Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зона текучести (пластичности

Зона текучести (пластичности)  [c.187]

Во всех представленных здесь примерах первый шаг приращения нагрузки (дх = 8098 фунт/дюйм на рис. 7) соответствует началу пластического течения. Впервые предел текучести в матрице достигается на средней линии между волокнами в точке с отметкой 1,0. Так как приложенная нагрузка все время возрастает, зона текучести распространяется до поверхности раздела матрица — волокно. Как показано на рисунке, на шаге № 10, т. е. при наибольшей нагрузке (рис. 7, г) возникает дополнительная зона пластичности, распространяющаяся в материале матрицы между расположенными друг под другом волокнами.  [c.230]


В соприкосновении с каждой движущейся сварочной ванной находится плато нулевой пластичности. На рис.18.8,6 это плато не пересекается с линией предела текучести. Когда достигнута эта линия, материал обладает пластичностью, и растрескивание не наступает. Напротив, на рис. 18.8,в показано плато нулевой пластичности, которое пересекает линию предела текучести. Это значит, что при достижении предела текучести пластичность материала все еще равна нулю, и, следовательно, он растрескивается. На рис. 18.8,г представлен случай, когда пластичность снижается до нуля в диапазоне промежуточных температур. Поскольку напряжения в зоне промежуточных температур высоки, при нулевой пластичности там следует ожидать очень обильного растрескивания.  [c.278]

Пластическая деформация вокруг сферической полости в неограниченном теле. Наложим на предыдущие решения в упругой и пластической областях равномерное всестороннее растяжение 4 Р- Условие пластичности при этом не изменится, и в зоне текучести будет  [c.113]

Полуфабрикаты из этих сплавов имеют относительно небольшие прочностные характеристики (по сравнению с термически упрочняемыми сплавами), но высокую пластичность. Все они отличаются высокой коррозионной стойкостью, в особенности в условиях морской атмосферы, хорошо свариваются аргонодуговым способом. Алюминиевомагниевые сплавы дополнительно упрочняют холодной деформацией. По этой причине листы, трубы (а в последнее время и некоторые виды профилей) выпускают не только в отожженном, но и нагартованном состояниях. Холодная деформация повышает пределы прочности и особенно рез.ко текучести пластичность при этом снижается. Нагартовка не уменьшает высокой коррозионной стойкости материала и хорошей его свариваемости. Необходимо, однако, учитывать, что зона около шва имеет свойства, близкие к свойствам отожженного материала.  [c.41]

Для пластичных материалов концентрация напряжений значительно менее опасна, чем для хрупких. Практически при статическом нагружении деталей из пластичных материалов концентрация напряжений не влияет на их прочность. При возникновении в пластичном материале местных напряжений, достигающих предела текучести, в нем появятся зоны пластических деформаций. При местном характере повышенных напряжений зоны текучести также именит местный характер. Благодаря этому резко снижается возможность распространения местных напряжений в элементе из пластичного материала. Для хрупких материалов концентрация напряжений сохраняет опасность в полной мере, так как отсутствие смягчающего концентрацию буфера — текучести — приводит к быстрому разрушению. Поэтому различают теоретический коэффициент концентрации который учитывает только форму образца, и действительный (эффективный) коэффициент концентрации а д, который, кроме того, учитывает характер материала образца. Элективный коэффициент концентрации обычно меньше теоретического и лишь для весьма хрупких однородных материалов  [c.300]


Прочность металла определяют следующие основные характеристики. В холодном состоянии — временное сопротивление разрыву (предел прочности при растяжении) Ов. кГ/мм , т. е. предельное напряжение, при котором происходит разрыв образца металла. При нагреве металла и работе его в зоне текучести или пластичности — условный предел текучести Ох или Оо.2. кГ/мм , т. е. напряжение, при котором остаточная деформация составляет 0,2% начальной длины образца. С нагревом стали условный предел текучести понижается.  [c.213]

Численный анализ локализации пластических деформаций и форма зоны текучести у вершины полубесконечной трещины нормального отрыва в идеально пластическом теле, как в условиях плоского напряженного состояния, так и в условиях плоской деформации, проведен, например, в работе [ ], с. 159-182. Это исследование реализовано методом конечных элементов но соотношениям деформационной теории пластичности. В этой работе читатель может найти богатый графический материал, иллюстрирующий результаты численного анализа.  [c.229]

При статической нагрузке концентрация напряжений зависит главным образом от пластичности материала и для пластичных материалов относительно невелика.. При повышении напряжений материал в зоне ослабления приходит в состояние текучести образуется пластический шарнир, способствующий передаче усилий на смежные, Менее напряженные, участки и вызывающий релаксацию напряжений. У высокопластичных материалов условиях статической нагрузки кз близок к 1, т. е. концентрации напряжений не происходит. У хрупких материалов выравнивающий эффект локальной пластической деформации отсутствует и коэффициент концентрации к > I.  [c.299]

Влияние концентрации напряжений на прочность деталей машин, испытывающих деформацию растяжения (сжатия), изгиба или кручения, проявляется примерно одинаково. Опыты показывают, что для пластичных материалов концентрация напряжений при статических нагрузках не представляет опасности, поскольку за счет текучести в зоне концентрации происходит перераспределение (выравнивание) напряжений. Величина эффективного коэффициента концентрации в этом случае близка к единице.  [c.219]

Из анализа графиков рис. 231 видно, что в некоторых случаях при определенном соотношении диаметров D d и малых радиусах закругления р коэффициенты концентрации напряжений могут быть больше трех. Для пластичных материалов при статических нагрузках концентрация напряжений не представляет опасности, поскольку за счет текучести в зоне концентрации происходит пере-  [c.237]

Степень влияния местных напряжений на прочность детали существенно зависит от характера нагружения и материала. При расчете конструкции из пластичных материалов, работающей в условиях статического нагружения, местными напряжениями пренебрегают. Это объясняется тем, что при росте нагрузки напряжения в зоне концентрации, достигнув предела текучести, не возрастают до тех пор, пока во всех соседних точках они не достигнут того же значения, т. е. пока распределение напряжений в рассматриваемом сечении не станет равномерным. Иначе обстоит дело при циклически изменяющихся напряжениях. Многократное изменение напряжений в зоне концентратора напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Для оценки снижения прочности вводят эффективный коэффициент концентрации, равный отношению предела выносливости о 1 гладкого полированного образца к пределу выносливости образца с концентратором напряжений, абсолютные размеры которого такие же, как и у гладкого образца  [c.248]

Концентраторы напряжений оказывают разное влияние на хрупкие и пластичные материалы. Если изготовить пластинку с отверстием (рис. 4.7.1) из пластичного материала, например Ст. 3, и подвергнуть ее растяжению, то при достижении максимальными напряжениями предела текучести <Тт волокна в зоне отверстия вытянутся и в работу вступят рядом лежащие. Пластинка изменит свои размеры только тогда, когда все волокна в опасном сечении нагрузятся до предела текучести.  [c.61]


На прочность пластичных и хрупких материалов концентрация напряжений влияет по-разному. Существенное значение при этом имеет также характер нагрузки. Если материал пластичный (диаграмма напряжений имеет площадку текучести зна чительной протяженности) и нагрузка статическая, то при увеличении последней рост наибольших местных напряжений приостанавливается, как только они достигнут предела текучести. В остальной части поперечного сечения напряжения будут еще возрастать до величины предела текучести Стт, при этом зона пластичности у концентратора будет увеличиваться (рис. 120). Таким образом, пластичность способствует выравниванию напряжений. На этом основании принято считать, что при статической нагрузке пластичные материалы мало чувствительны к концентрации напряжений. Эффективный коэффициент концентрации для таких материалов близок к единице. При ударных и повторно-переменных нагрузках, когда деформации и напряжения быстро изменяются во времени, выравнивание напряжений произойти не успевает и вредное влияние концентрации напряжений сохраняется. Поэтому в расчетах на прочность учитывать концентрацию напряжений необходимо.  [c.120]

При изгибе, как и при растяжении или кручении, в местах резкого изменения формы или размеров поперечных сечений наблюдается концентрация напряжений. Если нагрузка статическая, то концентрация напряжений в деталях из пластичного материала неопасна благодаря перераспределению напряжений в зоне концентратора вследствие текучести. В случае же хрупких материалов, когда не приходится рассчитывать на ограничение максимальных напряжений, так как уровень последних будет определяться временным сопротивлением материала, при расчете детали на прочность нужно учитывать концентрацию напряжений.  [c.284]

В пластичных материалах концентрация напряжений менее опасна (до определенных пределов) в сравнении с хрупкими материалами. Обратимся к стержню с надрезами и проследим ход развития деформаций и напряжений (рис. 8.34). Приняв схему идеального упруго-пластического тела (см. рис. 1.9, б), получим, что в наиболее напряженных точках С и В по достижении напряжением предела текучести пластическая зона будет распространяться к центру стер-  [c.180]

По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Как уже упоминалось, для испытания на сжатие используют короткие цилиндрические образцы, располагаемые между параллельными плитами. Для малоуглеродистой стали диаграмма сжатия образца имеет вид кривой, показанной на рис. 1.43. Здесь, как и у диаграммы растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, однако, нагрузка не падает, как при растяжении, а резко возрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается сам образец вследствие трения на торцах принимает бочкообразную форму (рис. 1.44). Довести образец пластичного материала до разрушения практически не удается. Испытуемый цилиндр сжимается в тонкий диск (см. рис. 1.44), и дальнейшее испытание ограничивается возможностями машины. Поэтому предел прочности при сжатии для такого рода материалов найден быть не может (см. табл. 1.1).  [c.87]

Пренебрегая зоной упрочнения материала, приближенная модель развития деформации при кручении образца из пластичного материала строится в предположении, что площадка текучести в точках сечения образца распространяется вплоть до его разрушения.  [c.135]

Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]

ВИЯ заметим, что в любой точке той части границы зоны активной пластичности, которая движется в иаиравлении зоны упругой деформации, материал находится в начальной стадии ила-стпческого течения. Здесь, в частности, выполняется условие текучести, а напряжение будет пропорциональным деформации, что дает  [c.108]


Температура нагрева ПС при обработке резанием по глубине распределяется по экспоненциальному закону. Подобным же образом будут распределяться и временные температурные напряжения. Предел текучеста обрабатываемого к(атериала также зависит от температуры нагрева (понижается с повышением температуры, если не учитывать зоны провала пластичности у некоторых сплавов). Поэтому глубина распространения начальных напряжений, сформированных в результате термопластических деформаций, в первом приближении может быть оценена точкой пересечения этих двух кривых (рис.4.34).  [c.158]

Р. Феннер теоретически показал, что вокруг выработок типа вертикальных стволов, пройденных в пластичных породах, при определенных условиях может образоваться зона текучести.  [c.51]

Таким образом, вопрос о зоне текучести вокруг горизонтальной выработки в идеально пластичной среде и форме этой зоны рассматривался Р. Феннером на основе допущений и предположений.  [c.52]

После зонного старения сплавы чаще имеют повышенный предел текучести и относительно невысокое отношение o Jas (с0,6-н0,7), повышенную пластичность, хорошую коррозионную стойкость п иизкую чувствительность к хрупкому разруик нию. Это объясняется тем, что дислокации при деформации пересекают зоны, не создающие знач ггельного сопротивления начальным деформациям. Отсутствие границы раздела между зонами ГП-1 и чи ГП-2 с матричной фазой определяет хорошее сопротивление коррозии.  [c.325]

Применяют для соединения пластичных металлов (Си N1 А) 2п Сс1 и др.). Зачищенные и обезжиренные стыковые поверхности (эск. а) сжи-,х1аю [ Давлением, превосходящим предел текучести материала. В результате диффузионных и рекри-С1аллизашюнных процессов, происходящих в зоне сжатия, поверхности прочно соединяются.  [c.164]

Противоположным свойству пластичности является свойство хрупкости, т. е. способность материала разрушаться без образования заметных остаточных деформаций. Материалы, обладающие этим свойством, называются хрупкими. Для та1сих материалов величина удлинения при разрыве ме превышает 2—5Уо, а в ряде случаев измеряется долями процента. К хрупким материалам относятся чугун, высокоуглерод1 Стая инстру.ме/п альная сталь, стекло, кирпич, камни и др. Диаграм.ма растяжения хрупких материалов не имеет площадки текучести и зоны упрочнения (рис. 57).  [c.65]

Цель испытаний состояла в получении дополнительной информации о дефектах материала сепараторов и их эволюции при действии рабочих и испытательных нагрузок. Заключения о возможности эксплуатации или необходимости ремонта аппаратов основаны на прочностных расчетах, при проведении которых наряду с прочими принимали во внимание данные акустико-эмиссионных измерений. Применение АЭД показало отсутствие тенденции к подрастанию дефектов при нагружении штатным испытательным давлением (1,25Рр). Следует отметить, что хотя отношение испытательного давления к расчетному было достаточно высоким, максимальные значения номинальных напряжений значительно уступали величине предела текучести, что связано с особенностями конструирования и расчета на прочность сосудов, предназначенных для эксплуатации в сероводородсодержащих средах. При испытаниях аппарата С-303 ставилась также задача контроля возникновения локальной пластичности металла в зоне вварки штуцера, что было необходимо для обеспечения корректности схемы расчета на прочность. Локальная пластичность не была обнаружена, что свидетельствует об упругом поведении материала при действии проектных нагрузок.  [c.190]

Между материалами хрупкими, с одной стороны, и материалами пластичными, с другой, можно вставить промежуточную группу — материалы ограниченной пластичности. Типичным примером таких материалов служат низколегированные, термически обработанные стали с высоким пределом текучести порядка 1500 МПа и выше. При растяжении стержневых образцов в этом случае наблюдается шейка, однако в зоне собственно разрушения нет поверхностей среза, характерных для пластичных материбшов, см. текст к рис. 2.4. Возникают лишь поперечные и продольные трещины.  [c.57]

Полным решением задачи теории идеальной пластичности называется такое решение, которое удовлетворяет уравнениям равновесия, условию пластичности в пластических областях, где напряжения и скорости деформирования связаны ассоциированным законом, и граничным условием, статическим и кинематическим. При этом должно выполняться еще одно условие, относящееся к возможному распределению напряжений в жестких зонах. По доказанному в жесткой зоне может существовать любое напряженное состояние, удовлетворяющее условиям равновесия, граничным условиям и условиям сопряжения с пластическими законами. Необходимо, чтобы напряженное состояние, возможное в жесткой зоне, удовлетворяло условию /"(ооО О, т, е. было допустимым для жесткопластического тела. При этом достаточно, чтобы можно было найти хотя бы одно точное раснределение напряжений. В отношении распределения скоростей и конфигурации жестких зон полное решение не единственно, однако из теоремы о единственности распределения напряжений следует единственность предельной нагрузки, переводящей тело в пластическое состояние, если условие пластичности строго выпукло. Если поверхность текучести только не вогнута, то предельная нагрузка определяется неединственным образом как правило, природа этой неединственности находит простое объяснение.  [c.490]

Это последнее обстоятельство указывает на то, что задачи теории идеальной пластичности не оказываются статически определенными, как это может показаться на первый взгляд и как считалось в ранние периоды развития теории пластичности. Наличие жестких зон означает кинематическое стеснение пластического течения на границе жесткой зоны нормальная составляющая скорости должна обращаться в нуль. Поэтому, после того как построено статическое решение по методу, изложенному выше, необходимо проверить, возможно ли для данного поля характеристик построить кинематически возможное поле скоростей. В случаях, изображенных на рис. 15.4.3 или 15.4.4 (в последнем случае стенки фильеры играют роль границ жестких областей), может оказаться, что линия разрыва скрости упирается в границу жесткой зоны,— такое решение недопустимо. Но даже если кинематически возможное поле скоростей удается построить, может оказаться, что скорость диссипации энергии D в некоторой области окажется отрицательной, что также невозможно. Наконец, устанавливая границы жестких и пластических зон, мы всегда располагаем определенной свободой выбора. Может оказаться, что та часть материала, которую мы предполагали жесткой, на самом деле перейдет в состояние текучести. Теперь мы можем сформулировать требования, которые должны предъявляться к истинному или так называемому полному решению плоской задачи теории пластичности, а именно  [c.509]

Таким образом, при статическом нагружегии деталей из пластичных материалов концентрация напряжений практически не оказывает влияния на их прочность и не )Л1итывается при расчетах. Исключение составляют элементы с острыми надреза ш, тонкими пропилами и трещинами, в зоне располо Кения которых развитие пластических деформаций а следовательно, перераспределение и выравнива1ше напряжений невозможны такие элементы из пластичного материала разрушаются хрупко (без текучест i и образования шейки).  [c.72]


Для деталей из пластичных материалов опасно не только усталостное разрушение, но и возникновение заметных остаточных деформаций, т. е. наступление текучести. Поэтому из области, ограниченной линией АВ (рис. 15.7), все точки которой соответствуют циклам, безопасным в отношении усталостного разрушения, надо выделить зону, соответствующую циклам с максимальными напряжениями, меньшими предела текучести. Для этого из точки Ь, абсцисса которой равна пределу текучести а.,, проводят прямую, наклоненную к оси абсцисс под углом 45°. Эта прямая отсечет на оси ординат отрезок ОМ, равный (в масштабе диаграммы) пределу текучести. Для любого цикла, изображаемого точками линии ЬМ, максимальное напряжение равно пределу текучести. Точки, лежащие выше линии ЬМ, соответствуют циклам с максимальными напряжениями, большими предела текучести (<т , >а ). Таким образом, циклы, безопасные как в отношении усталостного разрушения, так и в отношении возникновения текучести, изображаются точками области ОАОЬ.  [c.554]

К вариационному условию (4.1) следует добавить три дополнительных условия для 1) определения размера d пластической зоны перед кромкой трещины (например, плавность смыкания границ пластической зоны иа ее конце или, что то же самое, непрерывность напряжений на этом конце) 2) определения напряжений 0oi па поверхности дополнительного разреза (напрп-мер, либо решение самостоятельной упругопластической задачи для окрестности кромки трещины с использованием иавестпых условий пластичности [378], либо задание этого напряжения, которое может быть разным, в частности, постоянным и равным пределу текучести) 3) фиксации предельного значения Wp, что необходимо для изучения трещин, способных распространяться, ибо в противном случае будет упругопластическая задача для неподвижного разреза (например, равенство наибольшего рас-  [c.38]

По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Как уже упоминалось, испытание на сжатие производится на коротких цилиндрических образцах, располагаемых между параллельными плитами. Для малоуглеродистой стали диаграмма сжатия образца tiMeeT вид кривой, показанной на рис. 58. Здесь, как и для растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, однако, нагрузка не падает, как при растяжении, а резко ьозрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается сам образец вследствие трения на торцах принимает бочкообразную форму (рис. 59). Довести образец пластического мате-  [c.74]

Присутствие концентраторов отнюдь не всегда представляет собой опасность для работоспособности конструкции. Во-первых, влияние концентраторов на деформацию всего упругого тела вследствие их малых размеров незначительно, поэтому при расчете упругих смещений в конструкции влияние концентраторов можно не учитывать. Во-вторых, при статическом однократном нагружении сооружения или механизма, выполненного из пластичного материала, появление текучести в зоне концентратора не представляет опасности. Действительно, остаточная деформация, возникающая в малом объеме перенапряженного материала в зоне концентрации, не может вызвать остаточной деформации всего сооружения и, следовательно, повлиять на его проектные размеры. Эта местная деформация приведет лишь к некоторому изменению картины напряженного состояния в зоне концентрации. В результате максимальное напряжение не будет превышать предела текучести, но зато несколько увеличится напряжение в другн.х точках расчетного сечения.  [c.166]


Смотреть страницы где упоминается термин Зона текучести (пластичности : [c.161]    [c.40]    [c.113]    [c.44]    [c.111]    [c.265]    [c.42]    [c.32]    [c.83]    [c.92]    [c.179]    [c.670]    [c.284]    [c.203]   
Сопротивление материалов усталостному и хрупкому разрушению (1975) -- [ c.30 , c.31 , c.33 , c.34 , c.37 , c.38 , c.49 , c.53 ]



ПОИСК



Зона пластичности

Текучесть



© 2025 Mash-xxl.info Реклама на сайте