Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм на микроскопическом уровне — Механизм процесса

Представленные в настоящей и следующей главах исследования также основываются на взаимосвязи между физическими процессами деформирования и разрушения и макроскопическим поведением материала. Отличие от других работ указанного направления состоит в выборе структурного уровня рассмотрения физических механизмов и процессов — это в основном структурный уровень, промежуточный между микроскопическим и макроскопическим, т. е. мезоскопический уровень. Для анализа повреждения и разрушения поликристаллических металлов такой структурный уровень, как правило, соответствует зерну. Такой выбор позволяет, с одной стороны, уйти от излишней детализации атомных, дислокационных и других структурных процессов, с другой — сформулировать критерии разрушения в терминах механики сплошной среды.  [c.51]


Затухание излучения внутри оптического волокна обусловлено как поглощением в материале волокна (включая рассеяние, вызванное флуктуациями плотности на микроскопическом и атомном уровнях), так и самим процессом распространения света в волноводе. Первый механизм затухания определяется материалом и может быть исследован на любом образце этого материала, тогда как второй определяется геометрической формой волновода. Потери, обусловленные поглощением в стекле, можно подразделить на три части поглощение материала, поглощение на примесях, неизбежно присутствующих в материале, и поглощение на атомных дефектах. Эти потери можно описать феноменологически через коэффициент потерь а. — характеристику рассматриваемого материала, который определяет относительное затухание на единицу длины полной энергии, переносимой электромагнитным полем. Разумеется, необходимо ввести два коэффициента потерь 1 и 2 первый из которых относится к материалу сердцевины, а  [c.603]

Переходя к изложению глав 3,4, посвященных исследованию пластической деформации и разрушения, следует отметить, что несмотря на значительные усилия, последовательная картина, позволяющая представить эти процессы на масштабах от микроскопического до макроскопического, до последнего времени отсутствует. Причина отставания в объяснении деформации и разрушения, кажущихся намного проще таких явлений как сверхпроводимость и сверхтекучесть, состоит в том, что для последних хорошо определены элементарные носители явления (конденсат куперовских пар и атомов Не ), тогда как для первых их представление приводит к весьма трудной задаче. Так, например, совершенно неприемлемо рассматривать процесс сверхпластичности как сверхтекучесть дефектов кристаллической среды. Это связано с многообразием механизмов сверхпластичности и отсутствием последовательной микроскопической картины, позволяющей описать носители деформации. Таким образом, требуется развить микроскопическое описание дефектов кристаллической структуры, которое позволило бы представить не только упругое поле, но и характер нарушения межатомных связей в области ядер. Такая программа реализована в 1 главы 3, 2 главы 4. Другая особенность реальной структуры состоит в том, что в ходе своей эволюции различные дефекты испытывают не только взаимодействие, но и попадают в иерархическое соподчинение друг к другу дислокации выстраиваются в малоугловые стенки, вакансии образуют дислокационные петли и т. д. Установление иерархической связи проявляется как качественная перестройка в поведении системы дефектов, которая выражается в появлении нового структурного уровня. Соответствующая теория изложена в 5 главы 3.  [c.11]


В условиях эксплуатации на материалы электрической изоляции повышенная температура воздействует в течение длительного времени, вызывая необратимые изменения свойств — тепловое старение. Органические диэлектрики, как правило, сильней подвержены тепловому старению, чем неорганические. В разных веществах, при разных температурных уровнях интенсивность термоокислительной деструкции, являющейся основным механизмом теплового старения, протекает по-разному. В первой стадии теплового старения за счет удаления остатков влаги и растворителей, улетучивания некоторых низкомолекулярных составных частей и других процессов электрические свойства твердых диэлектриков могут даже улучшаться без существенного снижения механических свойств. В дальнейшем термоокислительная деструкция, сопровождающаяся в органических диэлектриках выделением разных продуктов окисления, в том числе СО, СО2, Н2О и других продуктов иногда кислого характера с химическими агрессивными свойствами, будет вызывать прогрессивное ухудшение механических характеристик, в первую очередь тех, которые особенно чувствительны к появлению хрупкости материала падает удлинение при разрыве, число перегибов, удельная ударная вязкость, гибкость при изгибании вокруг стержней. В материале могут появляться сперва микроскопические, потом и более крупные трещины. При воздействии влаги, проникающей в эти трещины, может сильно снижаться удельное объемное сопротивление, возрастать tgб, падать электрическая прочность. Появление хрупкости особенно опасно при наличии динамических механических нагрузок, тряски, вибраций. Поэтому для выявления влияния теплового старения на электрические характеристики часто пользуются циклическими испытаниями чередующимися воздействиями на образцы высокой температуры, вибрации и влажности. При достаточно глубоком тепловом старении может произойти сильное науглероживание органического  [c.98]

Таким образом, развитие усталостных трещин в различных материалах при возрастающей асимметрии цикла нагружения не нарушает последовательности процессов разрушения и ведущей роли тех из них, которые соответствуют определенным масштабным уровням в соответствии с иерархией, присущей всем материалам. Последовательное возрастание асимметрии цикла сопровождается двумя эффектами. Доминирующую роль в развитии трещин начинает играть процесс внутризерен-ного разрушения с понижением масштабного уровня и возвращением к сдвиговым механизмам на микроскопическом масштабном уровне, что приводит к появлению псевдобороздчатого рельефа излома. Существует пороговая асимметрия цикла нагружения, при достижении которой развитие внутризеренного разрушения может быть реализовано только на микроскопическом масштабном уровне вплоть до нестабильности процесса роста трещин. В случае чувствительности границ  [c.299]

Будем называть процессы, приводящие к изменению напряженного состояния в зонах фактического касания микронеровкостей, приработкой на микроскопическом уровне, а процессы, вызывающие изменения напряженного состояния в зоне контурной площади касания,— приработкой на макроскопическом уровне. Эти процессы взаимосвязаны, однако по своему механизму они существенно отличаются. В некоторых случаях изменения, проходящие в зонах фактического касания микроиеровностей в условиях приработки на микроскопическом уровне, вызывают изменение напряженного состояния на контурной площади касания, и наоборот. Оба процесса приработки происходят одновременно во время работы подшипника скольжения. Однако длительность приработки на микроуровне меньше длительности приработки иа макроскопическом уровне.  [c.174]

Распространение усталостной трещины последовательно происходит на трех масштабных уровнях по величине ее прироста за цикл нагружения микроскопическом ((0,1-5)-10 м), мезоскопическом ((0,05-5)-10 м) и макроскопическом, (более 5-10 м) (см. главу 3). Стабильное (моделируемое) разрушение материала происходит на первых двух масштабных уровнях. На мезоскопическом масштабном уровне 0,1-10 хм углы разориентировки максимальны, однако высота рельефа минимальна. Это означает, что рассеивание энергии за счет извилистой траектории трещины на этом уровне мало. Развитие трещины на масштабном макроскопическом уровне происходит нестабильно по механизму квазистатического разрушения. При этом процесс разрушения физически и кинетически подобен разрушению при одноосном растяжении в том же температурно-скоростном интервале нагружения.  [c.259]


Как и другие сильнонеравновесные процессы в открытых системах, МЛ характеризуется стадийностью, причем переход от одной стадии к другой связан со сменой механизма диссипации энергии. Поэтому такие процессы, как фрагментация (дробление) частиц, холодная сварка фрагментов, формирование и дробление сваренных фрагментов, образование равноосных частиц, сварка равноосных частиц, являются способами диссипации энергии. Дробление частиц повышает энтропию системы, а сварка обеспечивает локальный отток энергии. Самоорганизация процессов при МЛ возникает в результате действия обратных связей при кооперативном взаимодействии процессов диссипации энергии на микро-, мезо- и макроуровнях. МЛ относится к процессам, в которых за макроскопическими эффектами стоит сложное поведение на микроскопическом (атомном) уровне.  [c.323]

Реологическая концепция. Согласно реологической концепции [2], механизм образования сварного соединения включает два этапа — на макроскопическом и микроскопическом уровнях. При сближении под давлением активированных тем или иным способом поверхностей соединяемых деталей вследствие сдвиговых деформаций происходит течение расплава полимера. В результате этого удаляются из зоны контакта ингредиенты, препятствующие сближению и взаимодействию ювенильных макромолекул (эвакуируются газовые, окисленные прослойки). Вследствие разности скоростей течения расплава не исключено и перемешивание макрообъемов расплава в зоне контакта. Только после удаления или разрушения дефектных слоев в зоне контакта, когда ювенильные макромолекулы сблизятся на расстояния действия Ван-дер-Ваальсовых сил, возникает взаимодействие (схватывание) между макромолекулами слоев соединяемых поверхностей деталей. Этот аутогезионный процесс происходит на микроуровне. Он сопровождается взаимодиффузией макромолекул, обусловленной энергетическим потенциалом и неравномерностью градиента температур в зоне свариваемых поверхностей.  [c.488]

Другим весьма важным следствием приведенных экспериментальных ре зультатов является тот факт, что ставится под сомнение заключение некото рых авторов [102, 519, 545, 550] о возможности низкотемпературной де формации полупроводниковых кристаллов лишь при уровне напряжений близких к теоретической прочности кристалла на сдвиг, что, как следствие приводит к независимости процесса хрупкого разрушения от кинетики микропластического течения в этих условиях. Можно предполагать, что та кое заключение было обусловлено прежде всего спецификой самих мето дов низкотемпературного нагружения, а именно - очень высоким и практи чески нерегулируемым уровнем напряжений под острием индентора или зерна абразива, всегда близким или даже превышающим уровень теорети ческого напряжения сдвига, а также очень высокой скоростью его прило жения (процесс абразивной обработки, удар шара о плоскость [102] и т.п.) В тех случаях, когда методика нагружения может обеспечить постепенное с заданной скоростью нарастание нагрузки от минимального значения до некоторой конечной величины, можно проследить стадийность и смену механизмов формоизменения, т.е. начальный этап зарождения и движения дислокаций и потом уже хрупкое разрушение, как следствие неоднородности актов микроскопического трчения.  [c.242]

В. Эбелинг и др. [23] рассмотрели физику процесса эволюции с синергетических позиций, уделив особое внимание при анализе образования новых макроскопических структур усилению микроскопических флуктуаций в неустойчивых системах. Николис и Пригожин [24] назвали этот механизм порядок через флуктуации . Усиление микроскопических флуктуаций приводит к нарушению симметрии системы. С точки зрения В. Эбелинга и др. [23] пусковыми кнопками процессов в каждом конкретном случае являются определенные неустойчивости системы в точках бифуркаций. Эволюция системы связана с самовоспроизведением структур. В естественных процессах самовоспроизведения и эволюции участвует множество различных элементарных процессов. К их числу относится самовоспроизводство, бистабильность и мультистабильность, конкуренция, отбор, хранение и обработка информации и др. [23]. В этом перечне на первом месте стоит самовоспроиз-водство. Система, способная к самовоспроизведению структуры, при определенных условиях может производить не только одни и те же копии на различных пространственно-временных уровнях, но и более сложные копии, чем оригинал. Примером самовоспроизводства молекул является автокатализ по реакциях типа  [c.61]


Смотреть страницы где упоминается термин Механизм на микроскопическом уровне — Механизм процесса : [c.279]    [c.90]    [c.5]    [c.289]    [c.372]   
Узлы трения машин (1984) -- [ c.174 , c.178 ]



ПОИСК



Механизм процесса

Уровень микроскопический



© 2025 Mash-xxl.info Реклама на сайте