Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания маятника математического физического

Машины вычислительные 352, 356, 357 Маятник математический 395 -— физический 407 — Колебания — Уравнение дифференциальное 403, 407  [c.576]

Какие колебательные системы называются математическим и физическим маятниками Выведите формулы для периода колебаний маятников. Зависит ли период колебаний от амплитуды Что называют приведенной длиной физического маятника Почему период математического маятника не зависит от массы, а период физического маятника зависит от момента инерции Какую выгоднее взять массу — малую или большую, если математический маятник используется для измерения ускорения свободного падения Можно ли формулу для периода крутильных колебаний использовать для измерения момента инерции твердого тела  [c.354]


Замечание Лагранжа относится и к проблеме маятника. Маятник Галилея, т. е. математический маятник, реально воплощался телом, которое могло вращаться вокруг неподвижной оси,— физическим маятником. Изохронность колебаний маятника, пусть не совсем точную, естественно было использовать для измерения времени. Достаточно точное измерение времени с помощью прибора, который можно было бы перевозить с собой на корабле, решало проблему определения долгот на море — в то время основную проблему кораблевождения в открытом море. Создать достаточно точные и пригодные в морских путешествиях маятниковые часы пытался еще Галилей, он даже вступил с нидерландскими властями в переговоры об использовании маятниковых часов. Галилей не добился достаточно хороших результатов и, таким образом, оставил открытыми две проблемы теоретическую — о центре качаний физического маятника, т. е. о приведенной длине физического маятника, и техническую — проблему маятниковых часов.  [c.254]

Периодом колебания маятника как математического, так и физического, называется промежуток времени, в течение которого маятник совершает два полных размаха.  [c.236]

Физическим маятником называется всякое тело, подвешенное так, что его центр тяжести находится ниже точки подвеса. Подвешенное подобным образом тело способно совершать колебания. Маятник называется точечным (или математическим), если можно считать, что вся масса тела сосредоточена в одной точке. Достаточно точной реализацией математического маятника может служить тело, подвешенное на нерастяжимой нити, причем трение о воздух и в точке подвеса очень мало, а размеры тела малы по сравнению с длиной нити. Колебания математического маятника при малых углах отклонения можно считать гармоническими.  [c.75]

Физический и математический маятники. В качестве второго примера свободных гармонических колебаний рассмотрим малые колебания маятников, у которых момент силы, возвращающий тело в положение равновесия, обусловлен силой тяжести. Физическим маятником называется твердое тело, которое может свободно вращаться относительно неподвижной горизонтальной оси, не проходящей через центр тяжести тела (рис. 108). На этом рисунке г - радиус-вектор центра масс С маятника относительно перпендикулярной плоскости чертежа оси вращения О, вдоль которой - на читателя - направлена координатная ось Oz угол (р, характеризующий положение радиуса-вектора с, отсчитывается от вертикальной оси Ох в направлении, согласованном с направлением оси Oz правилом буравчика.  [c.116]


Длина li такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника, называется приведенной длиной физического маятника. Точка К, отстоящая от оси подвеса на расстоянии OK=h, называется центром качаний физического маятника (см. рис. 324).  [c.327]

При этом способе экспериментального определения моментов инерции амплитуда колебаний не ограничена, так как формула (201) справедлива для колебаний физического и математического маятников с любыми одинаковыми амплитудами.  [c.158]

Следствие 6.4.1. Уравнение колебаний физического маятника совпадает с уравнением колебаний математического маятника (определение 3.9.1), вся масса которого сосредоточена в центре качания. Теория движения математического маятника может быть полностью применена к анализу движения физического маятника.  [c.458]

Малые собственные колебания физического маятника, так же как и математического, являются гармоническими с периодом, не зависящим от амплитуды.  [c.429]

Если для физического маятника ввести условную длину I = = Jo,J (М1г), то период его малых колебаний через эту длину выразится так же, как и период математического маятника. Действительно,  [c.452]

Величины S и s входят в эти соотношения симметрично. Поэтому данную длину / эквивалентного математического маятника, или, что то же, данный период колебаний Т можно получить, поместив ось подвеса на расстоянии s пли на расстоянии s от центра тяжести тела в первом случае ось качаний будет находиться на расстоянии s = I — s, а во втором — на расстоянии. S == -s от центра тяжести. Иными словами, ось качаний станет во втором случае осью подвеса, а ось подвеса—осью качаний. Это свойство физического маятника используется в оборотном маятнике, служащем для определения ускорения силы тяжести g. Построение отрезка s по известным s и п показано на рис. 301.  [c.180]

Постановка задачи, вывод уравнения движения и рассмотрение случая малых колебаний математического маятника были даны уже ранее в 112. В 117 было доказано, что вопрос о движении физического маятника сводится к задаче о математическом маятнике эквивалентной длины.  [c.493]

Отсюда видим, что малые колебания физического маятника так же, как и математического, являются гармоническими. Период малых колебаний физического маятника определяется из равенства  [c.683]

Длина L такого математического маятника, период малых колебаний которого равен периоду малых колебаний данного физического маятника, называется приведенной длиной физического маятника. Точка О1, отстоящая от точки подвеса О на расстоянии 001= Д, называется центром качаний физического маятника (рис. 379).  [c.684]

Как выводится диф, уравнение малых колебаний математического и физического маятников Чему равны их периоды колебаний  [c.184]

Физический маятник, так же как математический, обладает свойством изохронности, пока отклонения малы. Период колебаний физического маятника существенно зависит не только от расстояния от оси вращения до центра тяжести, но и от момента инерции маятника относительно оси, т. е. от расположения отдельных элементов массы маятника.  [c.409]

Так как период маятника зависит от g, то маятником можно пользоваться для определения величины g. При точных измерениях, конечно, уже ни один реальный маятник нельзя рассматривать как математический. Поэтому при точных измерениях силы тяжести для периода физического маятника пришлось бы пользоваться формулой (13.21). Но расчет момента инерции маятника также не может быть произведен с большой точностью. Для устранения этих трудностей используют свойство центра качаний, которое заключается в следующем. Если мы перенесем точку подвеса физического маятника в центр качаний, то прежняя точка подвеса окажется новым центром качаний. Точка подвеса и центр качаний обратимы. Поэтому период колебаний физического маятника остается прежним (так как прежней осталась приведенная длина).  [c.409]


Физический маятник представляет собой тонкую пластину, качающуюся в вертикальной плоскости вокруг оси, не проходящей через ее центр тяжести. Вычислить период малых колебаний этой пластины, выразив его через радиус инерции относительно центра тяжести и расстояние от центра тяжести до оси вращения. Показать, что если для двух осей вращения, отстоящих на разных расстояниях от центра тяжести, период колебаний будет одинаковым, то сумма этих расстояний будет равна длине математического маятника, имеющего тот же период колебаний.  [c.201]

Точка К, через которую проходит линия действия результирующей силы инерции звена, называется центром качаний, потому что, как и в случае физического маятника, если в этой точке сосредоточить всю массу звена, то получится математический маятник, период колебаний которого будет равен периоду колебаний звена, имеющего точку подвеса в центре вращения U.  [c.19]

Заметим кстати, что период малых колебаний физического маятника в точности равен периоду малых колебаний так называемого математического маятника, представляющего собой точечную массу, эквивалентную массе физического маятника, подвешенную на невесомой нити или  [c.22]

Расчетная модель двойного физического маятника широко используется в различных задачах динамики машиностроительных и строительных конструкций, например, о колебании подвешенного груза в упругой конструкции, виброгашении, приборах, конструкциях с жидкими массами и т. д. Рассмотрение этой задачи имеет также большой методический смысл, так как математическая модель двойного физического маятника является естественным развитием предыдущей задачи об одномассовом маятнике и может рассматриваться как введение в исследование задачи  [c.266]

Рассмотрим, например, одну из простейших колебательных систем — груз, подвешенный на нити. Ответ на вопрос о том, сколько степеней свободы имеет эта система, зависит от ее физических свойств и от того, что мы собираемся исследовать в ней. Если размеры груза малы по сравнению с длиной нити и дви>кения груза относительно нити несущественны, если нить можно считать недеформируемой, т. е. постоянной длины и прямолинейной, тогда можно рассматривать такую систему как математический маятник, т. е. как систему с двумя степенями свободы. Груз в виде материальной точки может двигаться по сфере, и для однозначного определения ее положения необходимо знать две независимые координаты. Если, кроме того, будут заданы начальные условия, при которых нить во время колебаний будет находиться в определенной плоскости, то для определения положения такой системы достаточно одной координаты.  [c.12]

Величину I называют приведенной длиной физического маятника. Это есть длина такого математического маятника, который имеет такой же период колебания, что и данный физический маятник.  [c.336]

Математический и физический маятники, груз, подвешенный на пружине, плавающее тело представляют собой примеры простейших механических систем, обладающих тем свойством, что, будучи выведенными из положения устойчивого равновесия и предоставленные затем самим себе, они совершают колебания. Системы такого рода называют колебательными системами, а совершаемые ими колебания — собственными .  [c.336]

Следовательно, не изменяя периода колебаний физического маятника, можно добавить груз на оси привеса или на расстоянии приведенной длины математического маятника.  [c.284]

Собственные колебания физического маятника, т. е. тяжелого тела, свободно вращающегося вокруг некоторой оси, будут происходить так же, как и колебания рассмотренного выше математического маятника. Пусть тело А (рис. 347) свободно вращается вокруг горизонтальной оси О, перпендикулярной к чертежу. Расстояние от центра масс до оси равно а тогда при повороте тела от положения равновесия на угол а возникнет возвращающий момент силы тяжести, равный  [c.425]

Приведенная длина физического маятника. Приведенной длиной физического маятника называют величину, равную длине такого математического маятника, период колебаний которого одинаков с периодом колебаний данного физического маятника. Приведенная длина L определяется по формуле  [c.97]

Определим длину I математического маятника, имеющего тот же период колебаний, что и физический. Эту длину называют при-веденной длиной физического жаягкцка. Как известно (см. формулу (8.2i)) период малых колебаний математического маятника равен  [c.207]

Мы рассмотрим здесь несколько примеров слабо связанных осцилляторов из атомной физики и физики элементарных частиц. В каждом примере система имеет две идентичные степени свободы, которые слабо связаны, так что существуют нормальные моды колебаний с частотал и оз и 0)2. Законы механики Ньютона для микроскопических систем несправедливы, и для понимания их свойств требуется знание квантовой механики. Тем не менее в поведении микроскопических систем имеется большое математическое подобие поведению систем из слабо связанных маятников, хотя физическая интерпретация в обоих случаях различна. Для связанных маятников квадрат амплитуды маятника пропорционален энергии (кинетической плюс потенциальной) маятника. Энергия перетекает от одного маятника к другому с частотой биений. Для систем, описываемых квантовой механикой, квадрат амплитуды для определенной степени свободы (амплитуда в квантовой механике — всегда комплексная величина и под квадратом амплитуды подразумевается квадрат ее кюдуля) дает вероятность того, что степень свободы возбуждена (т. е. имеет всю энергию). Вероятность течет туда и обратно от одной степени свободы к другой с частотой биений VI—у . Сама энергия квантована, и мы не можем ввести понятие об ее потоке. В случае маятников полная энергия обоих маятников постоянна. Для микроскопических систем соответствующим фактом является то, что полная вероятность возбуждения либо одной, либо другой степени свободы постоянна. (Эта полная вероятность равна единице при условии, что система не теряет каким-либо образом энергию возбуждения.) Ниже мы приведем два замечательных примера, с которыми вы снова встретитесь при изучении квантовой механики.  [c.482]


Главными стимулами построения теории стали новые задачи о движении тел. Математическое описание Кеплером движения планет, осознание Галилеем физических причин падения земных тел и получение соответствующих математических законов. Задачи о передаче движения посредством удара, ставшие одним из важнейших звеньев декартовой системы натуральной философии и получившие математические решения у Уоллиса, Рена, Гюйгенса, Мариотта. Сугубо техническая задача о колебаниях маятника, решенная Гюйгенсом геометрическим методом, привела к понятиям центробежной силы и центра колебаний. Задачи удара тел породили понятия, связанные с деформацией тел (упругость, абсолютная твердость,...), укрепили представления о взаимодействии тел как о причине их движения. Иосле введения Декартом понятия количества движения эта причинно-следственная  [c.269]

От исследований Галилея, посвященных задаче о маятнике, берет начало динамика твердого тела. Реальные маятники, с которыми усердно экспериментировали ученые того времени, явно подчинялись закономерностям, аналогичным тем, которые быжи установлены для идеализированной схемы — математического маятника/Но как теоретически осуществить сведение одной задачи к другой По-видимому, Мерсенну принадлежит постановка проблемы о законах колебания физического маятника. руководствуясь  [c.97]

Для современников основным произведением Гюйгенса была книга Маятниковые часы (1673 г.) Это классическое произведение по богатству и ценности содержания имеет мало себе равных. Прежде всего, оно, в соответствии со своим названием, содержит (в первой части) описание великого изобретения Гюйгенса — маятниковых часов. Разрабатывая теорию математического маятника, Гюйгенс показал неизохронность колебаний кругового маятнйка и для него разработал метод расчета периода колебаний, равносильный приближенному вычислению соответствующего эллиптического интеграла. Гюйгенс строго доказал точную изохронность колебаний (любой амплитуды) циклоидального маятника, дал формулу для вычисления периода этих колебаний, а также и для периода малых колебаний кругового маятника, разработал и осуществил конструкцию циклоидального маятника. В связи с этим Гюйгенс создал новый раздел дифференциальной геометрии — учение об эволютах и эвольвентах. Он изобрел часы с коническим маятником. Попутно Гюйгенс открыл явление параметрического резонанса (наблюдая установление консонанса двух маятников, прикрепленных на одной балке) и правильно объяснил его. Кроме того, в Маятниковых часах изложены многочисленные математические результаты, как, например, спрямление многих кривых, определение площадей некоторых кривых поверхностей, метод построения касательных к рулеттам и т. д. Не располагая алгоритмом анализа бесконечно малых, Гюйгенс, проявляя исключительную изобретательность, систематически применяет инфинитезимадьные методы в геометрическом оформлении — этим аппаратом он овладел в совершенстве, и в этом среди его современников никто, кроме Ньютона, не мог с ним соперничать. Но мы еще не сказали о том, что в четвертой части Маятниковых часов , под названием О центре качания , решена поставленная Мерсенном проблема определения периода колебаний физического маятника. Это — первая глава динамики твердого тела. В этой созданной Гюйгенсом главе одинаково значительны результат и метод. В ней налицо то сочетание эксперимента и теории, технической направленности и обобщающего физического мышления, которое характерно для рассматриваемого периода. Проявить это сочетание в своем творчестве дано было только деятелям экстра-класса — Галилею, Гюйгенсу, Ньютону.  [c.110]

К сожалению, доказательство этого фундаментального результата не раскрывает того, каким путем шел Гюйгенс доказательство проведено методом от противного , т. е. показано, что, допустив неизохронность колебаний физического маятника и математического маятника длины, определенной в условии теоремы, мы приходим к противоречию с первой гипотезой (энергетическим принципом Гюйгенса).  [c.111]

Проблема центра качаний была поставлена, можно сказать, в конкурсном порядке, тем же Мерсенном, который так интересовался открытиями Галилея в акустике. Отсылая за подробностями к гл. V (см. стр. 97), укажем здесь, что Гюйгенсу принадлежит не только решение задачи о центре качания, т. е. приведенной длине физического маятника, но и точная трактовка вопроса о периоде малых колебаний математического маятника. Таким образом, была решена задача и о периоде малых колебаний физического маятника. Гюйгенс определил также центры тяжести и центры качания для многих фигур, открыл циклоидальный маятник и доказал (строгую) изохронность его колебаний. Все это шло об руку с техническими изобретениями часов с коническим маятником, часов с циклоидальным маятником, с существенным усовершенствованием обычных маятниковых часов, идея которых возникла у Гюйгенса, видимо, вполне самостоятельно. Гюйгенсу не удалось создать хронометра, удовлетворяющего требованиям моряков, но его технические изобретения во всяком случае позволили значительно уточнить измерение времени, столь существенное и для исследования колебаний. Его вклад в теорию колебаний тоже велик помимо указанного выше явления, он открыл явление, названное позже принудительным консонансом . С этими (конструк-  [c.254]


Смотреть страницы где упоминается термин Колебания маятника математического физического : [c.223]    [c.128]    [c.554]    [c.278]    [c.260]    [c.327]    [c.179]    [c.684]    [c.409]    [c.178]    [c.247]    [c.104]    [c.394]   
Аналитическая механика (1961) -- [ c.333 ]



ПОИСК



Колебание маятника

Колебания математического маятника

Колебания физического маятника

Маятник

Маятник математический

Маятник математический физический 407 — Колебания Уравнение дифференциальное

Маятник физический

Маятники математические физические

Свободные гармонические колебания. (Пружинный маятник. Физический и математический маятники. Крутильные колебания. Нелинейные колебания. Колебания связанных систем



© 2025 Mash-xxl.info Реклама на сайте