Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Непрозрачности полоса

Благодаря этим свойствам те частотные интервалы, в которых 1т6 = О, называют полосами прозрачности (или пропускания), а все остальные части спектра — полосами непрозрачности. Полосы пропускания для мультислоя с однородной фазовой толщиной — Фь) непосредственно определяются из уравнения (3.10..6). Каждая полоса пропускания простирается от 0 — ДО до 0 + АП, где 0 — центральная угловая частота (рис. 3.16). Величины 0 и ДО можно сразу вычислить, заметив, что при а = 0 мы имеем = 1, а при  [c.187]


Насыщаемый поглотитель 546 Нарушенное полное отражение 164, 227 Нейтрализаторы 343 Ненаправляемые моды 594 Необыкновенная волна 41 Необыкновенный луч 32 Неограниченная слоистая среда 155, 156 Неполяризованная волна 35 Непрозрачности полоса 170 Нормальная конгруэнция 69  [c.654]

Наконец, отметим еще один способ возбуждения рэлеевских волн, имеющий ценность в области высоких частот [107]. Луч от мощного лазера проходит через решетку, состоящую из прозрачных и непрозрачных полос и создает на поверхности кристаллического образца периодическое чередование освещенности, которое из-за теплового эффекта приводит к появлению периодических механических напряжений, генерирующих рэлеевскую волну. Это но существу тоже разновидность метода гребенчатой структуры.  [c.100]

Система параллельных щелей равной ширины, разделенных одинаковыми непрозрачными промежутками, называется дифракционной решеткой. Сумму ширины прозрачной [Ь] и непрозрачной а) полос принято называть постоянной решетки (d)  [c.144]

Через интерферометр, состоящий из двух полупрозрачных (П и П ) и двух непрозрачных зеркал П и Я4) пропускается свет от источника сплошного спектра. Интерференционная картина, полученная в виде горизонтальных полос, с помощью линзы Лз проектируется на щель спектрографа. Спектрограф располагается так, чтобы щель его была направлена перпендикулярно к горизонтально расположенным полосам интерференции. В обе ветви интерферометров вводятся две одинаковые кюветы и Т . В одну из кювет (расположенную внутри вакуумной печи) вводится исследуемый материал, в данном случае пары натрия. Путем нагрева до нужной температуры можно получить пары натрия при необходимом давлении. Вторая кювета откачивается. Если кювета с металлом не нагрета, то из-за отсутствия паров натрия нулевая полоса (полоса, для которой разность хода двух интерферирующих лучей равна нулю) будет прямолинейной и пройдет через середину перпендикулярно расположенной щели спектрографа. Выше и ниже этой легко отличимой от других ахроматической полосы располагаются полосы первого, второго порядков и т. д. Так как расстояние между полосами тем больше, чем больше длина волны, а линии дисперсии интерферометра (линия дисперсии направлена вдоль оси у) и спектрографа (линия дисперсии направлена вдоль оси х) взаимно перпендикулярны, то в результате действия обоих приборов в пло-  [c.266]

Необходимо подчеркнуть пространственную когерентность излучения в сечении лазерного светового пучка, тесно связанную с его расходимостью (см. 22). Если на пути лазерного светового пучка расположить две узкие параллельные щели, прорезанные в непрозрачном экране, т. е. осуществить схему интерференционного опыта Юнга (см. 16), но без первой входной щели, то на экране, поставленном за этими щелями, можно наблюдать интерференционную картину с высокой видимостью (контрастностью) ее полос. Это значит, что излучение лазера пространственно когерентно.  [c.788]


В голографической схеме, основанной также на методе локального опорного пучка, но применимой для непрозрачных объектов (рис. 14, б), опорный пучок с помощью линзы фокусируется в некоторую точку на объекте, в которой для увеличения отражательной способности и формирования необходимого пучка наклеивают плоское или сферическое зеркало. Поскольку при смещении объекта как жесткого целого в опорный и объектный пучки вносится одинаковый фазовый сдвиг, картина интерференционных полос будет отражать только деформацию поверхности. Эти схемы нашли широкое применение при анализе ко-  [c.49]

Интересен дефектоскоп для контроля поверхности при дрессировке тонких листов, который измеряет шероховатость листов, движущихся с большой скоростью. Сканирующий луч создает в плоскости детектора изображение, состоящее из основного светового пятна и дифракционных полос, форма которых зависит от структуры исследуемой поверхности. Для того чтобы выделить световые сигналы, соответствующие дефектам поверхности, перед детектором помещают компенсационный фильтр. Благодаря непрозрачным участкам, которые по форме совпадают с дифракционным изображением поверхности нормального качества, не имеющей дефектов, фильтр задерживает сигналы, отраженные основной частью поверхности, и пропускает только сигналы от участка поверхности с дефектами.  [c.95]

Соотношение отдельных составляющих может изменяться в зависимости от требований к применению и обеспечению стойкости против коррозии под действием окружающей среды, оттенка, глянца, непрозрачности, стойкости к механическим повреждениям, резким изменениям температуры и т. д. Эмаль представляет собой тонкое защитное покрытие, обычно двухслойное, где первый слой обеспечивает адгезию, а второй — требуемые свойства, например кислотоупорность и др. В обычных атмосферных условиях срок службы эмалей составляет несколько десятков лет. Чаще всего эмалируют штампованные изделия из специальных низкоуглеродистых стальных полос, прокатанных в холодном состоянии, толщиной 0,6—1,5 мм. С учетом высоких температур отжига (более 800° С) необходимо, чтобы штамповки имели хорошо армированные утонения и т. д. Из-за различных коэффициентов термического расширения эмали и стали радиус граней должен быть более 4,5 мм, а радиус у углов — более 6 мм, чтобы предотвратить самопроизвольное отслаивание эмали. Кислотоупорные эмали отличаются исключительной стойкостью против большинства неорганических кислот, за исключением фтористоводородной и фосфорной. Для щелочных растворов эмаль непригодна. Кислотоупорная эмаль выдерживает температуру до 350° С. Хорошо эмалируются автоклавы, реакторные котлы, вакуумные аппараты, теплообменники, оборудование для дистилляции и другие аппараты химической промышленности, узлы из листовых сталей для силосных башен, трубопроводы, запорные устройства.  [c.88]

Рассмотрим процесс образования муаровых полос при наложении двух сеток, линии которых параллельны, ко имеют разные шаги р ир1. До деформирования материала шаг обоих сеток был одинаковым и равным р. После деформирования материала вместе с сеткой шаг стал равным величине pj. Механизм образования интерференционных полос показан на рис. 20. Темная полоса возникает в местах, где непрозрачная линия располагается над прозрачной. Когда совпадают две прозрачные линии, интенсивность проходящего света достигает максимальной величины, что приводит к возникновению светлой полосы. Предположим, что на левом краю приведенного рисунка светлые линии сетки образца и эталонной сетки совпадают как до деформации, так и после нее. Точка Р на образце в недеформи-рованном состоянии перемещается при растяжении на расстояние, равное шагу эталонной сетки р, и занимает после этого положение Р. Тогда середина второй светлой полосы пройдет через Р, что соответствует перемещению р в направлении главного сечения. Главным сечением будем называть сечение, перпендикулярное линиям сетки, а вторичным —сечение, параллельное линиям сетки. На середине следующей третьей светлой полосы, расположенной справа от Р, перемещение равно 2р, а для /г-й полосы перемещение равно пр. Следовательно, муаровая картина отражает относительное перемещение в направлении главного сечения. Окончательное положение полос соответствует перемещению и = пр. Такое же соотношение было приведено выше для случая плоско-параллельного  [c.53]


Матовая зона — непрозрачный участок на изломе, отличающийся ровным матовым блеском. Наблюдается обычно в виде полосы, которая может расширяться или сужаться в направлении разрушения. Может быть расположена по контуру зеркальной зоны. В этом случае геометрическое строение матовой зоны следует за геометрией зеркала.  [c.65]

Жидкостные фильтры. В некоторых случаях удобно осуществлять фильтры при помощи кювет, заполняемых подобранной для этого жидкостью. Для того чтобы срезать инфракрасные излучения, можно воспользоваться водой, поскольку она весьма непрозрачна для инфракрасных лучей и весьма прозрачна для лучей видимых. Мы еще вернемся к этому вопросу в том месте книги, где будет говориться о пропускании разных излучений водой и растворами. Однако уже здесь следует уделить хотя бы немного внимания водным растворам, способным поглощать инфракрасные лучи или определенные спектральные полосы.  [c.63]

Исследование спектров пропускания относительно непрозрачных карбонатов дает несколько менее показательные сведения касательно группировки СО2, нежели те сведения, которые можно получить при изучении спектров отражения. Тем не менее, на участке избирательного отражения от 7 до 14 мкм находят всегда отчетливые полосы поглощения.  [c.127]

Минеральные жидкости. Вода является жидкостью относительно непрозрачной для инфракрасных лучей поэтому с ее помощью осуществляют противотепловые фильтры. Спектр поглощения тонких слоев воды содержит полосы около 1,5 2,3 4,75 и  [c.142]

Схема экспериментальной установки для оценки влияния дифракции на чувствительность измерений приведена на рис. 69. Источник света / — ртутная лампа низкого давления с водяным охлаждением, светофильтр 2 и объектив 3 (фокусное расстояние f — 300 мм) образуют коллиматорную систему. Параллельный пучок света освещает многолучевой интерферометр, представляющий собой две стойки с закрепленными в них зеркалами 4, между которыми установлен непрозрачный экран 5. Объектив 6, диафрагма 7 и фотоаппарат 8 составляют регистрирующую часть установки. Интерференционная картина представляет собой равномерно освещенное поле (настройка на бесконечно широкую полосу) Параметры установки р - 82% Л = 50 мм X = 577 нм масштаб изображения на пленке 1 2.  [c.119]

По определению, данному в учебниках физики, дифракция света - это нарушение законов геометрической оптики, наблюдаемое в местах резкой неоднородности среды. Отклонение распространения света от прямолинейного, огибание препятствий световыми лучами происходит вблизи краев непрозрачных тел. Оно обусловлено волновой природой света. Как выглядит дифракция у прямолинейного края непрозрачного экрана, иллюстрирует рис. 23. Если осветить экран параллельным пучком света, состоящим из плоских волн, то в области геометрической тени интенсивность света не равна нулю. Она постепенно уменьшается в сторону тени, а в освещенной области возникают полосы максимумов и минимумов освещенности, параллельные краю экрана.  [c.34]

ТОЛЬКО для ясности. Интерференционные полосы, возникаю щие в этой схеме, представляют собой линии равной разнО сти хода между зеркалом М и идеальным сферическим зеркалом, соответствующим опорной волне S2. Наблюдения можно вести в белом свете, поскольку разность хода близка к нулю. На поверхности зеркала видно небольшое яркое пятно вокруг точки С, которое соответствует пучку света, проходящему через диффузоры Hi и без рассеяния. При фоторегистрации это пятно диафрагмируют небольшим непрозрачным диском. Такая схема очень чувствительна к вибрациям, Для устранения этого недостатка можно заменить второй диффузор зеркалом т и применить принцип автоколлимации (рис. 48). В таком варианте волна Si возвращается назад и еще раз отражается от зеркала М, что приводит к увеличению вдвое чувствительности определения погрешностей зеркала М [60].  [c.51]

Дифракционная р< шетка. Дифракция света используется в спектральных приборах. Одним из основных элементов во многих спектральных приборах ягзляется дифракционная решетка. Обычно применяются отрамгательные решетки, но мы рассмотрим принцип действия решетки, представ-ЛЯ101Ц0Й собой прозрачную пластинку- с нанесенной на нее системой параллельных непрозрачных полос, расположенных на  [c.267]

В монохроматоре (или спектрометре) нужная длина волны определяется положением выходной щели относительно диспергирован,ного спектра. В спектрографе на месте выходной щели ставится фотографическая пластинка с широким интервалом чувствительности, на которой интенсивность света на каждой длине волны регистрируется в виде серии более или менее непрозрачных полос или линий. Полученная таким образом спектрограмма сканируется световым пятном,, и детектор регистрирует плотность полос на спектрограмме в зависимости от длины волны. Прибор, работающий по такому принципу, называется микрофотометром.  [c.167]

Нелинейные полупроводниковые сопротивления позволяют решить задачу создания плоского электролюминесцентного экрана. Такой экран представляет собой стеклянную пластинку с проводящими полупрозрачными полосками, поверх которых нанесен сплошной слой электролюминофора. На люминофоре расположена система проводящих непрозрачных полос, перпендикулярных полупрозрачным. При  [c.298]

Введение полупроводникового нелинейного слоя из карбида кремния под проводящие непрозрачные полосы по-звол.чет значительно снизить паразит-возможность применять такой экран для светящейся точки.  [c.298]

Задача 9. Между лампой накаливания ПЖ-13 (127 в,. 500 вт) и обращенной к ней черной, неселективно поглощающей поверхностью терморадиометра Трм (рис. 4-20) помещен непрозрачный экран Эк с круглым отверстием, перекрытым по диаметру непрозрачной полосой. Общая площадь 5 двух получившихся отверстий равна 10 см . Форма и положение этих отверстий таковы, что через них на приемную поверхность радиометра Трм попадает излучение только от нагретой колбы и не попадают лучи от раскаленного вольфрама. Плоскость экрана Эк перпендикулярна И проходящему через него пучку лучей, а его температура  [c.169]


Фотоэлектрические датчики обратной связи, основанные на дифракпионном методе, представляют собой дифракционные решетки с чередующимися прозрачными и непрозрачными полосами равной ширины. Одна из решеток значительной длины укрепляется па станине, вторая решетка небольшой длины — на суппорте станка. Световой поток от лазера проходит через дифракционные решетки при совпадении прозрачных участков и попадает на фотоэлемент. При смещении одной из решеток на /2 шага решетки свет проходить не будет, так как непрозрачные штрихи одной решетки полностью закроют прозрачные участки второй решетки. При непрерывном перемещении одной решетки относительно другой на фотоэлемент будет попадать прерывистый световой поток. На выходе фотоэлемента появятся импульсы фототока, число которых определяет перемещения подвижной решетки, а частота — скорость движения исполнительного органа.  [c.361]

Два отверстия Pj и Р2 в непрозрачном экране А также делят на два пучка световой поток, исходящий из щели S (см. рис. 6.48). Эти два пучка затем соединяются в точке Р, и в результате пространственной когерентности такой системы на экране В возникает интерференционная картина. Если для обеих установок апертура 2м интерференции одинакова, то для определения видимости интерференционной картины на экране В, получившейся при взаимодействии пучков света от отверстий Р] и Р2, можно воспользоваться формулой (5.35) для щелевого некогерентного источника света. Так как V = sinxA , где параметр X определялся отношением ширины щели 2а к ширине интерференционной полосы Л/ = kDi/d, то х = 2nadi /.Di) и видимость интерференционной картины  [c.309]

Таким образом, возникновение дифракционных полос вблизи границы геометрической тени характерно только в случае ограничения сечения волнового фронта непрозрачным экраном с отверстием. В случае же постепенного уменьщения амплитуды колебаний, что тоже эквивалентно некоторому эффективному ограничению волнового фронта, дифракционные явления приводят только к расширению поперечного сечения пучка, а чередования областей с ббль-шими и меньшими значениями освещенности не наблюдается. Это хорошо видно на фотографиях (рис. 9.8, б, в, г), полученных с помощью гелий-неонного лазера при последовательном смещении плоскости наблюдения. Фотография рис. 9.8, д получена после ограничения пучка в плоскости ЕЕ щелью из лезвий бритв, в результате чего появились характерные дифракционные полосы (ср. рис. 9.7, а).  [c.189]

Рассмотрим применение голографических методов контроля дефектов второго рода на примере склеивания системы из двух прямоугольных пластин. Для этих целей обычно используют метод голографической интерферометрии в реальном времени. Систему из свежесклеенных пластин помещают в схему голографического интерферометра и регистрируют исходное состояние одной из поверхностей пластин на фотопластинке. После ее проявления и установки на прежнее место в реальном времени наблюдают процесс высыхания или полимеризации клея. Если система не деформируется, то через голограмму будет видна чистая поверхность пластины без интерференционных полос, в противном случае возникает покрывающая объект интерференционная картина, которая характеризует изгиб склеиваемых элементов. Такой экспресс-контроль позволяет выбрать наиболее правильные, оптимальные режимы склейки, подобрать необходимые материалы и марку клея для снижения деформаций. В целях проведения контроля деформаций при клеевом соединении оптических. элементов можно использовать голографический интерферометр, представленный на рис. 4.3. Если склеиваемые изделия непрозрачны, то оптическую схему для диффузно отражающих объектов собирают на голографическом стенде.  [c.109]

Электролюминофоры. Люминофоры, в которых люминесценция возникает под воздействием прилагаемого электрического поля, называют электролюминофорами. Электролюминофор заключен между непрозрачным и прозрачным электродами, которые наносят на пластинку из стекла, слюды и т. п. Обычно используют либо композицию — смесь поликристаллического мелкодисперсного люминофора со связывающим диэлектриком (смолой), либо поликристаллические пленки люминофоров, получаемые осаждением газотранспортным методом или вакуумным напылением. Излучение электролюминесцентных источников света имеет высокую монохроматичность, малую инерционность и большую крутизну характеристики яркости высвечивания от напряжения. Основными составами являются соединения типа А — активированные различными примесями, в основном соединения цинка и кадмия ZnS, ZnSe, (Zn d)S и др. В качестве активирующих примесей используются Мп, А1, Ag, Си и др. Высвечивание сернистого цинка с разнообразными активаторами соответствует той или иной полосе спектра.  [c.205]

П, ф. применяется также для улучшения качества наображеанй, распознавания образов, осуществления их сортировки и т. п. Напр., используя транспарант в виде непрозрачного экрана с щелью, можно избавиться от полос на изображении, вызванных строчной развёрткой частично или полностью подавив низкие пространственные частоты, можно осуществить оконтури-вавие изображений. Реализуемы фильтры, резко снижающие дефекты изображения, вызванные расфокусировкой при фотографировании фильтры, отмечающие яркими точками в плоскости изображений местоположение к.-л. заданной буквы в служащем объектом напечатанном тексте, и т. д. Следует, однако, и леть в виду, что распознавание образов резко затрудняется, если неизвестны заранее масштабы и ориентировка изображений соответствующих объектов.  [c.154]

Осн. механизмами непрозрачности Ф. для эл.-магн. излучения являются фотоионизания и свободно-свободные переходы (тормозное поглощение), а также рассеяние фотонов в спектральных линиях и континууме. В Ф, наиб, холодных звёзд (спектрального класса М) преобладает рассеяние света в молекулярных полосах (гл. обр. окислов металлов TiO, ZrO и др.). В звёздах спектрального класса К доминирует поглощение излучения. металлами, в Q- и F-звёздах — отрицательными ионами водорода, в звёздах спектрального класса А — атомами водорода. В Ф. наиб, горячих звёзд, классов В и О, преобладают рассеяние на свободных электронах и по глощение атомами и ионами гелия, а в УФ-области спектра— ионами элементов С—Fe.  [c.360]

Пространственные амплитудно-частотные характеристики ГДТ марки ЛГ-400-35 и ЗИЛ-111 аналогичны. Различие их заключается в том, что для ГДТ марки ЗИЛ-111 (рис. 48, б) кривая зависимости ky=ky i) занимает больший диапазон передаточных отношений (i = 0,4. .. 0,94), чем для ГДТ марки ЛГ-400-35 (t = 0,6—0,94). У ГДТ марки ЗИЛ-111 при 1 = 0. .. 0,4 значения функции fey(i)=0, т. е. в этом диапазоне передаточных отношений колебания момента сопротивления не проходят на вал двигателя, тогда как ГДТ марки ЛГ-400-35, обладая обратной прозрачностью характеристики на данном участке, обеспечивает небольшое пропускание колебаний на вал двигателя (Лн(со)тах = 0,12). ГДТ марки ЗИЛ-111 пропускает полосу частот колебаний со = 0. .. 130 с и, следовательно, обладает худшими фильтрующими свойствами, чем ЛГ-400-35, пропускающий ш = 0. .. 100 с . Если исходить из того, что рабочая зона ГДТ находится в области Т1раб 0,8, то можно считать, что ГДТ марки ЛГ-400-35 обладает лучшими защитными свойствами, чем ЗИЛ-111, так как он в этом диапазоне КПД имеет непрозрачную часть нагрузочной характеристики, где колебания момента сопротивления  [c.76]

Метод фокальной монохроматизации предложен Рубенсом и Вудом [Л. 117]. Он основан на использовании пропускания кварца для излучений с длиной волны более 50 мкм. Кварц создает в инфракрасной области спектра две полосы поглощения при 8,5 и 20,75 мкм. При больших значениях длины волны он становится непрозрачным с увеличением длины волны его показатель преломления возрастает и доходит до 2,14, в то время как тот же показатель преломления составляет только от 1,5 до 1,41 между видимой частью спектра и излучениями с к = 5 мкм. Между 60 и 80 мкм кварц полностью непрозрачен, но становится вновь прозрачным при большей длине волны. Метод фокального выделения пользуется различием показателей преломления кварца с обеих сторон его области поглощения. В такой установке (рис. 32) лучи от источника 5 (горелка Ауэра в оригинальном выполнении по Рубенсу и Вуду) падают на линзу Ьу Придя к линзе Ьу излучения с короткой длиной волны расходятся, в то время как излучения с большой длиной волны образуют изображение в центре экрана Е (отверстие диаметром 15 мм). Установка только с одной линзой не могла бы достаточно хорошо выделить нужные излучения, так как в ней рассеивались бы также более коротковолновые излучения. Поэтому на пути лучей нужно поместить вторую линзу 2 и маленький экран О из черной бумаги, диаметром 25 мм, препятствующий прохождению центральных лучей с длиной волны меньше 8,5 мкм, которые могли бы пройти  [c.58]


Эбонит в тонких слоях избирательно пропускает инфракрасные лучи только в чистом виде. Очень незначительная добавка наполнителя на основе угля делает эбонит непрозрачным. Согласно Кобленцу, ему свойственны полосы пропускания между 1 и 14 мкм, а именно при 3,4 5,9 6,9 8,3 9,1 и 10 мкм. Его основное значение состоит в высоком пропускании электромагнитных волн радиодиапазона. Именно это свойство использовал и Никольс и Тир в исследованиях, позволивших установить связь между инфракрасными излучениями и электрическими колебаниями они работали с эбонитом в виде тонкой полупрозрачной металлизированной пластинки, наклоненной под углом 45° по отношению к падающему пучку таким образом чтобы отражать только небольшую часть энергии и пропускать остальную.  [c.77]

Так, стибнит SbaSg пропускает при толщине 4,9 мм 45% излучений с длиной волны 12 мкм, но является явно непрозрачным для видимого света. Сфалерит (цинковая обманка) ZnS обладает высоким пропусканием в области 5— 12 мкм с широкой полосой поглощения от 2,7 до 3,3 мкм. Мо-  [c.129]

Схема опыта Юнга, впервые доказавшего возможность интерференции световых волн, была весьма проста (рис. 9). Монохроматический источник света 5 освещал непрозрачный экран N, в котором имелись два отверстия 5i и 5г, игравшие роль вторичных источников. Источник Si, действуя в отдельности, создавал на белом экране Р равномерно светящийся круг L]. Аналогично источник Sq создавал круг L2. Однако, когда оба источника светили одновременно, возникало поразительное явление область, где круги L] и Lq перекрывались, пересекалась системой темных полос, т. е. свет гасил свет. Это удивительное явление нетрудно объяснить, если вспомнить о том, что свет распространяется при помощи волн. 01казывается, что в темных местах экрана расстояния до ИСТ0ЧНИК01В Si и S2 таковы, что свет от этих источников всегда приходит в противофазе, т. е. гребень волны источника 5i совпадает со впадиной волны источника S2 и наоборот. Естественно, что два равных и взаимно противоположных отклонения нейтрализуют друг друга и свет в этих местах всегда отсутствует. В светлые места экрана волны источников 5i и S2 всегда приходят в одной и той же фазе, т. е. гребень волны источника 5] всегда совпадает с гребнем волны источника S2. В результате колебания светового поля Б таких точках усиливаются.  [c.24]

Если теперь с зтой позиции рассмотреть переход от круглой апертуры к кольцеобразной путем блокировки ее дентальной части непрозрачным зкраном, то наблюдаемую спекл-структуру можно интерпретировать как состоящую ю увеличенных спеклов, модулированных кольцеобразными интерференционными полосами. При зтом ширина кольца огределяет размер спеклов, а внешний радиус кольца - средний период модулирующей интерферснраммы.  [c.108]

Подчеркнем существенную роль апертуры. Так, пртиспользованиии осесимметричной кольцевой апертуры встречное ветвление в поперечном сечении происходит в пределах центральной пары полос, а при нарушении симметрии апертуры точки рождения и исчезновения полос смещаются в разные стороны от оси. Усложнение апертуры путем введения в нее нескольких непрозрачных участков вызывает появление дополнительных цепочек ветвления полос в продольном сечении спекл-поля и соответствующего количества пар точек ветвления - в поперечном.  [c.213]

Таким образом, с позиций теории связи голографический процесс может быть представлен так на внеосевую несущую волну накладывают объектную волну, которая моделирует несущую. В пространственно-частотном спектре голограммы обе восстановленные волны могут быть изображены боковыми полосами, они окажутся пространственно разделенными. В схеме Габора опорной служила волна, непосредственно прошедшая через объект. Лейт и Упатниекс в процессе записи использовали добавочную волну, расположенную вне оси предмет - голограмма. Это, как мы увидим немного позже, позволило получать голограммы непрозрачных и трехмерных объектов. Уже в 1962 г., еще до появления лазеров, исследователи реализовали свою схему. Они использовали в качестве источника света ртутную лампу. Пучок света от одного источника разделили на два. Один направили на диапозитив, другой - на призму, расположенную над объектом, которая отклоняла ее в направлении фотопластинки. На фотослое суммировались две 50  [c.50]


Смотреть страницы где упоминается термин Непрозрачности полоса : [c.120]    [c.276]    [c.119]    [c.123]    [c.17]    [c.12]    [c.200]    [c.16]    [c.198]    [c.260]    [c.118]    [c.50]    [c.133]    [c.60]   
Дифракция и волноводное распространение оптического излучения (1989) -- [ c.170 ]



ПОИСК



Непрозрачность

Полосы пропускания и непрозрачности стопы четвертьволновых пластинок



© 2025 Mash-xxl.info Реклама на сайте