Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Локальные гиперболические

Таким образом, мы столкнулись с интересной ситуацией. Для обоих гладких примеров (т. е. растягивающих отображений окружности и гиперболического автоморфизма тора) со сложной, экспоненциально растущей структурой орбит все три естественные меры экспоненциального роста орбит — скорость роста числа периодических точек р, топологическая энтропия и энтропия действия на фундаментальной группе h, — совпадают. Совпадение первых двух величин является широко распространенным, хотя и далеко и не универсальным явлением. Этот факт, так же как и структурная устойчивость, связан с наличием локальной гиперболической структуры (см. 6.4, теорему 6.4.15, и 18.5, теорему 18.5.1). Совпадение же h, с другими двумя характеристиками в большой степени случайно и зависит как от наличия гиперболичности, так и от малой размерности. Можно показать, что уже для автоморфизмов торов больших размерностей это совпадение может не иметь места (см. упражнение 3.2.8). Однако теорема 8.1.1 показывает, что /г, Дня топологических цепей Маркова скорость роста числа периодических точек и топологическая энтропия также совпадают. Причиной этому вновь служит гиперболичность, поскольку, как мы знаем из конструкций п. 2.5 в, топологическая цепь Маркова топологически сопряжена с ограничением некоторых гладких систем, ограниченных на специальные инвариантные подмножества, которые обладают гиперболическим поведением.  [c.134]


Локальная гиперболическая теория и ее приложения  [c.243]

Часть 2. Гл. 6. ЛОКАЛЬНАЯ ГИПЕРБОЛИЧЕСКАЯ ТЕОРИЯ И ЕЕ ПРИЛОЖЕНИЯ  [c.244]

Часть 2. Гл. 6. ЛОКАЛЬНАЯ ГИПЕРБОЛИЧЕСКАЯ ТЕОРИЯ И ЕЕ ПРИЛОЖЕНИЯ Следовательно,  [c.258]

Определение. Росток гиперповерхности f=0 в вещественном линейном простраистве навязывается локально) гиперболическим относительно данной прямой ростком, если ограничение f на любую достаточно близкую к данной вещественную прямую имеет в окрестности центра ростка столько вещественных корней, какова кратность нуля как корня ограничения f на данную прямую.  [c.140]

Теорема. Стабильные локально гиперболические особенности гиперповерхностей размерности больше 1 изолированы и имеют кратность 2, так что уравнение их записывается в внде /=0, где  [c.141]

В [180] наложены еще некоторые технические условия на локальное поведение траекторий в окрестностях гиперболических точек, не нарушающие общности положения, но сужающие рассматриваемый класс дуг. Здесь мы их не формулируем, но предполагаем выполненными.  [c.125]

Ирвин ввел новое понятие — коэффициент интенсивности напряжений К. Поясним его сущность. Распределение напряжений по поперечному сечению растянутой полосы, ослабленному поперечной трещиной, подчиняется зависимости гиперболического типа. Согласно ей при уменьшении расстояния от точки материальной части поперечного сечения до вершины трещины нормальные напряжения в поперечном сечении увеличиваются и устремляются к бесконечности, если указанное выше расстояние устремляется к нулю. Асимптотами являются линия, параллельная ослабленному поперечному сечению полосы и перпендикулярная ей линия, проходящая через вершину трещины. Вследствие перехода материала у вершины трещины в пластическое состояние пик напряжений срезается. В системе осей, совмещенных с асимптотами, можно рассмотреть бесчисленное множество гипербол, каждая из которых характеризуется своим параметром, представляющим собой произведение переменных, входящих в гиперболическую зависимость. Этот параметр называют коэффициентом при особенности, Аналогично, коэффициент К представляет собой коэффициент при особенности в зависимости между нормальным напряжением и расстоянием точки ослабленного сечения, в которой оно действует, от вершины трещины. В теории Ирвина коэффициент К — величина, полностью характеризующая локальное деформирование и разрушение на контуре макротрещины. Величина К зависит от формы тела и от граничных условий и определяется из решения глобальной (т. е. для всего тела в целом) задачи. Ирвиным было получено условие предельного равновесия трещины в форме  [c.578]


Для общих квазилинейных гиперболических систем в [13, 14] было осуществлено формальное построение характеристических рядов в общей ситуации и доказан ряд теорем о локальной сходимости этих рядов в окрестности характеристической поверхности Ф = 0. Эти теоремы при аналитических входных условиях были доказаны методом мажорант, они являются своеобразными аналогами теоремы Коши-Ковалевской.  [c.232]

Таким образом, эти уравнения наследуют от гиперболических уравнений не толь ко конечную скорость распространения возмущений, но и локальную аналитичность решений.  [c.234]

При описании кривых ползучести, у которых зависимость р (а) имеет локальный минимум, можно в (1.29) ввести степенную функцию напряжения а, а в (1.30)—функцию гиперболического синуса.  [c.14]

Кажущееся незначительным ограничение, что производные по пространственным координатам в уравнениях (40) должны быть первого порядка, на самом деле оказывается весьма сильным. Так, из него следует, что система (40) должна быть гиперболического типа. В случае сжимаемой невязкой жидкости это выполняется, чего нельзя сказать, например, о несжимаемой невязкой жидкости или любой вязкой жидкости. Для того чтобы строго установить даже локальную корректность метода поиска симметричных решений, нужны дальнейшие исследования в теории уравнений в частных производных.  [c.180]

Из этого затруднения можно найти выход, соответствующий условиям, которые реализуются на практике. Он состоит в учете вязкости, под влиянием которой эффект локальных вариаций затухает по мере удаления от места вариации также и в сверхзвуковых течениях. В модельных постановках вязкость можно учитывать в форме какого-либо сглаживающего процесса, которому следует подвергать решения гиперболических систем.  [c.158]

Алгоритм А естественно считать эллиптическим, если для соответствующих ему отображений f = А D) справедливы вариационные принципы теории конформных отображений. Гиперболические алгоритмы определяются так, чтобы для соответствующих отображений влияние локальных вариаций границы области сказывалось лишь в зонах, ограниченных кривыми, которые называются характеристиками алгоритма. Накладывая на алгоритмы целесообразные дополнительные свойства, можно выделять те или иные классы отображений.  [c.160]

По-видимому, эту систему надо отнести к новым системам дифференциальных уравнений смешанно-составного типа. Так, в локальной системе координат, связанной с главными напряжениями, изменение перемещений (скоростей перемещений) определяется дифференциальным оператором эллиптического типа вдоль второго главного направления, содержащим вторые частные производные от перемещений по координатам. А в поверхностях, ортогональных второму главному направлению, происходит привычное для плоской деформации описание перемещений (скоростей перемещений) с помощью дифференциальных операторов гиперболического типа две поверхности разрыва — линии скольжения (вещественные характеристики). По-видимому, эти особенности отражают физическую гипотезу Т. Кармана о сохранении упругой (квазиупругой) связи по второму главному направлению.  [c.43]

Прежде всего отметим, что критическим точкам потенциальной энергии при малых значениях е отвечают невырожденные периодические решения полной системы. Причем, точки локального минимума порождают решения эллиптического типа (их мультипликаторы лежат на единичной окружности), а точки максимума порождают решения гиперболического типа (их мультипликаторы вещественные и отличны от 1). Период таких решений равен 27г/Л они часто называются гармоническими.  [c.236]

Локальная гиперболичность. Связь между стабильной гиперболичностью и стабильной эллиптичностью, кажущаяся на первый взгляд удивительной, объясняется при анализе стабилизации локально гиперболических особенностей, введенных Ать-ей, Боттом и-ГординЕом [НО] (ср. [35]). -. -  [c.140]

Для локально гиперболических особениостей справедливы такие же теоремы стабилизации и бистабилизации, как для гиперболических. Роль степени в определении стабилизации играет упомянутая выше кратность (кратность можно здесь заменить числом Милнора).  [c.140]


При 8>0 отображение /е имеет две гиперболические неподвижные точки. Как показано в п. 5.8, конечногладкая классификация таких отображений имеет функциональный модуль — диффеоморфизм окружности в себя. Локальному семейству (22) соответствует класс эквивалентности ростков по е в нуле семейств диффеоморфизмов окружности  [c.76]

Схема, аналогичная схеме Гартманна, использующейся в видимой области спектра (рис. 6.2, б). Здесь локальные участки зеркала последовательно освещаются узким пучком рентгеновского излучения. По интенсивности, центру тяжести и угловому распределению отраженного пучка в фокальной плоскости определяются локальные углы наклона, коэффициенты отражения и параметры шероховатости. Характеристики всего зеркала могут быть найдены суммированием локальных распределений интенсивности на ЭВМ подобно тому, как это делается в расчетах методом хода лучей. Метод очень трудоемок и требует высокой точности взаимных перемещений пучка и зеркала, однако дает возможность исследовать не только объективы, но и отдельные зеркала произвольной формы, в том числе и не дающие изображения (например, гиперболические).  [c.229]

Была установлена [11] общая теорема о локальной сходимости характеристических рядов для общих гиперболических систем, а также ряд нелокальных теорем сходимости 12, 13] для уравнений газовой динамики. Установлено было, в частности, что в окрест ности слабого разрыва при малых г ряды сходятся при неограниченном возрастании времени. Это явилось основанием для применения отрезков рядов при исследовании распространения и асимптотик затухания слабых ударных волн.  [c.243]

Описанное локальное поведение характеризует аналитические отображения. Можно доказать, что если некоторое непрерывное отображение f локально взаимно однозначно в плоской области D всюду, кроме изолированных точек, в которых оно имеет характер целой степени, то существует непрерывное и взаимно однозначное преобразование D, которое преобразует f в аналитическую функцию. Отметим еще, что гиперболически аналитические отображения обладают в известном смысле противоположными свойствами. В самом деле, как видно из формул (15) предыдущего раздела, их якобиан g (л - - у) (х — у) может менять знак  [c.73]

Заключительные замечания. Теоремы существования и единственности решения поставленной задачи представляют собой обобщение соответствующих теорем теории оптимального управления системами, описываемыми дифференциальными уравнениями в частных производных гиперболического типа [15]. Теорема существования будет локальной, поскольку в общем случае минимизируемые функционалы являются многоэкстремальными. Более того, для существования решения требуется свойство полной непрерывности отображения X —> К Х), которое в общем случае можно только постулировать. Проблема доказательства полной непрерывности для рассматриваемых здесь нелинейных прямых краевых задач, описываемых вариационными или квазивариационными неравенствами, по-видимому, пока не решена.  [c.483]


Смотреть страницы где упоминается термин Локальные гиперболические : [c.246]    [c.141]    [c.462]    [c.10]    [c.56]    [c.95]    [c.158]    [c.163]   
Формообразование поверхностей деталей (2001) -- [ c.94 , c.104 , c.109 , c.384 ]



ПОИСК



Г локальный

Гиперболические локальные участки поверхности ДД)

Гиперболические периодические орбиты Экспоненциальное разложение Теорема Адаыара — Перрона Доказательство теоремы Адаыара — Перрона Л-лемма Локальная устойчивость гиперболических периодических точек

К локальности

Локальная гиперболическая теория и ее приложения

Локально максимальное гиперболическое множество

Локальные кубы потока Мультипликативная асимптотика роста числа орбит Добавление. Динамические системы с иераввомерио гиперболическим поведением (А Каток, Л. Мендоза)

Теореыа Хартмана — Гробмаиа Локальная структурная устойчивость Гиперболические множества



© 2025 Mash-xxl.info Реклама на сайте