Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты Методы контроля

В зависимости от технических требований, предъявляемых к объектам контроля, формируется и выбор методов контроля качества. При вероятном развитии усталостных трещин в конструкции от поверхностных дефектов методы обнаружения внутренних дефектов (радиационный или УЗК), не обладающие достаточной чувствительностью к мелким поверхностным трещинам дублируют методами для поиска и обнаружения мельчайших поверхностных дефектов. Методы контроля герметичности при производстве сосудов высокого давления дублируют методами поиска и обнаружения внутренних дефектов и т. д.  [c.220]


Факторы, вызывающие образование дефектов Дефекты Методы контроля  [c.82]

Наименование дефекта Внешние признаки дефекта Причины образования дефекта Метод контроля  [c.552]

Наименование детали, тип оборудования Возможный дефект Метод контроля и испытания Технические требования Рекомендуемый способ устранения дефектов  [c.120]

Наименование де тали, тип оборудования Возможный дефект Метод контроля, (испытаний) Технические требования Рекомендуемый метод устранения Дефектов  [c.356]

С помощью ультразвуковых дефектоскопов проверяют сварные швы, заклепочные и прессовые соединения, а также обнаруживают в изделиях трещины, раковины, шлаковые включения и другие дефекты. Метод контроля ультразвуком позволяет обнаруживать  [c.57]

Виды дефектов Метод контроля  [c.21]

Для определения внутренних дефектов сварных соединений (трещин, непроваров, включений) применяют радиационный и ультразвуковой методы контроля в более редких случаях—магнитный.  [c.152]

Магнитные методы контроля основаны на обнаружении полей магнитного рассеяния, образующихся в местах дефектов при намагничивании контролируемых изделий. Изделие намагничивают, замыкая им сердечник электромагнита или помещая внутрь соленоида. Требуемый магнитный поток можно создать пропусканием тока по виткам (3— витков) сварочного провода, заматываемого на контролируемую деталь. В зависимости от способа обнаружения потоков рассеяния различают следующие методы магнитного контроля метод магнитного порошка, индукционный и магнитографический.  [c.149]

Цель неразрушающих методов контроля при изготовлении аппарата сводится к обнаружению дефектов и к постановке задачи по контролю и оценке качества материала в исходном состоянии. Неразрушающие методы контроля служат инструментом для улучшения качества конструирования и технологических процессов изготовления аппаратов. При оценке ресурса безопасной эксплуатации длительно проработавших аппаратов также необходимо опираться на данные о реальной дефектности конструктивных элементов аппаратов.  [c.175]

Методы НК основаны на использовании физических явлений для обнаружения и определения параметров дефекта. В свою очередь неразрушающие методы контроля подразделяются на пассивные (интегральные) и активные (локальные).  [c.176]

Для определения внутренних дефектов металла и сварных соединений (трещин, непроваров, включений) аппаратов и трубопроводов в основном применяют радиационный и ультразвуковые методы контроля, в более редких случаях  [c.184]


Метод контроля Физический эффект Распознавание дефекта Определение расположения дефекта Определение размеров дефекта Область применения Наиболее существенные преимущества перед другими методами контроля Ограничения по применению  [c.185]

Теневой (или амплитудно-теневой) метод основан на регистрации уменьшения амплитуды прошедшей волны (сквозного сигнала) под влиянием дефекта. Для контроля этим методом излучающий и приемный ПЭП располагают по разные стороны от объекта контроля (рис. 4.8, б).  [c.198]

При УЗ-контроле импульсным методом определяются размеры и характер дефектов. Так, контроль стыковых соединений проводят путем поочередной установки щупа по обеим сторонам проверяемого шва.  [c.207]

Рассмотренный метод контроля позволяет четко определять длину и конфигурацию дефекта, но не дает информации  [c.213]

Метод контроля вихревыми токами используют дня обнаружения мельчайших дефектов на поверхности в виде не-проваров, слипаний, трещин в изделиях из низколегированных сталей, алюминиевых сплавов, сплавов титана.  [c.216]

Тепловой метод контроля основан на регистрации ин-фра фасного излучения, исходящего от поверхности нагретого тела. Тепловым источником нагревают контролируемый объект. В зоне несплошности отвод теплоты происходит с иной интенсивностью по сравнению с хорошо проваренным участком шва. Возникающие температурные градиенты в несколько десятых градуса предопределяют различие в тепловом инфракрасном излучении этих участков, которое регистрируется соответствующим приемником и затем преобразуется в электрические сигналы. Этот метод позволяет выявлять как поверхностные, так и внутренние дефекты в виде расслоений, пустот, раковин и других дефектов.  [c.220]

В соответствии с предложенным методом контроля магнитной памяти определенные места, характеризующиеся сменой знака поля Нр или с нулевым значением этого поля, являются наиболее опасными местами, где концентрации напряжений от действующих нагрузок (изгибающих, крутящих и т.п.) могут достигать критического значения. Следовательно, в этих местах контролируемых сварных стыков могут иметь место различные дефекты и повреждения технологического и эксплуатационного характера.  [c.351]

В настояще.м параграфе рассматриваются методы контроля остаточных напряжений в покрытиях, нанесенных на подложку из различных материалов. Особенностью таких соединений является то, что при любом способе нанесения покрытия система пленка-подложка находится в механически напряженном состоянии, поскольку основными компонентами остаточных напряжений при нанесении пленок являются температурные напряжения, обус.ловлен-ные отличием коэффициентов температурного расширения материалов пленки и подложки, а также структурные напряжения, вызванные различного рода дефектами. Даже в достаточно тонких пленках, толщиной 0,1 — 1 мкм, остаточные напряжения могут достигать предела прочности материалов, составляющих систему, превышение которого приводит к ее разрушению.  [c.114]

Значительная проблема возникает также при получении достоверной информации о размерах и форме дефектов. Например, если рассматривать традиционные методы контроля такие, как акустический, или ионизированным излучением, то в ряде случаев совпадение получаемой информации о дефектах с реальной дефектностью составляет всего лишь 60-70%.  [c.4]

При контроле готовых поковок нх осматривают, выборочно измеряют геометрические размеры, твердость. Размеры контролируют универсальными измерительными инструментами (штангенциркулями, штангенвысотомерами, штангенглубиномерами и др.) и специальными инструментами (скобами, шаблонами и контрольными приспособлениями). Несколько поковок из партии иногда подвергают металлографическому анализу и механическим испытаниям. Внутренние дефекты в поковках определяют ультразвуковым методом контроля и рентгеновским просвечиванием.  [c.96]

Задачей НК является не только установление наличия или отсутствия дефекта, но и выявление степени дефектности (размеры и характер дефекта). Получаемая информация, во-первых, позволяет оценить возможность ремоггта во-вторых, выяснить причины образования дефекта и наметить мероприятия по предотвраш,ению его появлеппя. К, этой группе методов контроля относятся  [c.113]


Имеются системы, использующие сцинцилляционные кристаллы (среднетоковый метод), и системы с полупроводниковыми счетчиками (импульсный метод). При среднетоковом методе сигнал выдается в виде значения среднего тока, значение которого зависит от размеров дефекта. При полупроводниковом методе контроля ионизационное излучение просвечивания после прохождения соединения регистрируется в виде последовательности им-пульсон двумя независимыми полупроводниковыми детекторами. Сигналы обоих детекторов при отсутствии дефектов одинаковы. При наличии дефектов устройство выдает сигнал, равный разности сигналов обоих детекторов.  [c.123]

Методы контроля Физический эффект Распозна- вание дефекта Опреде- ление располо- жения дефекта Опреде- ление размеров дефекта Область применения Н а И б 0 Л есуществе иные преимущества перед другими методами контроля Ограничения по применеьню  [c.154]

Радиационные методы контроля являются надежными и широкораспространенными методами контроля, основанными на способности рентгеновского и гамма-излучения проникать через металл. Выявление дефектов при радиационном просвечивании основано на различном поглощении рентгеновского или гамма-излучения участками металла с дефектами и без них. Сварные соединения просвечивают специальными аппаратами. С одной стороны шва на некотором расстоянии от него помещают источники излучения, С противоположной стороны плотно поджимают кассету е чувствительной пленкой (рис. 79). При просвечивании лучи проходят  [c.149]

Количество ежегодно испытываемых дефектных труб должно составлять 5% от числа ремонтируемых участков трубопровода. Необходимо проводить не менее одного гидроиспытания в год при осуществлении за этот период более десяти вырезок дефектных труб одного типоразмера и из одной марки стали. Для испытаний сосудов или участков трубопровода на герметичность и прочность, а также для гидроиспытаний поврежденных труб применяют неразрушающие методы контроля развития дефектов УЗК, метод натурной тензометрии с использованием отечественной и импортной (например, прибор типа 8ТКЕ55САЫ 500 С) аппаратуры. В случае обнаружения дефектов, повреждений элементов конструкций, которые требуют проведения дополнительных исследований методом акустической эмиссии (АЭК), диагностику технического состояния объекта осуществляют методом АЭК в соответствии с нормативно-техническими документами [83, 121].  [c.165]

Рассмотрим применение голографических методов контроля дефектов второго рода на примере склеивания системы из двух прямоугольных пластин. Для этих целей обычно используют метод голографической интерферометрии в реальном времени. Систему из свежесклеенных пластин помещают в схему голографического интерферометра и регистрируют исходное состояние одной из поверхностей пластин на фотопластинке. После ее проявления и установки на прежнее место в реальном времени наблюдают процесс высыхания или полимеризации клея. Если система не деформируется, то через голограмму будет видна чистая поверхность пластины без интерференционных полос, в противном случае возникает покрывающая объект интерференционная картина, которая характеризует изгиб склеиваемых элементов. Такой экспресс-контроль позволяет выбрать наиболее правильные, оптимальные режимы склейки, подобрать необходимые материалы и марку клея для снижения деформаций. В целях проведения контроля деформаций при клеевом соединении оптических. элементов можно использовать голографический интерферометр, представленный на рис. 4.3. Если склеиваемые изделия непрозрачны, то оптическую схему для диффузно отражающих объектов собирают на голографическом стенде.  [c.109]

Для выявления металлургических дефектов в жаропрочных отливках ГТД широко применяют неразрушаемыс методы контроля. К ним отнскятся следующие методы  [c.369]

Данный нсразрушаемый метод контроля крупных заготовок (слитков, поковок и отливок) имеет особые преимущества, с помощью которого можно обнаружить дефекты, пороки на глубине от нескольких сантиметров до нескольких метров.  [c.370]

Рентгеновский контроль отливок. Дефекты, расположенные во внутренней части отливки, мо1 ут быть выявлены просвечиванием их рентгеновскими лучами. Такой метод контроля без разрушения отливок позволяет обнаружить трещины, раковины, поры, газовые пузыри, шлаковые включения, ликвацию (в виде пор уса-дочнопэ характера) и т.п.  [c.376]

В книге рассмотрены дефекты сварных соединений, причины их возникновения и их классификация. Изложены методики расчета прочности сварных соединений с дефектами с учетом их механической неоднородности. Даны подходы к нормированию дефектов сварки. Рассмотрены физические основы, чувствительность и классификация методов контроля с использованием ионизирующих излучений, акустических колсОаиий, магнитных и элсктромги-нитных полей, явлений капиллярности, проникновения жидкостей и газов и др. Даны рекомендации по выбору методов неразрушающего контроля для сварных конструкций.  [c.2]

Радиометрия — это метод получения информадии о внутреннем состоянии объекта контроля с регистрацией выходящего пучка излучения в виде электрических сигналов. Схема данного метода контроля приведена на рис. 6.17. В радиометрии используют в основном два метода среднетоковый и импульсный, которые различают способами регистрации излучения и электронной обработки информации. Контроль осуществляется сканированием объекта узким пучком. Плотность потока выходного пучка при наличии дефекта меняется и преобразуется в электрический сигнал, пропорциональный плотности пучка. В среднетоковом методе используют сцинцилляционные кристаллы, которые выдают сигнал в виде среднего тока, а в импульсном — полупроводниковые счетчики, которые регистрируют излучение в виде последовательности импульсов двумя независимыми полупроводниковыми детекторами.  [c.164]



Смотреть страницы где упоминается термин Дефекты Методы контроля : [c.9]    [c.789]    [c.139]    [c.153]    [c.163]    [c.26]    [c.372]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.69 ]



ПОИСК



Вульф (ГДР). Обнаружение дефектов сварных соединений разI личными методами неразрушающего контроля

Г лав а XIII Контроль качества сварки Дефекты сварных соединений и методы их исправления

Дефекты и методы контроля качества сварных соединений

Дефекты и методы контроля сварных соединений

Дефекты сплошности металла и выбор метода контроля

Контроль дефектов

Методы контроля

Методы контроля и испытания сварных соединений и конструкций Классификация дефектов сварных соединений и причины их образования

Методы контроля скрытых дефектов

Основные дефекты сварных соединений и классификация методов их контроля

Экспертная оценка вероятности выявления дефектов методом АЭ контроля



© 2025 Mash-xxl.info Реклама на сайте