Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отрыв резкий

Как уже было сказано выше, к местным сопротивлениям относятся различные фасонные участки трубопровода или русла (колена, тройники, задвижки и др.), в которых наблюдается неравномерное движение жидкости. В местах резкого изменения живого сечения или направления потока происходит отрыв по-  [c.85]

Поскольку отрыв потока в диффузоре ведет к резкому возрастанию его гидравлического сопротивления, целесообразно принимать меры для перемещения точки отрыва к выходному сечению. Совокупность способов искусственного перемещения точек отрыва называют управлением пограничным слоем.  [c.352]


Рассмотрим подробнее местное сопротивление в виде внезапного расширения трубы (рис. 83). Наблюдения показывают, что при выходе струи из узкой части трубы образуется отрыв потока от стенок, и пространство между струей и стенками заполняется вихрями. На некотором расстоянии 1р струя полностью расширяется, но может иметь в сечении 2 —2 резко неравномерную  [c.184]

Из других видов местных сопротивлений теоретическое выражение коэффициента сопротивления удается получить для случая резкого сужения потока (рис. 86). Непосредственно за входом в узкую часть трубы образуется отрыв и кольцевая вихревая область ВО. Транзитная струя благодаря инерции сжимается, образуя сжатое сечение 5 , а затем снова расширяется, занимая все сечение трубы. Как показывают измерения, основная часть потерь сосредоточена на участке расширения потока за сечением 5(,.  [c.188]

При изменении направления потока на вогнутой стороне внутри трубы давление больше, чем на выпуклой (рис. 4.6, е, ж), что влечет за собой изменение скоростей в направлении движения, вызывающее отрыв потока от стенок и вихреобразование в нем. При резком повороте потока (острое колено) возникают максимальные потери напора, при этом к возрастает с увеличением угла поворота а. Потери напора определяют по формуле  [c.51]

На рис. 27.7 [81] представлены кривые изменения локального числа Нуссельта при поперечном обтекании цилиндра в зависимости от угла ф для различных чисел Рейнольдса в условиях постоянного теплового потока по поверхности. Из рисунка видно, что число Нуссельта уменьшается, начиная от передней критической точки, достигает минимума при некотором угле ф и далее вниз по потоку резко возрастает. В передней критической точке толщина ламинарного пограничного слоя мала и поэтому локальные коэффициенты теплоотдачи и числа Нуссельта велики. По мере удаления от критической точки вниз по потоку растет толщина пограничного слоя, вместе с ней растет его тепловое сопротивление и коэффициент теплоотдачи уменьшается. В зоне отрыва пограничного слоя коэффициент теплоотдачи вновь резко возрастает. В этой области происходят весьма сложные и еще до конца не ясные явления. Здесь, видимо, происходит периодический процесс — утолщение пограничного слоя, его отрыв и унос оторвавшейся массы жидкости вниз по потоку. Этот периодический процесс непрерывно повторяется. Можно ожидать, что чем больше таких процессов происходит в единицу времени, тем интенсивнее теплоотдача, так как в момент отрыва слоя тепловое сопротивление в этой зоне значительно уменьшается. Очевидно, что применить гидродинамическую теорию теплообмена (см. гл. 24) в этой области невозможно. На интенсивность теплоотдачи в зоне отрыва влияют число Рейнольдса, форма и качество поверхности (шероховатость) обтекаемого тела, физические константы жидкости.  [c.321]


При обтекании тела с резко меняющимся профилем поверхности отрыв пограничного слоя является следствием проявления инерции жидких частиц в пределах пограничного слоя. Картина отрыва пограничного слоя в этом случае понятна из рис. 5.9. При обтекании плавной криволинейной поверхности отрыв пограничного слоя связан с характером изменения давления вблизи твердой поверхности. Рассмотрим подробнее механизм этого явления (рис. 5.10).  [c.246]

При малых углах конусности диффузора (0/2 < 7°) поток заполняет все сечение, отрыв не возникает и сопротивление диффузора незначительно. При 0/2 = 7 ч- 30° происходит отрыв потока от одной из стенок при этом он носит обычно нестабильный характер, перебрасываясь с одной стороны на другую. Сопротивление диффузора при наличии отрыва потока резко возрастает. При 0/2 = 30 -f- 45° поток в диффузоре отрывается от обеих стенок и сопротивление достигает максимума. С дальнейшим увеличением угла сопротивление несколько уменьшается. Общий характер зависимости коэффициента смягчения диф от угла конусности диффузора круглого сечения виден из рис. 114. Соответствующие числовые значения д ф приведены ниже  [c.200]

Положение точки отрыва вихрей от цилиндра не является стабильным. При большой степени турбулизации потока, характеризуемой числом Re>2 10 , течение не только в канале, где установлена труба, но и в пограничном слое переходит в турбулентное. Отрыв турбулентного пограничного слоя от цилиндра происходит при ср = = 120... 140°. Последнее обстоятельство улучшает обтекание цилиндра вследствие уменьшения вихревой зоны и резко увеличивает теплоотдачу.  [c.345]

Рассмотрим некоторые особенности испытаний. На величину разрушающего усилия, также как и при штифтовом методе, оказывает влияние масштабный фактор. Доказано, что при нанесении плазменного покрытия в одинаковых условиях на образцы различных диаметров значения прочности соединения отличаются весьма резко. Уменьшение диаметра образца от 50 до 25 мм сопровождается падением величины разрушающего напряжения почти в два раза [61]. Это, вероятно, связано со сложностью механизма отделения покрытия. Отрыв покрытия обычно не наблюдается одновременно по всей площади контактирования, даже если происходит по границе покрытие — основной металл . Прежде всего отрыв идет от края образца, а затем распространяется к центру. Поэтому прочность соединения для данного покрытия, определенная на образце большего диаметра, будет выше, чем на тонком (краевой эффект). С увеличением диаметра образца роль краевого эффекта уменьшается. Кроме того, возможны варианты разрушения, такие же как и для штифтовой методики (см. рис. 4. 3).  [c.70]

Обращению знака неравенства сопутствует отрыв потока от стенок сопла. В наших опытах, проведенных со шлифованными соплами (знак обработки внутренней поверхности V 9, угол раствора 2а = 10°), отрыв возникал при массовой скорости wQ порядка 3-10 кг -сек. При сравнительно высокой для конденсированной среды скорости движения и резком снижении давления вполне вероятно выделение из жидкости растворенных в ней газов. Это обстоятельство может способствовать отрыву потока от стенок канала. Заметим, что аналогичные явления — отрыв от стенок и возникновение затяжной зоны пониженных давлений — наблюдались и в опытах [3], проводившихся с соплами несколько иной конфигурации.  [c.191]

В зависимости от числа Маха на выходе из решетки, углов входа потока и степени турбулентности на входе распределение давлений и температур по обводу профиля меняется. Особенно существенно сказывается влияние углов входа. При значительных изменениях ао на входной кромке образуется отрыв потока и возникает вихревой шнур (рис. 3.3), расположенный либо на входном участке спинки (aoвогнутой поверхности (oo>aoi ао1 — расчетный угол входа потока). В соответствии с вихревой структурой потока на входе отмечено увеличение неравномерности распределения температур по обводам профиля как на перегретом, так и на влажном паре. Интенсивное снижение температуры зафиксировано в тех точках профиля, где происходит резкое уменьшение давления (рис. 3.13). Характерно, что расчетные значения термодинамической температуры на диффузорных участках профиля возрастают, а экспериментальные значения температуры поверхности профиля практически сохраняются постоянными.  [c.96]


Правильная оценка потерь энергии в последних ступенях необходима для разработки мероприятий по усовершенствованию проточных частей ЦНД. Возникающий при малых расходах пара отрыв потока у корня ступени может привести к поломкам РЛ вследствие резко нестационарного характера течения в области отрыва и в связи с перераспределением расходов по высоте ступени. Некоторую оценку пространственного течения в проточных частях с крутыми меридиональными обводами можно получить с помощью расчета. Однако в условиях обтекания профилей с местными срывами только экспериментальные исследования дают надежные количественные результаты.  [c.224]

При положительном продольном градиенте давления, т. е. при уменьшении скорости внешнего течения в направлении движения, скорость в пограничном слое изменяется таким образом, что градиент скорости на стенке может стать равным нулю. При этом пограничный слой отрывается от поверхности и покидает пристеночную область возвратного течения или застойную зону. Отрыв пограничного слоя может возникать на гладких поверхностях и всегда происходит на резких изломах поверхности.  [c.274]

Резкое местное сужение и дальнейшее расширение проход-лого сечения отдельной струи вызывает отрыв ее от поверхности твэла. Возникновение турбулентных пульсаций и, по мере увеличения скоростей, появление отрывного течения струек приводят к значительно болынему гидродинамическому сопротивлению при течении охладителя через шаровые твэлы, по сравнению с теченлем теплоносителя в трубах при одинаковом  [c.39]

Следует указать, что общая структура потока, полученная на модели электрофильтра при рассматриваемом варианте подвода, подтвердилась в промышленных условиях работы аппарата. При обследовании решеток такого электрофильтра на одной из ТЭЦ были обнаружены слс.ты эр,дни в ви. Ш деф ф.мчции отверстий, принявших овальную форму (рис. 9.6, о) вследствие разрушения их краев. Направление разрушения краев очень близко совпало с направлением линий тока, наблюдавшихся на мг шли. по шелковинкам (рис. 9.6, г). Нижняя часть решеток электрофильтра была настолько сильно. разрушена, что местами группы отдельных отверстий обтшдииялись в большие сплошные отверстия. Более сильная эрозия в. нижней. части решетки закономерна, так как в этом месте газ, идущий из подводящего диффузора с наибольшими скоростями (отрыв потока происходит от верхней стенки), испытывает при растекании по решетке резкое искривление с поворотом вверх. Искривление потока приводит к появлению центробежных сил, отбрасывающих наиболее тяже.лые частицы, взвешенные в потоке, в сторону от центра кривизны, т. е. как раз в сторону нижней части решетки. Набегая со сравнительно большой скоростью и скользя по решетке в указанном месте, твердые частицы постепенно ее разрушают.  [c.232]

Наличие даже слабого скачка уплотнения приводит к резкому увеличению давления во внешнем потоке. Рост давления передается навстречу потоку по дозвуковой части пограничного слоя. Линии тока отклоняются от стенки, порождая в сверхзвуковой частя пограничного слоя семейство волн сжатия, которые распространяются во внешний поток и оказывают влияние на форму и интенсишность скачка уплотнения вблизи области взаимодействия. Продольный градиент давления в пограничном слое оказывается значительно меньше, чем во внешнем потоке. Если скачок слабый, то движение в пограничном слое происходит под воздействием небольшого положительного градиента давления и отрыв потока не происходит. С увеличением интенсивности скачка уплотнения во внешнем потоке возрастает градиент давления вблизи стенки и возникает отрыв пограничного слоя. При этом увеличивается отклонение линий тока в сверхзвуковой части течения, благодаря чему поддерживается необходимое распределение давления, соответствующее данной интенсивности скачка уплотнения. В зависимости от условий во внешнем потоке (интенсивности скачка уплотнения, местного числа М, ускоренного или замедленного характера течения) и формы обтекаемого тела возможны два случая. В первом случае поток после отрыва присоединяется снова к стенке. Сразу за скачком уплотнения возникают волны разрежения, как при обтекании внешнего тупого угла. В месте присоединения поток направлен под некоторым углом к стенке, поэтому здесь возникает новый скачок уплотнения, который может вызвать иногда новый отрыв пограничного слоя. Таким образом, могут появиться несколько 22  [c.339]

Наблюдения показывают, что при выходе струи из узкой части трубы образуется отрыв потока от стенок и пространство между струей и стенками заполняется вихрями. На некотором расстоянии /р струя полностью расширяется, но может иметь в сечении 2 2 резко неравномерную эпюру скорости, что обусловлено нарушением осесимметричности (искривлением) потока на участке /р. Эпюра скорости выравнивается на участке /ц, в конце которого (сечение 2-2) устанавливается распределение скоростей, характерное для стабилизированного турбулентного потока (например, логарифмическое).  [c.171]

Бернулли, так как дпссппации энергии не происходи-]. Это давление распространяется и на всю толщину пограничного слоя. По длине слоя между О н В имеется минимум давления, а от него вниз по потоку существует положительный градиент даЕ-ления, который приводит к тому, что остановившаяся частица вначале перемещается в пограничном слое В сторону стенки, а затем начинает двигаться обратно. Пограничный слой разбухает и отрывается. Отрыв пограничного слоя резко усложняет гидродинамическую картину обтекания цилиндра, а следовательно, и теплоотдачу.  [c.193]


На кривой и (у) для сечения, проходящего через точку В, обязательно имеется точка перегиба /), поэтому в точке В имеем д и ду о ипо (24.1) др дх )> 0. Следовательно, точка отрыва В должна лежать за точкой минимума давления, в которой т )> о и д и1ду = 0. Если давление вдоль профиля монотонно падает, то отрыв пограничного слоя не возникает. Отрыв пограничного слоя сопровождается резким увеличением толщины пограничного слоя и может привести к существенной перестройке основного внешнего течения жидкости, которое в этом случае становится существенно зависящим от свойств вязкости жидкости.  [c.264]

Интенсивность теплоотдачи при пузырьковом кипении велика и чаще всего не лимитирует рабочие процессы, коэффициенты же теплоотдачи намного выше, чем в случае жидкости, нагрев которой происходит без кипения. Особенностью процесса кипения является образование множества пузырьков, их рост, отрыв от поверхности нагрева и приток на их место новых масс жидкости. Энергичное перемещение множества паровых и водяных масс и объясняет более интенсивный теплообмен в граничном слое поверхности нагрева, гораздо ббльший по сравнению с молекулярным диффузионным переносом тепла в граничном слое некипящей жидкости. При очень больших тепловых нагрузках количество образующихся паровых пузырьков может быть так велико, что у поверхности образуется сплошная паровая пленка, что создает пленочный режим кипения, при котором теплоотдача резко уменьшается, а температура стенки увеличивается. В практических условиях пленочный режим кипения является крайне нежелательным, и поэтому в большинстве сл чаев применяют пузырьковый режим кипения.  [c.175]

Особенности структурных свойств композиционных материалов на основе углеродных и борных волокон с традиционными схемами армирования исследованы в работах [20, 25, 33, 59, 70]. Анализ и сопоставление полученных данных по угле- и боро-пластикам с аналогичными данными типичных стеклопластиков [39, 71] свидетельствуют о том, что использование высокомодульных волокон при традиционных схемах армирования способствует лишь резкому увеличению жесткости материала в направлениях армирования при этом заметного возрастания других упругих и прочностных характеристик не происходит. Главной отличительной особенностью высокомодульных композиционных материалов является большая по сравнению со стеклопластиками анизотропия упругих свойств [25]. Для углепластиков увеличение анизотропии упругих свойств обусловлено также анизотропией самих армирующих волокон. Существенных различий по прочностной анизотропии между стеклопластиками и высокомодульными материалами нет, но абсолютные значения межслойной сдвиговой прочности и прочности на отрыв в трансверсальном направлении однонаправленных и ортогонально-армированных углепластиков в 1,5—3 раза ниже аналогичных характеристик стеклопластиков.  [c.7]

В дальнейшем часть образцов исследовалась на отрыв от подложки, а часть приготовленных в аналогичных условиях подвергалась термоудару со стороны подложки резким нагреванием с помощью плазменной горелки. В результате покргдтие отделялось от подложки. Анализ изломов отделившихся покрытий проводился с помощью световой и электронной микроскопии. В последнем случае препарирование образцов велось методом двухступенчатых целлулоидно-угольных реплик.  [c.128]

Резкое 1снижение уровня правительственных ассигнований на разработку композиционных материалов в конце 60-х годов и переориентация многих исследователей и учреждений на новую тематику привели к тому, что до сих пор не появилось доступного издания, отрал<ающего итоги очень важных разработок. Между тем совершенно очевидно, что полученная информация — если ее правильно оценить и усвоить — может быть использована для со-  [c.7]

Хюбер и Примас определили, что для наконечников, изготовленных из чистого тщательно отожженного железа. В s л 11,5 кгс. В работе приведена зависимость нормализованной квадратичной неоднородности 2 от величины поля В для полюсов различной конфигурации, изготовленных из железа. При увеличении поля выше критического наблюдается резкий рост i>2, причем скорость роста в сильной степени определяется формой полюсов, в связи с чем осложняется создание электромагнитов с полями выше критических В, Хюбер и Примас [49] сделали попытку объяснить эти результаты возникновением на краях полюсов локальных эффектов насыщения в больших полях, когда относительная проницаемость становится малой (табл. 1) и нарушается условие ортогональности силовых линий по отношению к поверхности наконечников (постановка задачи в таком виде была сделана еще Вейсом [51], а пути ее решения были намечены в работах [21, 22]). Отри-  [c.223]

Сравнение гидравлических к. п.д. колес, полученных экспериментально, с расчетными, учитывающими лишь потери на трение по зависимости Блазиуса, позволило выделить потери в межлоиаточных каналах колеса на отрыв и на вторичные течения. Зависимость этих потерь от эквивалентного угла раскрытия межлоиаточных каналов представлена на рис. 1. Таким образом, экспериментально установлено, что для колес трех типов с различным числом лопаток резкое возрастание потерь в каналах наступает при значениях угла = 6ч-7. Это позволяет рекомендовать данный параметр для использования при проектировании новых рабочих колес. При этом угол раскрытия эквивалентного конического диффузора определялся по формуле  [c.292]

Данная работа проводилась на установке, которая представляла собой вертикальный цилиндрический сосуд со съемной крышкой и выносным конденсатором. В съемной крышке смонтированы четыре токовво-да. Два из них служили для электропитания опытного участка, два других являлись потенциальными выводами. Сосуд установки был окрз жеи слоем тепловой изоляции и имел охранный нагреватель. В стенках корпуса диаметрально противоположно вмонтированы два циркониевых стекла марки ЛК-5. Съемка проводилась в проходящем свете камерой СКС-1М. С повышением давления размеры пузырей, отрывающихся от поверхности, резко уменьшались (при ps =100 бар >отр ==0,2 мм). Для получения увеличенных изображений использовался телеобъектив с набором насадочных колец, что позволило получать различную степень увеличения (максимальное увеличение 2,5 раза). Опытный участок представлял собой изогнутую под прямым углом пластину из серебра 99,99% толщиной 0,2 мм и шириной 2 мм, поставленную на широкую грань. Нагрузка на пластине создавалась постоянным током низкого напряжения. При съемке в поле зрения попадали одновременно горизонтальный н вертикальный участки. Перед проведением опытов экспериментальный участок обрабатывался пастой ГОИ и обезжиривался кашицей венской извести. После такой обработки чистота поверхности соответствовала 86 классу по ГОСТ 2789-51. В качестве рабочей жидкости использовалась обессоленная вода солесодержанием 0,2—0,5 г/ж . Для получения чистых теплоотдающих поверхностей во всем диапазоне исследованных давлений принимались меры, описанные в [101.  [c.156]

Напомним, что при околозвуковых режимах резко возрастают продольные градиенты давления. При этом перед скачками уплотнения II—III (рис. 3.5) пограничный слой ламинаризируется и отрывается [38]. Оторвавшийся слой повторно прилипает к поверхности профиля на конфузорном участке в косом срезе за скачком III. Повторный отрыв слоя происходит под воздействием скачка IV у выходной кромки. Опыты показали, что интенсивность  [c.80]

Процесс возникновения дискретной фазы в межлопаточных каналах решетки носит флуктуационный характер и сопровождается появлением конденсационной турбулентности, интенсивность которой значительна. Хорошо известно, что в суживающихся каналах большой конфузорности происходит частичное или полное вырождение гидродинамической турбулентности в пограничных слоях, т. е. имеет место ламинаризация слоя. Процесс ламннари-зации ( обратного перехода) в пограничных слоях особенно интенсивен при околозвуковых скоростях, когда продольные отрицательные градиенты давления достигают максимальных значений. Ламинаризированный слой отрывается местными адиабатными скачками, и этот процесс сопровождается появлением жидкой фазы и турбулизацией слоя (генерируется конденсационная турбулентность). В результате отрыв слоя ликвидируется, вновь происходит ламинаризация слоя, появляется отрыв и т. д. Б соответствии с перемещениями зоны отрыва происходят перемещения скачка уплотнения по спинке профиля в косом срезе, что вызывает пульсацию термодинамических параметров — давления и температуры 48, 52, 53, 124]. Механизм генерации пульсаций параметров при конденсации в сопловых и рабочих решетках действует и при дозвуковых скоростях и вызывает опасные возмущающие силы. Таким образом, переход в зону Вильсона сопровождается специфическими нестационарными явлениями, в основе которых лежат флуктуационный механизм возникновения жидкой фазы и генерации конденсационной нестационарности, периодические отрывы пограничного слоя. В тех случаях, когда частота процесса конденсационной нестационарности близка или кратна частоте волн, возникающих при взаимодействии решеток, амплитуда пульсаций давлений (и температур) резко возрастает—имеет место резонанс и дополнительные возмущающие силы достигают опасного предела.  [c.192]


Перемещающиеся скачки конденсации, естественно, дестабилизируют пограничный слой, причем дозвуковые участки слоя резко утолщаются и могут проводить возмущения, создаваемые за соплом, против течения. Вблизи критического сечения, где интенсивность скачков конденсации максимальна, возможен локальный во времени отрыв слоя. Вполне вероятно, что образованием локальных отрывов объясняется минимальное значение hp t на рис. 6.8, б.  [c.209]

При внезапном расширении происходит отрыв потока и образуются области вихревого движения с периодически возникающими и разрушающимися вихрями. Течение в зонах отрыва является периодически нестационарным, сопровождается высокоамплитудными пульсациями параметров. Пульсации давлений и температур распространяются в потоке и резко увеличивают интенсивность турбулентности. Следовательно, потери кинетической энергии обусловлены образованием отрывной зоны и вихреобразо-  [c.259]

Аналогичная картина наблюдалась о экспериментальной работе ЛПИ [33]. Здест) показано, что при расходе пара )=0,15Do у корня возникает вихревое течение и степень реактивности у корня резко снижается. Отрывная зона у корневой части лопатки была обнаружена при исследовании потока на экспериментальной турбь -не в ЦКТИ [21]. По мере уменьшения расхода поток пара в корневой зоне закручивается в сторону вращения. В работе [21] было установлено, что относительная скорость пара в нижней половине лопатки дозвуковая, а в верхней — сверхзвуковая и что лопатка последней ступени во время работы раскручивается наиболее существенно в верхней части, вследствие чего через иериферийнук) зону проходит большее количество пара по сравнению с расчетным. Рассматриваемый отрыв  [c.12]

На втором этапе картина резко меняется. Развившаяся на первом этапе сеть раковин на поверхности катода в условиях действия по-идермоторных нагрузок приводит к образованию микротрещин в приповерхностных слоях и их проникновению в глубину материала. По-ндермоторные нагрузки в условиях работы автокатодов из углеродных волокон близки к критическим. Поэтому появившиеся трещины стимулируют отрыв кусков материала от основной части катода.  [c.144]


Смотреть страницы где упоминается термин Отрыв резкий : [c.22]    [c.55]    [c.388]    [c.194]    [c.321]    [c.380]    [c.181]    [c.16]    [c.82]    [c.165]    [c.327]    [c.55]    [c.258]    [c.121]    [c.39]    [c.467]   
Струи, следы и каверны (1964) -- [ c.101 ]



ПОИСК



Отрыв

Явление отрыва транзитной струи от стенок русла. Водоворотные области. Поверхность раздела. Общий характер местных потерь напора — 4-15. Резкое расширение трубопровода. Формула Бордй. Выход иа трубопровода



© 2025 Mash-xxl.info Реклама на сайте