Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Голографическая применения

Очень часто в голографических применениях требуется точная синхронизация между входным и выходным импульсами. Кроме того, для голографической интерферометрии необходима генерация двух импульсов света с модулированной добротностью. По этой причине в большинстве промышленных лазеров для голографии используется модулятор добротности на ячейке Поккельса.  [c.278]

Не — Ке-лазеры, несомненно, представляют собой наиболее экономичные лазеры, пригодные для голографических применений. Их срок службы превышает 6000 ч, а стоимость составляет от нескольких сотен до нескольких тысяч долларов в зависимости от требуемой мощности выходного излучения. Обычно они не требуют какой-либо специальной электрической сети для питания и не нуждаются в водяном охлаждении. Этим главным образом и объясняется, почему Не — Ые-лазеры широко применяются в голографии.  [c.292]


В этом обзоре, озаглавленном Голографические регистрирующие материалы , помимо общего рассмотрения материалов читатель может получить справку относительно того, какой следует выбирать регистрирующий материал для конкретных голографических применений здесь имеются полезные таблицы и приводится обширная библиография.  [c.298]

Описанные выше явления получили интересные применения для голографической регистрации изображения (см. 65).  [c.119]

Установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волнового фронта в определенное число раз и добавить к ней новое слагаемое ), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателей преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).  [c.253]

Применение голографии. Голографическая интерферометрия  [c.266]

Благодаря указанной особенности можно осуществлять голо-графическую интерференцию при отражении света от шероховатых поверхностей рассеивающих тел (например, автомобильных шин, балок, корродирующих поверхностей и т. п.), для объектов, заключенных в сосуд с очень неоднородными стенками и т. д. Поэтому голографическая интерферометрия и получила обширные применения.  [c.271]

Даны сведения об основных научных и практических достижениях голографии в области оптического приборостроения. Рассмотрены устройства голографических приборов общего и специального назначения, их принципы действия, физическая сущность используемых в них явлений, области применения голографических при боров. Может быть полезно работникам различных отраслей науки и техники, интересующимся вопросами п/)именения голографии, учащимся техникумов оптических специальностей, а также может быть использовано при профессиональном обучении рабочих на производстве.  [c.2]


С помощью голографических методов стало возможным получать оптические. элементы, по всем свойствам аналогичные волоконно-оптическим устройствам. Такие. элементы имеют все свойства оптического волокна, но отличаются от него простотой. изготовления. Методы голографии позволяют выполнять оптические элементы и придавать им оптические свойства, которые невозможно получить при обычных методах изготовления. Голографические методы находят широкое применение при аттестации качества оптических. элементов и узлов оптических приборов успешно используются при решении задач выделения сигналов из шумов и распознавания образов. Голография позволяет увеличивать изображения во много раз больше, чем это можно сделать с помощью оптических линз, строить принципиально новые датчики положения и формы объектов и многое другое.  [c.6]

Голографическая интерферометрия находит применение в исследованиях как прозрачных, так и отражающих свет объектов. Различия, имеющиеся в исследовании объектов. этих двух типов, не носят принципиального характера, хотя исследование прозрачных фазовых неоднородностей обычно выделяют в отдельное направление голографической интерферометрии. Это объясняется спецификой используемых схем и методов интерпретации результатов, которые, в свою очередь, определяются типичностью характера вносимых такими объектами фазовых искажений. К числу этих объектов относятся газовые потоки, ударные волны, плазма, тонкие пленки. Группу объектов, вносящих сильные  [c.31]

Как правило, раз.тичны и задачи исследований объектов этих двух групп. Если исследование методами голографической интерферометрии слабых фазовых объектов ставит своей конечной целью определить по распределению показателя преломления плотность газа, концентрацию атомов и электронов, температуру и другие параметры, то применение этих методов к оптическим. элементам дает возможность проверить их характеристики на качество.  [c.32]

В голографической схеме, основанной также на методе локального опорного пучка, но применимой для непрозрачных объектов (рис. 14, б), опорный пучок с помощью линзы фокусируется в некоторую точку на объекте, в которой для увеличения отражательной способности и формирования необходимого пучка наклеивают плоское или сферическое зеркало. Поскольку при смещении объекта как жесткого целого в опорный и объектный пучки вносится одинаковый фазовый сдвиг, картина интерференционных полос будет отражать только деформацию поверхности. Эти схемы нашли широкое применение при анализе ко-  [c.49]

С помощью описанных голографических пространственных фильтров решено большое количество технических задач по улучшению качества изображения повышению контраста, устранению дефокусировки. Одним из наиболее. эффективных применений метода явилось улучшение изображений в электронном микроскопе. Улучшенные изображения имели высокий контраст и разрешение, близкое к предельному.  [c.53]

Впервые метод коррекции изображений с помощью голографических компенсаторов был применен для коррекции линзовых аберраций. Так, на. этапе изготовления голографического компенсатора на фотопластинке Ф получают голограмму искажающего. элемента — аберрационной линзы Л (рис. 17, а). При компенсации аберраций (рис. 17, 6) голограмму Г располагают по отношению к линзе в том же положении, как и при регистрации, и через нее осуществляют наблюдение  [c.54]

Голографические дифракционные решетки используют в лазерной технике. Введенные в лазерный резонатор они служат хорошими селекторами длин волн излучения лазеров. В последнее время такие решетки находят широкое применение в интегральной оптике в качестве. элементов связи, обеспечивающих введение световых волн в тонкопленочные волноводы.  [c.65]

Используя две скрещенные голографические дифракционные решетки, осуществляющие деление светового пучка на несколько равных по интенсивности пучков, можно получить мультиплицирующий. элемент с эффективностью порядка 70—85%. Применение такого мультипликатора в модифицированной схеме мультипликации с плоской волной позволяет создать значительно более совершенную систему. Основные ее отличия от схемы, представленной на рис. 2.1, заключаются в следующем  [c.65]


После первых работ Габора появились и первые результаты по созданию голографических микроскопов, в которых одна или обе ступени увеличения осуществлялись без помощи линз. Увеличение в таком безлинзовом микроскопе достигается путем применения на стадиях получения голограмм и восстановления волнового фронта источников излучения с различными длинами волн или при использовании пучков со сферическими волновыми фронтами, формируемыми с помощью фокусирующей оптики.  [c.82]

Голографические интерференционные микроскопы нашли применение для исследования самых разнообразных объектов — оптических волокон, оптических линзовых растров, искусственных кристаллов для оптики, пятен масла, биомедицинских объектов, а также для изучения процессов деления клеток, роста кристаллов и т. п.  [c.86]

Применение голографической и лазерной интерферометрии позволило разработать бесконтактные методы получения топограмм, имеющих высокое разрешение. Эти методы основаны на создании системы интерференционных поверхностей, пересекающих восстановленное голограммой изображение объекта либо сам объект.  [c.104]

По мнению авторов, настоящая книга позволяет учащимся познакомиться с рядом примеров научного и практического применения голографии в приборах и устройствах, имеющих отношение к различным областям оптического приборостроения. Полученные знания по устройству голографических оптических приборов, принципу их действия и физической сущности используемых в них явлений следует рассматривать как базисную информацию, на основе которой каждый желающий сможет углубить свои знания в данной области техники. Для. этого читатель должен обратиться к научно-технической литературе, в которой описаны именно те приборы, на производстве или. эксплуатации которых он специализируется.  [c.121]

Применение оптических квантовых генераторов (лазеров) позволяет существенно расширить границы традиционных оптических методов контроля и создать принципиально новые методы оптического неразрушающего контроля, например, голографические, акустооптические и др. Лазерная дефектоскопия базируется на использовании основных свойств лазерного излучения — монохроматичности, когерентности и направленности.  [c.51]

В реальной голографической дефектоскопии нашли применение схемы голографирования во встречных пуч-  [c.52]

Элементы голографических приборов контроля. Практическое применение голографических методов неразрушающего контроля требует выполнения ряда условий, основными из которых являются следующие.  [c.54]

Неподвижность объекта контроля в течение всего времени экспонирования голограммы. Поэтому голографические установки должны иметь надежную систему виброзащиты (массивные основания, демпферы и т. п.). Кроме того, целесообразно применение лазеров возможно большей мощности для сокращения времени экспозиции.  [c.54]

В табл. 3 приведены характеристики наиболее употребительных фотоматериалов, применяемых в голографии. В последнее время за рубежом разработаны термопластические материалы, чувствительные к лазерному излучению. Для этих материалов характерен тепловой механизм визуализации скрытого изображения, не требующий фотохимической обработки. Голограмму проявляют простым нагревом термопластика непосредственно на месте экспонирования, что существенно повышает производительность контроля.Однако применение термопластиков требует применения лазеров сравнительно большой мощности (около 1 Вт), например аргоновых. Наблюдение голограмм производится визуально или с помощью телевизионных установок. Разработаны устройства УОГ-1 и УОГ-2 для ввода голографических изображений в ЭВМ с целью их обработки.  [c.56]

Для контроля дефектов участков изделий, находящихся в труднодоступных местах, перспективен метод голографической эндоскопии. В отличие от традиционных способов эндоскопии с помощью волоконно-оптических элементов (ВОЭ) здесь появляется возможность получения объемных изображений внутренних полостей изделий при углах обзора, близких к предельным. Для систем голографической эндоскопии разработаны специальные ВОЭ, обеспечивающие малые потери лазерного излучения и сохранение его когерентности. Применение лазеров в эндоскопии позволило также использовать эффект квантового усиления света с помощью ВОЭ из оптически активных материалов для резкого (в 10 —10 раз) увеличения яркости изображения, улучшения его контрастности. Накачка ВОЭ производится при этом с помощью одиночных импульсных ламп, а объект освещается лазерным светом с длиной волны, соответствующей резонансной частоте световодов..  [c.99]

В обычных системах формирования изображения, использующих стеклянные линзы, главное значение ил1еют аберрации. При этом во многих случаях отношение сигнал/шум (ОСШ) оказывается очень большим, поэтому с ним обычно не связано никакой проблемы. Однако для голографических систем картина совсем противоположная. Выше мы упоминали, что голографическое изображение, свободное от аберраций, получить довольно просто. Однако для голографических изображений характерны большие шумы, что связано с наличием различных дефектов в регистрирующих материалах. Поэтому во многих голографических применениях ОСШ играет значительную роль.  [c.75]

Из предыдущего обсуждения очевидно, что для многих голографических применений предпочтительным является режим работы лазера с одной временной модой. Малая длина когерентности лазера приводит не только к ограничению регистрируемого поля объекта, но и к усложнению геометрии оптических систем, обеспечивающему получение равных оптических путей интерферирующих пучков. Для улучшения когерентности лазерных систем большой мощности с длинными резонаторами обычно используют несколько методов внутреннего возмущения резонатора, чтобы усилить действие одной временной моды. Все эти методы неизменно вводят потери в резонатор, вследствие чего снижается мощность выходного излучения. К некоторым из этих методов относятся 1) внутрирезонатор-ные эталоны (или эталонный отражатель и торцевые зеркала),  [c.288]


Вт. Для осуществления в лазере одночастотного режима генерации для любой данной длины волны обычно применяют внутрирезо-наторные эталоны, что, таким образом, позволяет достичь экстремально большой длины когерентности. Поэтому для голографических применений, в которых требуются и большая длина когерентности, и высокая мощность лазерного излучения, лучше всего выбрать аргоновый ионный лазер.  [c.290]

Однако в большинстве голографических применений требуется значительно маньший наклон. В конкретных случаях наклон можно регулировать, меняя состав проявителя и подбирая соответствующую экспозицию.  [c.464]

Голографический метод записи волнового фронта находит широкое применение в различных областях науки н техники и имеет перспек1ивы в будущем.  [c.221]

Голография как новое научно-техническое направление сформировалась около двадцати пяти лет назад. В настоящее время происходит становление и развитие оптического голографического приборостроения, успехи которого обусловлены прогрессом в области голографии и когерентной оптики. Голографические оптические приборы значительно расширяют возможности человека, дают в руки инструмент, позволяющий контролировать различные технологические процессы, решать ранее недоступные либо технически трудные задачи. Число конкретных приложений голографии в оптическом приборостроении непрерывно увеличивается. Этим объясняется возрастающий интерес к методам и средствам оптической голографии со стороны широких кругов научных и инженерно-технических работников. Сегодня оптические голографические приборы находят применение во многих отраслях народного хозяйства, таких как ракето- и самолетостроение, производство приборов точной механики, кино-, фототехника, геодезия, строительстэРд.  [c.3]

Голографические компенсаторы представляют большой интерес для решения проблемы получения изображений в когерентном свете с использованием для передачи оптических сигналов световолоконных жгутов и шайб. Однако они имеют существенный недостаток — непригодны, если искажающая среда нестационарна (как, например, турбулентная атмосфера). Для этого случая разработаны методы, не требующие применения голо-графических компенсаторов. Они основаны на том, что при получении голограммы объекта, наблюдаемого через нестационарную искажающую среду, опорный и объектный пучки искажаются в равной степени, так как их с помощью специальных мер пропускают практически по одному и тому же пути. Поскольку искажения обоих пучков одинаковы, они никак не отразятся на получаемой голо-  [c.55]

Одной из наиболее перспективных областей применения синтезированных голограмм является пространственная фильтрация. ЭВМ позволяет оптимизировать процесс голографических пространственных фильтров, а иногда и существенно улучщить результаты, получаемые с их помощью.  [c.71]

Эндоскопические оптические приборы предназначены для рассмотрения внутренних поверхностей и предметов в труднодоступных полостях и объемах. Сегодня медицинская и техническая. эндоскопия превратилась в обширную и быстроразвивающуюся отрасль оптического приборостроения. Весьма перспективным является использование в >ндоскопии голографических схем с применением. элементов волоконной оптики различных типов. Они позволяют существенно упростить конструкцию голографических схем при введении в одну из ее оптических ветвей — объектную или опорную, или обе одновременно — световодов. При. этом уменьшается число необходимых. элементов, габаритные размеры и масса схемы, увеличивается ее светосила и, что весьма важно, помехозащищенность (от пыли, вибрации и т. п.). Использование световодов в юлографии существенно расширяет области применения интерференционных методов исследования изучение труднодоступных объектов и закрытых полостей, упрощение получения голограмм объектов одновременно для нескольких углов освещения (.это особенно важно при исследовании неоднородностей сложной формы). При этом возможно получение на одной фотопластинке при ОДНОМ общем опорном пучке одновременно несколь-  [c.77]

Весьма существенной с точки зрения получения голографических изображений сильно рассеивающих объектов является присущая волоконным жгутам исключительно высокая светособирательная способность. Волокна с большой числовой апертурой способны захватывать и передавать конус лучей с раскрытием, приближающимся к 180°. Широкое применение нашли световоды и различные волоконные оптические. злементы в связи с развитием нового направления голографии — интегральной голографии.  [c.79]

Помимо использования монолитных прямоугольных световодов, в схеме голографического зонда возможно также применение гибких и жестких пучков волоконных световодов. Принципиально конструкция так010 голографического зонда ничем не отличается от конструкции зонда, приведенной на рис. 31. Однако для устранения мозаичной картины голографического изображения (воспроизводящей структуру пучка волоконных световодов) желательно, чтобы фото.эмульсия находилась на некотором расстоянии от выходного торца световода, при. этом расходящиеся световые пучки из каждого волокна пучка перекрываются и мозаичность исчезает.  [c.82]

О преимуществах схемы прямой регистрации уже говорилось, к недостаткам ее можно отнести высокие требования к разрешающей способности регистрирующей среды и сильное влияние пятнистой структуры (спек.л-структуры) на качество изображения. В голографической схеме, использующей микрообъективы для создания увеличенно1 о изображения предмета, требования к разрешающей способности минимальны, пятнистая структура мало влияет на изображение, но поле зрения и глубина регистрируемого пространства определяются свойствами применяемого микрообъектива и оказываются весьма мaJ ыми. Таким образом, обе описанные схемы [ологра-фического микроскопа обладают существенными недостатками, ограничивающими возможностг. их применения при микроскопических исследованиях.  [c.85]

Наиболее интересные и перспективные возможности при изучении прозрачных микрообьективов открывает применение в микроскопии методов голографической интерферометрии.  [c.85]

Рассмотрим принципы работы голографического интерферометра фазовых объектов на примере метода голографической интерферометрии двух экспозиций, хотя в. зтом приборе можно применять и другие известные методы (например, метод реального времени). Основы метода двух экспозиций и возможности его практического применения были рассмотрены в гл. 1. Голографическая интерферометрия фазовых объектов отличается следующими особенностями. Во время первой. зкспозиции фотопластинка в голографическом интерферометре освещается опорной и объектной волнами при отсутствии в рабочей  [c.106]

Рассмотрим применение голографических методов контроля дефектов второго рода на примере склеивания системы из двух прямоугольных пластин. Для этих целей обычно используют метод голографической интерферометрии в реальном времени. Систему из свежесклеенных пластин помещают в схему голографического интерферометра и регистрируют исходное состояние одной из поверхностей пластин на фотопластинке. После ее проявления и установки на прежнее место в реальном времени наблюдают процесс высыхания или полимеризации клея. Если система не деформируется, то через голограмму будет видна чистая поверхность пластины без интерференционных полос, в противном случае возникает покрывающая объект интерференционная картина, которая характеризует изгиб склеиваемых элементов. Такой экспресс-контроль позволяет выбрать наиболее правильные, оптимальные режимы склейки, подобрать необходимые материалы и марку клея для снижения деформаций. В целях проведения контроля деформаций при клеевом соединении оптических. элементов можно использовать голографический интерферометр, представленный на рис. 4.3. Если склеиваемые изделия непрозрачны, то оптическую схему для диффузно отражающих объектов собирают на голографическом стенде.  [c.109]


Следует отметить ряд особенностей применения метода голографической интерферометрии для определения остаточных напряжений, связанных с требованиями голографического эксперимента. Прежде всего необходимо создать специальные приспособления для держателей образцов и для травления пленок, исключающие жесткое смещение объекта во время экспозиции и одновременно позволяющие с требуемой точностью убирать и возвращать образцы в исходное положение в оптической схеме. Обычно прямоугольные пластинки приклеивают эпоксидным клеем к металлическим держателям, которые во время полимеризации клея задают необходимое поджатие подложки. Просушенные образцы жестко крепятся в кинематическом устройстве. Такое устройство состоит из двух дисков. Верхний диск имеет запресованные в основание три стальных шара, а нижний — три призматических прорези. Каждый шар касается прорезей в двух точках. Таким образом, верхний диск можно снимать и устанавливать обратно с точностью не менее, чем л/8 (X — длина волны источника излучения). Это дает возможность исключить появление во время перестановок интерференционных полос, характеризующих смещение объекта, а также проводить какую-либо операцию, в частности, травление пленки вне голо-графической установки.  [c.117]

Однако/область применения голографии в оптическом приборостроении не ограничивается только теми вопросами, которые были рассмотрены в кни1 е. Существует ряд областей, где. эффект от применения голографии в настоящее время не выяснен до конца. Например,, не ясны до конца перспективы использования голографических методов получения оптических. элементов со свойствами, аналогичными волоконно-оптическим устройствам. Разработчиков и технологов здесь привлекает то, что. элементы имеют все свойства оптического волокна, но отличаются от него простотой изготовления. В связи с ограниченным объемом книги в ней недостаточно полно освещены некоторые аспекты современного голографического приборостроения. В последнее время существует тенденция заменять в некоторых случаях оптические элементы голограммами. Приведенные в книге примеры использования голограмм в качестве линз и дифракционных решеток можно было бы дополнить еще множеством других примеров использования голографической оптики. Эта область голографии активно развивается, хотя возможности и эффективность использования голографи-  [c.121]

Тепловые и голографические методы контроля редко применяются для сварных конструкций и соединений. В основном область их применения — электронная промышленность, авиация, космическая техника (выявление не-пропаянных контактов проводников и дефектных узлов, нагревающихся при эксплуатации, сотовые панели самолетов, клеевые соединения и т. д.). Основное их преимущество — бесконтактность с объектом контроля. Недостаток— сложность методик и оборудования. С совершенствованием последних данные методы могут найти широкое применение в промышленности.  [c.220]

Для регистрации результатов исследований, полученных при помощи прямотеневых, шлирных, интерференционных и голографических. методов, могут быть использованы различные расположенные в плоскости экрана светорегистрирующие среды, такие как фотографические и электрографические материалы, фоторезисторы, полупроводниковые светочувствительные экраны. Однако-широкое применение в настоящее время нашли галоидосеребряные фотографические материалы из-за их сравнительной дешевизны, высокой чувствительности и разрешающей способности. Разрешающая способность некоторых из них достигает 2800 линий на 1 мм и более.  [c.221]

Следует отметить, однако, что реализация отмеченных преимуществ голографических методов требует рещения ряда технических и технологических проблем, увеличения времени послеэксперимен-тальной обработки, поэтому при выборе того или иного метода необходимо рационально подходить к вопросу о целесообразности его применения.  [c.237]


Смотреть страницы где упоминается термин Голографическая применения : [c.462]    [c.104]    [c.36]    [c.98]   
Оптика (1985) -- [ c.258 ]



ПОИСК



Возможности построения и перспективы применения систем голографического телевидения

Интерферометры голографические применение в спектроскопии

Некоторые применения голографии. Голографическая



© 2025 Mash-xxl.info Реклама на сайте