий. Платина и ее сплавы используются в вакуумной технике главным образом в тех случаях, когда важна химическая устойчивость против кислорода и соединений, содержащих его, при высоких температурах. Платина благодаря своему коэффициенту расщирения, благоприятному для впаивания в стекло, и палладий благодаря значительной проницаемости для водорода имеют вполне определенные области применения. Остальные металлы платиновой группы (НЬ, Оз, Лг, Ни) имеют для вакуумной техники только небольшое значение. Осмий, который раньше использовали вследствие его сравнительно высокой температуры плавления (2 700° С) для нитей в лампах накаливания, в настоящее время уже вытеснен вольфрамом. Иридий тверже, чем платина, и имеет более высокую точку плавления (2 340° С), но из-за своей дороговизны практи-  [c.106]

Следовательно, у вольфрама доля энергии, приходящаяся на излучение видимого света, значительно больше, чем у абсолютно черного тела, нагретого до той же температуры. Это свойство вольфрама позволяет использовать его в качестве материала для изготовления нитей ламп накаливания. Однако некоторые особенности вольфрама ограничивают применение его в качестве теплового источника света. Дело в том, что при температуре 2450 К максимум излучательной способности вольфрама соответствует длине волны около 1,1-10 см, в то время как максимум чувствительности глаза соответствует длине волны 5,5-10 см (желто-зеленой части спектра). Следовательно, для того чтобы вольфрам мог слу-  [c.375]

Большинство раскаленных тел не могут иметь температуру выше 3000 К, так как при такой температуре плавятся почти все металлы. Поэтому коэффициент полезного действия ламп накаливания совсем невелик и в лучшем случае (мощные лампы с вольфрамовой нитью) составляет около 3%. Следует указать, что рассмотренная выше аномалия излучения вольфрама (см. рис. 8.6) является выгодной для повьппения светоотдачи в видимой области, так как меньшая часть общей энергии приходится на бесполезную в целях освещения далекую инфракрасную часть спектра. Для того чтобы уменьшить распыление нити при высокой температуре (Т 3000 К), такие источники света заполняют инертным газом. Все эти усовершенствования позволяют повысить к. п. д. от 2%, характеризующих эффективность  [c.415]

Эти кривые дают распределение энергии по спектру для вольфрама и черного тела с одной и той же температурой, там же приведено отношение ординат обеих кривых (пунктирная линия), которое показывает отношение излучательной способности вольфрама для разных длин волн к излучательной способности черного тела. Из пунктирной кривой видно, что в области видимого света испускание вольфрама составляет около 40% испускания черного тела той же температуры, а в области инфракрасных лучей (около 3 мкм) всего лишь 20%. Такая селективность излучения выгодно отличает вольфрам и в связи с высокой температурой плавления вольфрама делает его наилучшим материалом для изготовления нитей ламп накаливания.  [c.707]

Большим шагом вперед в деле улучшения осветительной техники явилось предложение Лэнгмюра (1913 г.) наполнять баллоны ламп нейтральным газом, например азотом или, еще лучше, аргоном давление газа достигает примерно /3 ат, и присутствие его сильно замедляет распыление волоска, что позволяет увеличить температуру нити до 3000 К и больше без заметного сокращения срока службы лампы (около 1000 час). При этом сильно повышается световая отдача. Однако общий коэффициент полезного действия лампы равен отношению энергии полезной части спектра к общей энергии, питающей лампу, т. е. приходится учитывать не только потери на невидимое излучение, но также на теплопроводность и конвекцию. Последние виды потерь сильно увеличиваются при заполнении колбы лампы газом, так что газонаполненные лампы в смысле увеличения к. п. д. не имели бы преимущества перед пустотными, хотя свет их был бы приятен для глаз, ибо он ближе подходит к составу дневного ( белого ) света. Уменьшения потерь на охлаждение можно достигнуть, заменив прямой волосок тонкой спиральной нитью, отдельные витки которой обогревают друг друга. Именно так и осуществляются современные экономические лампы накаливания, к. п. д. которых значительно выше, чем у пустотных ламп.  [c.708]


Градуировка ленточной лампы по яркостной температуре может быть проведена с помощью оптического пирометра. Схема оптического пирометра с исчезающей нитью дана на рис. 96, а. Основной его частью является зрительная труба I, внутри которой находится лампа накаливания 2 с нитью 3 в виде петли (рис. 96,6). Для измерения яркостной температуры ленточной лампы нужно направить зрительную трубу пирометра так, чтобы в его окуляр 4 была видна накаленная лента лампы и на ее фоне — нить лампочки пирометра. Регулируя ток накала лампочки с помощью реостата 5, добиваются равенства яркостей нити и ленты. Это соответствует равенству яркостных температур нити и ленты (при 1 = 665 нм). Пирометр должен быть заранее проградуирован по абсолютно черному телу, т. е. должно быть известно, какой ток накала нити соответствует исчезновению ее на фоне черного тела заданной температуры.  [c.259]

Вырал<ение (33.28) практически остается справедливым для воздуха и некоторых других га зов, у которых показатель преломления близок к единице. При объяснении (33.28) Планк впервые сделал допущение о дискретном испускании лучистой энергии квантами света, или фотонами, и, таким образом, заложил основы квантовой механики. На рис. 33.8 зависимость (33.28) представлена графически. Из рисунка видно, что максимум кривых ол = /( ) по мере увеличения температуры Т абсолютно черной поверхности смещается в сторону коротких волн. При температуре порядка 5800 К максимум спектральной плотности потока излучения Едх приходится на видимую часть спектра. Из сказанного следует, например, что вольфрамовая нить лампы накаливания (Т 3000 К) расходует большую часть энергии излучения на инфракрасную (невидимую) область спектра, т. е. большая часть энергии тратится не по назначению (идет на нагревание  [c.408]

По удельному электрическому сопротивлению р металлические проводниковые материалы можно разбить на две основные группы металлы высокой проводимости, у которых р при нормальной температуре составляет не более 0,05 мкОм-м, и металлы и сплавы высокого сопротивления, имеющие при тех же условиях р не менее 0,3 мкОм-м. Проводниковые материалы первой группы применяются в основном для изготовления обмоточных и монтажных проводов, жил кабелей различного назначения, шин и т. д. Проводниковые материалы второй группы используются при производстве резисторов, электронагревательных приборов, нитей ламп накаливания и т. п.  [c.111]

В 1903 г. в Москве была организована фабрика угольных ламп накаливания, а в 1909 и 1910 гг. открываются еш е две фабрики электрических ламп. В Ленинграде акционерное общество Айваз построило в 1913 г. завод Светлана для изготовления электрических ламп с вольфрамовой нитью. Все эти предприятия работали на импортных полуфабрикатах.  [c.92]

К началу первой пятилетки (1928 г.) советские ламповые фабрики выпускали большой ассортимент вакуумных ламп (9 типов с металлической нитью и 8 типов с угольной) для 14 рабочих напряжений, а кроме того, автомобильные, трамвайные, железнодорожные и другие специальные лампы накаливания.  [c.139]

Лампа накаливания питается от аккумулятора 8 через реостат 9, служащий для регулирования накала нити п включаемый последовательно в цепь лампы.  [c.300]

Для раскаленных вольфрамовых проволок особенно опасны пары воды, которые диссоциируют и способствуют образованию вольфрамового ангидрида. Последний после конденсации на стенках колбы восстанавливается освободившимся водородом, вновь образуя вольфрам и пары воды. В плохо откачанных лампах накаливания этот процесс может за короткое время привести к почернению стеклянной колбы и разрушению нити.  [c.37]

Главная область применения вольфрама — производство сталей (около 85%). Он входит в состав жаропрочных сверхтвердых сталей (инструментальные, быстрорежущие) и сплавов (победит, стеллит и др.). Чистый вольфрам используется в электротехнике (нити ламп накаливания) и радиоэлектронике (катоды и аноды электронных приборов), для спиральных нагревателей в электрических печах, электродов, различных деталей для высоковакуумных и рентгеновских приборов, при атомно-водородной сварке.  [c.201]

Перспективен для применения в электротехнике благодаря наличию ценных физических свойств сочетанию высокой температуры плавления и значительной электронной эмиссии. Применяется в виде окиси в производстве вольфрамовых нитей для ламп накаливания. Добавки 0,1 — 3 % окиси гафния к вольфраму, танталу замедляют процесс рекристаллизации проволоки этих металлов, способствуя увеличению срока службы нитей накала. В сплаве с вольфрамом или молибденом применяют для изготовления электродов газоразрядных трубок высокого давления. В сплавах титана применяют в качестве геттеров в вакуумных и газонаполненных электролампах, радиолампах. Сплавы с Мп, Сг, Ре, Со, N1, Си и Ар — катоды рентгеновских трубок, нити накаливания. Сплав 0,5 — Hf, < 80 — N1, - 20 — Сг — для электронагревателей. Электровакуумная техника, сверкжаростойкая керамика  [c.351]

В 1883 г, англичанин Д. В. Свэн, продавливая раствор нитроцеллюлозы в воду через отверстия в фильерах, получил тончайшие нити. Работы Д. В. Свэна были связаны с поисками способов изготовления нитей для ламп накаливания. Вскоре способ получил более широкое применение. Л.М. Ве-ринго использовал его для промышленного производства искусственного шелка. В 1885 г. впервые в истории на выставке в Лондоне демонстрировались кружевные ткани, изготовленные из нитроцеллюлозного волокна [63, с. 284 75, с. 31].  [c.193]

Нити для ламп накаливания 193 Нитроцеллюлоза 19 S Ножницы Эйенгаузена 103 Нутч-фильтр 147, 148  [c.502]

Удельная длительная прочность ниобиевой проволоки В88 при 1100° С за 100 ч в 1,5 раза выше, чем у вольфрамовых нитей для ламп накаливания. Наличие таких высокопрочных волокон позволяет создавать композиционные материалы с улучшенной прочностью. Ожидается дальнейшее повышение прочности проволоки. Размер волокна является другим переменным фактором, с помощью которого можно увеличить длительную прочность композиционного материала. Поскольку взаимодействие матрицы с волокном служит основной причиной снижения свойств и так как степень потери свойств для композиций, упрочненных тугоплавкой проволокой, связана с глубиной зоны взаимодействия в волокне, прочность композиции может быть повышена путем увеличения площади сердцевины волокна, где отсутствует взаимодействие. Как показано на рис. 11, глубина зоны взаимодействия по существу одинакова как для волокон меньшего диаметра, так и волокон большего диаметра. Однако процент площади, где отсутствует взаимодействие компонентов, значительно больше для волокна с большим диаметром. В то же время волокно с меньшим диаметром имеет более высокую длительную прочность по сравнению с волокном большего диаметра. Таким образом, оба эффекта должны уравновесить друг друга. Для кратковременной службы, при которой глубина зоны взаимодействия очень мала, использование волокон малого диаметра обусловливает повышенную прочность композиций для более продолжительного времени, предпочтительнее использовать волокна большего диаметра. Специфические условия протекания процессов взаимодействия нитей — из вольфрама 218 указывают на то, что лучшие свойства для работы при 1090° С и выдеряшах 100 и 1000 ч обеспечиваются использованием волокон с диаметром 0,38 мм. При выборе волокон необходимо учитывать, что прочность зависит от их размера и толщины реакционной зоны.  [c.257]


Применение молибдена в производстве электровакуумных приборов весьма разнообразно. Спиральные вольфрамовые нити для ламп накаливания наматываются на керн из молибденовой проволоки, которую в дальнейшем Х имически вытравливают путем погружения ее в раствор 50% НМОз-1-30%Н2504Ч-20%Н20 при 90° С. Сетки для приемно-усилительных и генераторных ламп делают обычно из молибдена. Если на работу ламп вредно влияет вторичная эмиссия сеток, изготовленных из молибденовой проволоки, то ее подавляют путем специальной обработки поверхности, например покрывая молибден тонким слоем графита, платины или золота в комбинации с танталом.  [c.189]

Согласно закону (8. 14), значение /-микс уменьшается с ростом температуры. Следовательно, происходит смещение максимума кривой Г) в сторону коротких длин волн. Эту особенность черного тела иллюстрирует рис. 8.1, на котором изображены спектральные зависимости для двух значений температуры черного тела, отличающихся в два раза. Заметим, что кривые на этом рисунке построены для температур 3000 К (/) и 6000 К (II), примерно соответствующих температуре нити мощной лампы накаливания (I) и Солнца (//). При повышении в два раза температуры излучателя максимум излучения переместился из инфракрасной области в оптимальную для визуального наблюдения зеленую часть видимого спектра (/. 5000А), где, как известно, чувствительность глаза наибольшая. Площадь кривой, характеризующая интег ральную энергетиче скую светимость, при повышении в два раза температуры возросла к 16 раз.  [c.410]

Никель Е содержит 1,75—2,25% марганца и по механическим свойствам является промежуточным между никелем А и никелем Д. По сопротивляемости коррозии при умеренных температурах он сравним с никелем А. Этот никель в виде проволоки фабричной марки мангрид Е широко применяется для держателей нити в лампах накаливания, а также для траверс сеток.  [c.231]

Таилучшими источниками излучения при сушке окрашенных поверхностей являются лампы накаливания, имеющие высокотемпературный излучатель, дающий инфракрасные лучи нужного диапазона. Оптимальной температурой нити для ламп, используемых для целей сушки, следует считать 2500° К, т. е. несколько меньшую, чем для освещения. Мощность ламп рекомендуется брать в пределах 250—500 вт. Расстояние от источника облучения до облучаемой поверхности принимают от 150 до 300 мм в зависимости от мощности ламп, характера лакокрасочного материала и необходимой температуры сушки.  [c.303]

В случае отражателей, дающих совершенно диффузное отражение света, контур поверхности практически не будет оказывать влияния на светораспределение, даваемое рефлектором, и на характер нити в лампе накаливания. Кривая распределения силы света будет весьма мало отклоняться от окружности (фиг. 23). Поэтому при построении профиля отражателя в этом случае можно гл. обр. учитывать технологич. сторону вопроса, упрощая форму отражателя в соответствии с условиями производ-.ства. Это же положение в основном остается до нек-рой степени справедливьш и для поверхностей со смешанным отражением, имеющим  [c.159]

Кроме применения в качестве вы oкoяiapoпpoчныx сплавов, тугоплавкие металлы используются и в других отраслях техники вольфрам (с добавкой тория) — в качестве нитей электрических ламп накаливания вольфрам и молибден — в качестве нагревателей вакуумных или газонаполненных печей ниобий и тантал — для деталей электронных ламп, в химической промышленности, в хирургии. О применении циркония в атомной технике будет сказано ниже. О применении тугоплавких металлов как кислотостойких материалов см. 13 этой главы.  [c.367]

Для того чтобы завершить рассмотрение стандартных приложений законов черного тела, кратко охарактеризуем эффективность тех или иных источников при использовании их для целей освещения. Хорошо известно, что лампа накаливания с вольфрамовой нитью вошла в практику в конце прошлого столетия и сыграла громадную роль в условиях жизни и труда людей во всем мире. По сей день этот простой и удобный источник света широко используют в быту и на производстве. Многочисленные научные и инженерные исследования позволили увеличит] срок службы лампы накаливания и другие ее эксплуатационные качества, но мало что могли изменить в зф(1зективности этого источника света, т.е, в увеличении доли энергии, которая может быть использована для целей освещения окружающего пространства. Достаточно взглянуть на рис. 8.1, где изображена светимость черного тела для двух температур, а вертикальными линиями ограничена видимая часть спектра (4000 — 7000А), чтобы оценить, сколь малая доля излучения черного те.па может быть эффективно использована в этих целях, даже в том случае (Т = 5000 К), когда /-макс совпадает с зеленой областью спектра, в которой чувствительность глаза наибольшая. Расчеты показывают, что при этих оптимальных условиях лишь около 13% всей излучаемой энергии может быть использовано для освещения. Значительно меньшая часть энергии черного тела может быть утилизирована в том случае, когда его температура составляет примерно 3000 К и максимум излучения находится в инфракрасной области спектра (вблизи 1 мкм). Дальнейшее уменьшение температуры черного тела приведет к еще более низкому коэффициенту использова1шя излучаемой энергии.  [c.415]

Вольфрам является одниги из ваяшейших металлических материалов электровакуумной техники. Применение вольфрама для изготовления нитей ламп накаливания было впервые предложено русским изобретателем А. Н. Лодыгиным в 1890 г., А о до сих пор является единственным  [c.28]

Иногда сушку и запекание пропитанной лаком изоляции осуществляют инфракрасным облучением. Источником такого облучения служат специальные лампы накаливания. Температура нити накала этих ламп несколько нг1же, чем у обычных осветительных ламп, что обеспечивает большой срок службы кроме того, в этих лампах по сравнению с осветительными меньшая часть электроэнергии превращается I видимый свет, а большая — в тепловое (инфракрасное) излучение. Лампы имеют отражатели или же непосредственно на баллон лампы наносят зеркальный слой, чтобы поток лучей можно было направить желаемым образом. Инфракрасные лампы устанавливают на штативах вблизи нагреваемого изделия (для ремонтных работ, когда требуется произвести сушку на месте, а также для сушки особо крупных изделий, для которых потребовались бы слишком большие печи) либо в специальных печах. Пример такой печи для сушки пропитанных лаком якорей схематически изображен на рис. 6-16. Сушильные устройства могут быть конвейерного типа В них подвергаемые сушке изделия движутся на бесконечной ленте сквозь туннельную печь, в которой установлен ряд ламп инфракрасного излучения или электрических плит. Преимущества инфракрасного обогрева по сравнению с паровым или электрическим обогревом заключаются в значительном ускорении процесса сушки и сокращении площади сушильного помещения, а также (по сравнению с электрическим обогревом) в сокращении расхода энергии.  [c.134]

В лампах накаливания, вакуумных или с инертным газом, используются нити из вольфрама. Есть две причины выхода ламп из строя, кроме повреждения стеклянного баллона 1) почернение баллона вследствие испарения вольфрама, 2) обрыв нити. Для устранения испарения вольфрама используют небольшие добавки галогенов, обычно йода. При нагреве нити галоген испаряется и соединяется в газовой среде с вольфрамом. Образовавшееся ооединение осаждается на нить, где разлагается на вольфрам  [c.442]

Для повышения экономичности ламп накаливания необходимо уменьшить потери тепла в окружающее пространство. Одним из меро-прятий для этой цели, нашедших практическое применение, является двойная спирализацня нити. Световые характеристики ламп с такими нитями (биспиральных ламп) представлены в табл. 59.  [c.524]


В 1879 г. Эдисон, добившись получения высококачественных материалов для тела накала и улучшения откачки воздуха из баллона, создал лампу с продолжительным сроком службы, пригодную для массового употребления [20, с. 180—182]. Особенно стремительное развитие электрического освещения начинается после освоения технологии изготовления вольфрамовых нитей. Способ применения вольфрама (или молибдена) для тела накала впервые дал А. Н. Лодыгин, предложивший в 1893 г. накаливать платиновую или угольную нить в атмосфере хлористых соединений вольфрама (или молибдена) вместе с водородом. Начиная с 1903 г. австрийцы Юст, Ф. Ханаман [21] стали использовать идею Лодыгина в промышленном производстве ламп накаливания.  [c.55]

Фиг. 23. Схема поляризационной установки БПУ 1 — источник света (ртутная лампа СВДШ-250 или лампа накаливания с короткой нитью) 2—коллектор 120/180 J — светофильтр Х=54б,1. илл 4 У — поворотные поляроиды с лимбами, свободный 0 130 мм Su 7 — поворотные, откидные слюдяные пластинки четверть волны , свободный 0 130 мм 5 — модель в нагрузочном устройстве на координатнике 9телецентрический проекционный объектив /= 400, совместно с коллектором изображающий источник света на ирисовой диафрагме 10 (перемещается вместе с объективом) с увеличением 2,2 и модель — на фотопластинке 11 в масштабе от —1 до —1,5 или на настенном экране в масштабе от —1 до —5 /2 — устройство с поворотным зеркалом для наблюдения со стороны модели. Фиг. 23. <a href="/info/75316">Схема поляризационной установки</a> БПУ 1 — <a href="/info/10172">источник света</a> (<a href="/info/176012">ртутная лампа</a> СВДШ-250 или <a href="/info/69101">лампа накаливания</a> с короткой нитью) 2—коллектор 120/180 J — светофильтр Х=54б,1. илл 4 У — поворотные поляроиды с лимбами, свободный 0 130 мм Su 7 — поворотные, откидные слюдяные <a href="/info/25447">пластинки четверть волны</a> , свободный 0 130 мм 5 — модель в <a href="/info/89398">нагрузочном устройстве</a> на координатнике 9телецентрический <a href="/info/412097">проекционный объектив</a> /= 400, совместно с коллектором изображающий <a href="/info/10172">источник света</a> на <a href="/info/237513">ирисовой диафрагме</a> 10 (перемещается вместе с объективом) с увеличением 2,2 и модель — на фотопластинке 11 в масштабе от —1 до —1,5 или на настенном экране в масштабе от —1 до —5 /2 — устройство с поворотным зеркалом для наблюдения со стороны модели.
Источники И. и. Наиболее распространённые источники И. и.— лампы накаливания с вольфрамовой нитью мощностью до 1 кВт, 70—80% излучаемой энергии к-рых ириходигся ка ИК-диапазон (они используются, напр., для суп1кп и нагрева), а также угольная электрич. дуга, газоразрядные лампы, электрич. спирали из нихромо-вой проволоки, Для ИК-фотографии и в нек-рых ИК-приборах (напр., приборах ночного видения) для выделения И. и, применяют ЙК-светофильтры. В науч. исследованиях (напр., в инфракрасной спектроскопии) применяют разл. спец. источники И. и. в зависимости от области снектра. Так, в ближней ИК-области (А.=0,76  [c.182]

Первым дисперсноупрочненным материалом был, видимо, ториро-ванный вольфрам (1913 г., патент Германии), примененный для изготовления нитей ламп накаливания для электроосвещения. Однако только во второй половине 40-х годов обратили внимание на возможность повышения жаропрочности материала путем искусственного введения в его структуру тонкодисперсных включений.  [c.169]

Из гафния изготовляются нити ламп накаливания, катодь для рентгеновских трубок и электрода, (сплав с вольфрамом или молибденом) для газонаполненных под высоким давлением разрядных трубок [3, 5, 68]. Порошкообразный гафний с окисью бария или стронция применяется" для изготовления катодов высоковакуумных разрядных трубок [88]. Сплавы гафния с титаном, не содержащие кислорода, азота, углерода и кремния, можно применять в качестве газопоглотителей для эвакуированных и газонаполненных устройств, например ламп, радиоламп и телевизионных трубок [76]. Кроме того, гафний используется в выпрямителях 168].  [c.198]

Считается, что металлический ниобий впервые был получен Бломстраи-яом в 1866 г. [72] восстановлением хлорида ниобия водородом. Позже Муас-саи (1051 получил ниобий восстановлением его окиси углеродом в электропечи. Еще позже Гольдшмидт [511 восстановил окись порошком алюминия. В 1905 г. и в последующие годы возрос интерес к ниобию и танталу, как потенциальным материалам для производства нитей ламп накаливания вместо применявшихся тогда графитовых нитей. Однако для этой цели окончательно был выбран тантал. В этот же период времени Болтон [1511 получил сравнительно чистый ниобий путем восстановления фторониобата калия натрием и определил некоторые более важные свойства металла. Первые образцы ниобиевых прутков и листов были изготовлены Балке [8], применившим методы порошковой металлургии этот металл впервые был представлен Американскому химическому обществу в 1929 г.  [c.429]


Смотреть страницы где упоминается термин Нити для ламп накаливания : [c.193]    [c.254]    [c.262]    [c.467]    [c.260]    [c.412]    [c.186]    [c.214]    [c.213]    [c.589]    [c.159]   
Техника в ее историческом развитии (1982) -- [ c.193 ]



ПОИСК



НИТИ



© 2025 Mash-xxl.info Реклама на сайте