Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм процесса КР алюминиевых сплавов

Ультразвук способствует также выделению газов, связанных в нерастворимых твердых химических соединениях — окислах и нитридах, а также других твердых неметаллических включений, например, сульфидов, т. е. рафинированию металлов. Это подтверждается многочисленными опытами, при которых полученные слитки металла после ультразвуковой обработки расплава имели значительно меньше неметаллических включений, че.м слитки, кристаллизовавшиеся без ультразвука. При кристаллизации некоторых металлов и сплавов с примесями под действием ультразвука обнаружено вытеснение примесей. Это дало повод предполагать, что ультразвук можно использовать, для рафинирования металлов и сплавов от неметаллических включений. Механизм очистки алюминиевых сплавов представляется следующим образом. Ионы растворенного водорода соединяются в комплексы с окислами алюминия, адсорбируются иа поверхности газовых пузырей и всплывают вместе с ними. Таким образом, процесс выделения газов протекает одновременно с очисткой от неметаллических примесей.  [c.54]


Систематические исследования формирования сферических частиц применительно к алюминиевым сплавам позволили дать не только объяснение механизма их последовательного образования в процессе роста трещины на основе представлений о ротационных эффектах пластической деформации, но и выявить новые закономерности формирования химического состава продуктов фреттинга [88-91].  [c.153]

Форма профиля усталостных бороздок была исследована на образцах из алюминиевого сплава 2017-Т4, испытанных при разной асимметрии цикла нагружения [158]. Профили усталостных бороздок были получены по специальной технологии, в которой был реализован их срез в плоскости перпендикулярно излому (рис. 3.34). На представленном рисунке дана схема выявленных ориентировок полос скольжения в плоскости среза. Очевидно, что ориентировка полос скольжения указывает на процесс формирования усталостных бороздок в результате ротаций объемов материала от вершины трещины, как это было рассмотрено выше. Существенно подчеркнуть, что в рассматриваемой работе механизм формирования усталостных бороздок не обсуждался.  [c.177]

Нерегулярное нагружение путем уменьшения максимального напряжения цикла по мере увеличения длины трешины также позволяет поддерживать механизм разрушения материала в пределах первой стадии кинетической диаграммы. Для алюминиевых сплавов эта ситуация наблюдается, если развитие трещины реализуется при размахе КИН менее 7 МПа-м / . Применительно к сплавам алюминия при пульсирующем (отнулевом) цикле нагружения достижение меньшей величины размаха КИН означает поддержание процесса роста трещины в пределах области, где не формируются усталостные бороздки.  [c.290]

В целях сохранения тематического единства книги две главы 7-го тома, не относящиеся к проблеме коррозионного растрескивания, были исключены. Однако эти главы, в которых рассматриваются методика измерения э. д. с. при высоких температурах и давлениях и механизм формирования оксида в процессе анодного оксидирования алюминиевых сплавов, также представляют интерес.  [c.7]

Влияние потенциала на КР представляет интерес в нескольких аспектах. В реальных условиях службы алюминиевые сплавы могут контактировать с разнородными металлами, являясь анодом, либо катодом в гальванической ячейке. Наложение анодного потенциала часто применяется в испытании образцов на КР в ускоренных лабораторных испытаниях. Кроме того, эффект действия электродного потенциала часто используется для того, чтобы понять и изучить механизм процесса КР высокопрочных алюминиевых сплавов. И, наконец, катодная защита иногда используется для предотвращения возникновения и роста коррозионных трещин.  [c.205]

МЕХАНИЗМ ПРОЦЕССА КР АЛЮМИНИЕВЫХ СПЛАВОВ  [c.281]

Если вершина трещины покрыта слоем продуктов коррозии (оксидов, гидроксидов), то механизм распространения должен быть иным, так как водяные пары будут диффундировать к вершине трещины через слой продуктов коррозии. Математическая интерпретация такого слоя должна привести к уравнению, очень похожему на уравнение (12). Толщина газообразного диффузионного слоя должна быть заменена на толщину слоя продуктов коррозии, соответственно вместо коэффициента диффузии воды через газообразный азот должен быть применен коэффициент диффузии паров воды через продукты коррозии. Так как предполагаемое уравнение после указанного выше преобразования должно быть похожим на уравнение (12), любой механизм из этих двух может быть использован для объяснения результатов, представленных на рис. 41. Те же выводы могут быть сделаны для поверхностной диффузии воды к вершине трещины, где коэффициент диффузии в поверхностном слое и толщина диффузионного слоя по поверхности соответственно меняются с учетом количества газа. Следовательно, не легко выявить, какой процесс реально развивается во время процесса КР высокопрочных алюминиевых сплавов во влажных газообразных средах.  [c.288]


Известно, например, что успешная борьба с межкристаллитной коррозией нержавеющих и алюминиевых сплавов стала возможной лишь после раскрытия механизма процесса. В то же время скромные успехи, которые достигнуты в борьбе с коррозионным растрескиванием сплавов, в значительной степени объясняются недостаточным знанием механизма этого явления.  [c.5]

Анализ данных о влиянии нестационарного режима нагружения на предельные величины коэффициентов интенсивности напряжений применительно к алюминиевому сплаву Д1Т показывает, что при уровне соотношения = (1--/ )< 0,2 усталостные бороздки в случае нагружения по схеме растяжения не формируются (рис. 119). Процесс разрушения будет полностью определяться механизмом сдвига по типу И. Эти же данные показывают, что величина б,- в большей степени определяется размахом коэффициента интенсивности напряжений Д/Сь Минимальная величина (A/ i) min — (A/(f ) для сплава Д1Т, ниже которой усталостные бороздки в изломе не формируются, близка к 6,2 МН м (рис. 120). Указанная величина может быть принята как пороговая для циклического нагружения материала (А/С/д), ниже которой при распространении трещины не реализуется механизм нормального отрыва. Это значение близко к значению постоянной Л в уравнении (104) для сплавов алюминия.  [c.275]

Как указано выше (см, табл, П),,в присутствии меди алюминиевые сплавы имеют более высокие показатели СП, чем при легировании магнием. Можно предполагать, что одна из причин различия уровней СП — неодинаковое воздействие легирующих элементов на процессы ЗГП, лежащие в основе механизма СП. В рассматриваемом случае природа влияния меди и магния, находящихся в растворе, может быть связана с действием двух факторов. При равных атомных содержаниях медь сильнее, чем магний, понижает температуру начала плавления и, таким образом, при одинаковых температурах испытания 500 °С гомологическая температура у сплава А1—Си—Zr оказывается заметно выше, чем у сплава AI—Mg—Zr. Так, у двойных сплавов алюминия с 2 % (ат.) Си и 2%, (ат.) Mg температура 500 С отвечает соответственно 0,92 и 0,85 Гцд. Следствием этого должна быть большая скорость диссоциации захваченных дислокаций и релаксации дефектов в границах.  [c.168]

Кроме того, представляет интерес более глубокое изучение механизма влияния отдельных компонентов охлаждаюш,их вод на коррозию алюминиевых сплавов и особенности контактных коррозионных процессов в этой среде.  [c.126]

Ускорение коррозионного процесса не должно быть ре зультатом изменения его механизма. Для процессов коррозии, протекающих преимущественно с кислородной деполяризацией, нельзя получить надежные результаты путем применения при ускоренных испытаниях кислых электролитов, в которых процесс протекает с водородной деполяризацией. Так, например, попытки разработать ускоренные методы испытаний алюминиевых сплавов для оценки их стойкости в атмосферных условиях, основанные на принципе разбрызгивания в камерах серной кислоты, оказались безуспешными.  [c.7]

В дисперсионно твердеющих и литых алюминиевых сплавах в процессе циклического деформирования наблюдаются довольно сложные структурные и фазовые превращения [52, 86-91]. Предложены следующие механизмы циклического разупрочнения дисперсионно-упрочняемых металлических сплавов [52, 87]  [c.245]

Из применяющихся в мащиностроении способов анодной обработки алюминиевых сплавов наиболее полно исследованы электрохимическое полирование и анодирование [178]. Закономерности электрохимической размерной обработки алюминия и его сплавов изучены недостаточно это относится и к технологии процесса, и к механизму анодного растворения при высоких плотностях тока. Наиболее щироко представлены данные по обрабатываемости алюминиевых сплавов методом ЭХО в хлоридных и нитратных электролитах [28, 29, 45, 61 ]. Качество обработанной поверхности после ЭХО в хлоридных электролитах, как пра-  [c.57]

Коррозией называется процесс химического или электрохимического разрушения металлов и сплавов вследствие взаимодействия их с окружающей средой. Разрушающей средой при коррозии металлов и сплавов являются кислород воздуха, газы, водные растворы солей, кислот и щелочей. Примером коррозии могут служить ржавление стали или чугуна, образование белого налета на алюминиевых сплавах и зеленого налета на медных и бронзовых изделиях. В результате коррозии выводится из строя громадное количество металлических изделий, механизмов и машин, что наносит большой ущерб народному хозяйству.  [c.194]

Возвратно-поступательное вертикальное перемещение ползун совершает по направляющим колонкам 8. В горизонтальной плоскости ползун движется вместе с кареткой 6. На валу 2 установлена фрикционная муфта включения, сблокированная с тормозом. Управление муфтой — ручное рычажное. Станина открытого типа. Ползун с целью уменьшения массы выполнен из специального алюминиевого сплава. Каретка 6 состоит из верхней и нижней подушек, соединенных четырьмя направляющими колонками. Механизм подачи клещевого типа имеет две пары подающих и фиксирующих колодок. Подающие колодки 10 перемещаются с ползуном автомата. Обе пары фиксирующих колодок 9 закреплены на столе автомата. Зажимные губки этих колодок можно регулировать в продольном направлении, что позволяет устанавливать наименьшее расстояние между фиксирующими и подающими колодками в их крайних положениях, а это, в свою очередь, исключает возможность провисания ленты во время ее перемещения и обеспечивает высокую точность подачи. Зажим материала происходит с помощью пружин. Раскрытие губок принудительное от эксцентрика 1 через рычажную систему. Подающие губки, встроенные в штамповое пространство, повторяют движение ползуна. При ходе ползуна вниз губки производят прижим материала, при дальнейшем движении ползуна материал подается на необходимую величину. В это время фиксирующие губки раскрыты. Процесс штамповки осуществляется в момент подачи материала. По окончании подачи фиксирующие губки смыкаются и удерживают материал от проскальзывания при обратном движении подающих губок. Для резки отходов предусмотрены ножницы 11, получающие привод от кулака 4.  [c.212]


На коррозионную стойкость отливок, кроме химического состава, оказывает существенное влияние и пористость. Простые по конфигурации отливки имеют более низкую коррозионную стойкость. Это связано с проникновением коррозионноактивных сред на значительную глубину и с увеличением скорости коррозионного процесса по механизму щелевого эффекта, описанного выше. Поэтому устранение пористости будет полезным и с точки зрения коррозионной стойкости. Литейные алюминиевые сплавы защищают от коррозии анодированием или химическим оксидированием и лакокрасочными покрытиями.  [c.545]

Механизм коррозионных процессов в условиях воздействия механических нагрузок и динамика изменения механических свойств напряженного металла при коррозии изучены недостаточно. По этой же причине не всегда представляется возможным прогнозировать надежность конструкций в эксплуатации и эффективность электрохимической защиты. Однако положительный опыт ее применения на многих ответственных металлоконструкциях из нержавеющих и высокопрочных сталей, медных, титановых и алюминиевых сплавов требует пояснения принципов осуществления электрохимической защиты.  [c.93]

Как упомянуто ранее, покрытия сплавов могут обусловливать катодную защиту от межкристаллитной коррозии и от коррозионного растрескивания под напряжением. Применяют много алюминиевых сплавов, одни из которых меньше чувствительны к коррозионному растрескиванию под напряжением, другие больше. Механизм процесса в общем аналогичен описанному выше.  [c.284]

В 50-х годах, наряду с изучением механизма воздействия ультразвука на процессы кристаллизации металлов, началась разработка эффективных методов введения колебаний в затвердевающий металл [14]. Ультразвуковой обработке подвергались металлы и сплавы с температурой плавления 1500° С, началось проведение работ по ультразвуковой дегазации алюминиевых сплавов [28], с помощью ультразвука были созданы новые сплавы, состоящие из металлической основы с неметаллическим порошковым наполнителем [22].  [c.429]

Изложены вопросы коррозионно-механической прочности металлов, влияние коррозионных сред на характеристики ползучести. Описаны новые представления о механизме коррозионного растрескивания и связи его с водородным охрупчиванием. Рассмотрены кинетика и механизм влияния водородного охрупчивания в процессе коррозионного растрескивания различных сталей и сплавов. Показана зависимость этих видов разрушения от различных структурных факторов. Приведены сведения о коррозионном растрескивании высокопрочных алюминиевых и титановых сплавов, механизме этих процессов и способах защиты.  [c.4]

Анализ изменения интенсивности изнашивания алюминиевых бронз позволяет сделать вывод, что характеристики трения и износа чувствительны к трем основным факторам природе легирующих элементов трущихся материалов, свойствам смазочной среды и состоянию контртела. Первые два фактора связаны с диффузионными, процессами непосредственно, третий — через уровень пластической деформации мягкого образца (сплава меди) жестким (стальное контртело). Следовательно, диффузионное перераспределение компонентов сплава в зоне деформации является существенно важным звеном в механизме контактного взаимодействия.  [c.160]

При наличии кислорода в окружающей среде продукты износа в малоподвижных соединениях из стали состоят преимущественно из мельчайших (размерами 0,01 до 2,0 мкм) частиц окиси железа РегОз красно-коричневого цвета (в соединениях из алюминиевых и магниевых сплавов эти продукты имеют черный цвет). Накапливающиеся продукты износа, действуя как абразив, вызывают повреждение поверхностей контакта, образование на них своего рода каверн. Описанное явление получило название коррозии трения иногда его называют фрикционной коррозией, фреттинг-коррозией, окислением от трения, фреттинг-процессом или определяют одним словом фреттинг. Механизм фреттинга еще нельзя считать окончательно выясненным, спорной считается до сих пор относительная роль механического износа и собственно коррозии в этом явлении.  [c.227]

Фармери обнаружил, что для исследования механизма растрескивания алюминиевых сплавов, содержащих магний или медь, удобное ускорение растрескивания вызывается добавкой к хлористому натрию двууглекислой соды. Однако, поскольку эта добавка оказывает такое влияние не на все сплавы, ею нельзя пользоваться при проведении работ по оценке относительной склонности к растрескиванию разнотипных материалов. Роль бикарбоната в данном случае, вероятно, заключается в разрушении щелочи, образующейся на катоде в противном случае слабая кислотность, образующаяся на анодных участках, была бы нейтрализована этой щелочью. Поскольку накопление кислоты на анодных участках, как полагают, необходимо для развития коррозионного процесса, факторы, препятствующие ее нейтрализации, должны способствовать растрескиванию. Его роль такая же, как и двууглекислого кальция, применявшегося Портером и Хадденом (стр. 117) при получении коррозионных язв на алюминии но в случае глубокой и узкой трещины по сравнению с неглубокой язвой для предотвращения смешения анодного и катодного продуктов образование возвышения из пористого твердого тела над анодным участком не является необходимым. Поэтому ионы кальция не необходимы и цель достигается с помощью бикарбоната натрия. Принятый для испытания раствор был 0,5 я, по отношению к Na l и 0,005 , по отношению к NaH Os [19].  [c.639]

Известно, что в процессе приработки металлополимерных сопряжений на металлическом контртеле образуется пленка фрикционного переноса, состав, структура и свойства которой имеют определяющее значение в механизме трения и изнашивания сопряжения. Рассмотрим изменение структурно-фазового состава пленки фрикционного переноса в процессе длительного (до 52 часов) трения. Контртело в виде плоского диска изготавливали из алюминиевого сплава В95, содержащего в качестве легируюи их добавок магний, медь, цинк в количествах от 2 до 6%. Обработка рентгенограмм, снятых после 12, 20 и 32 часов трения, показала, что пленка фрикционного переноса, кроме фторопласта-4, содержит медь и что при этом в полимерной матрице нет кристаллических областей. С увеличением продолжительности трения  [c.99]

Механизм биоповреждения незащищенного металла (алюминиевого сплава) следующий. Продукты метаболизма повышают агрессивность влаги на поверхности металла. Последняя растворяет защитную окисную пленку и стимулирует процесс солеобра-зования. Кристаллы солей хорошо видны после высыхания поверхности вокруг колоний грибов (рис. 23, а). Длительное сохранение влаги вызывает язвенную коррозию. Особую опасность представляют капиллярные зазоры возможно развитие щелевой коррозии. Рост актиномицетов на опытных образцах показан на рис. 23, д.  [c.58]

Выше обсуждались данные, включающие результаты испытаний Грина типа III [179] и показывающие, что водород может играть важную роль в КР алюминиевых сплавов. Теперь рассмотрим процессы, которые при этом могли бы происходить. Критический обзор микроструктурных моделей КР в алюминиевых сплавах был сделан в работе [68], где механизмы, основанные на представлениях о путях анодного растворения, или преимущественном скольжении в свободных от выделений зонах межзеренных границ (см. рис. 55) были признаны неадекватными. Остается еще две возможности, одна из которых связывает стойкость к КР с непланарным скольжением [153, 155], а другая — с ростом заполнения межзеренных границ выделениями [347] (рис. 55). Имеются экспериментальные данные, свидетельствующие в пользу как одной, так и другой возможности, однако тщательные исследования, выполненные на промышленных сплавах, показали, что наибольшие корреляционные коэффициенты получаются в случае модели,  [c.143]


Данные по КР алюминиевых сплавов по-прежнему продолжают рассматриваться некоторыми авторами исключительно с точки зрения механизмов анодного растворения [395—397], однако новые данные все больше свидетельствуют в пользу большого вклада водорода в растрескивание [398—404]. Микроструктурные исследования на сплавах 7075 показали [405] одинаковый характер зависимости водородного охрупчивания и КР от микроструктуры. Недостаренный материал наиболее чувствителен к КР, а перестаренный сплав (Т73) склонен к КР в меньшей степени, чем Тб. Эти наблюдения согласуются С представлением об определяющей роли водорода в КР сплавов 7075, хотя и не доказывает его. По-прежнему уделяется внимание проблеме сегрегации растворенных элементов в алюминиевых сплавах и возможной роли этого процесса в КР и водородном охрупчивании [402, 406, 407]. Пока точно неясно, насколько важны такие эффекты.  [c.148]

Механизм межкристаллитной коррозии алюминиевых сплавов при низких температурах достаточно подробно изучен А. И. Голубевым [111,205]. Рассматривая причины межкристаллитной коррозии сплавов алюминия высокой чистоты при температурах выше 160° С, можно предположить следующее. На границах зерен, даже в очень чистом алюминии, различные примеси содержатся в боль-щем количестве, чем в центре зерна. Скорость катодного процесса на этих примесях возрастает, что приводит к смещению потенциала участков зерна, прилегающих к границе, в положительную сторону. Поскольку при высоких температурах чистый алюминий (при стационарном потенциале) подвержен коррозии в активной области, смещение потенциала в положительную сторону приводит к увеличению скорости коррозии на участках по границам зерен. При более значительном смещении потенциала в положительную сторону вследствие анодной поляризации либо при легировании элементами с малым перенапряжением водорода до значений потенциала, отвечающих области пассивации, межкристаллитная коррозия не развивается, что и подтвердилось при испытаниях. Из этого предположения следует, что монокристаллы чистого алюминия не должны подвергаться межкристаллитной коррозии в воде при высоких температурах. И, действительно, в воде с pH 5—6 при температуре 220° С монокристаллы алюминия в отличие от поликристаллов межкристаллитной коррозии не подвергались [111,206]. Попытка объяснить возникновение межкристаллитной коррозии алюминия в воде при высоких температурах растворением неустойчивых интерметал- лидов, выпадающих по границам зерен, связана с затруднениями. Дело в том, что легирование алюминия никелем, железом, кремнием и медью повышает стойкость сплавов по отношению к межкристаллитной коррозии, ВТО время как растворение неустойчивых интерметал-лидов, образованных этими легирующими компонентами (особенно последним), должно способствовать развитию межкристаллитной коррозии. Алюминий чистоты 99,0% при температуре свыше 200° С подвергается межкристаллитной коррозии не только в воде, но и в насыщенном водяном паре. Если же алюминий легировать никелем (до 1 %) и железом (0,1—0,3), межкристаллитная коррозия не развивается и в этом случае [111,172]. В результате коррозионного процесса размеры плоских образцов иногда увеличиваются на 15—20% [111,206].  [c.205]

В монографии рассмотрена роль фазовых превращений в формоизменении металлов и сплавов при периодических нагревах и охлаждениях. Изложены результаты исследования влияния полиморфных превращений, оплавления, процессов растворения и выделения фаз на структурную и размерную нестабильность металлических материалов. Приведены экспериментальные данные о необратимом формоизменении химически неоднородных сталей, композиционных материалов, алюминиевых сплавов, чугуна и др. Проанализирована роль диффузионных процессов при термоцик-лировании и описан pa тaopнo-o aдитeлt,ный механизм роста металлических сплавов.  [c.2]

В работе [275] представлены материалы Исследования механизма смыкания берегов трещины методом двухступенчатых реплик в технически чистом титане. Оказалось, что смыкание вызвано отклонением траектории трещины и появлением участков сдвигового разрушения. Смыкание трещины препятствует уменьшению коэффициента инт сивности напряжений до минимального значения цикла и происходит не по всей длине трещины, а лишь в отдельных точках ее поверхности. Для изучения этого явления Пеллу и др. [276] использовали электронную фрактографию. Они установили, что в условиях плоской деформации эффекты смыкания в алюминиевых сплавах незначительны. Исследование смыкания берегов трещины в вакууме показало [277], что оно больше, чем на воздухе. Возможно, это связано с большой зоной пластической деформации при вершине усталостной трещины. Известно, что закрь1тие трещины сопровождается распространением крупных усталостных трещин. Оно рассматривается как основной фактор, определяющий влияние коэффициента асимметрии цикла при низких скоростях распространения трещины (da/dN 10 м/цикл), при которых его роль возрастает вследствие уменьшения размаха коэффициента, интенсивности напряжений [278]. Это позволяет предположить, что закрытие трещины должно иметь важное значение в процессе распространения микротрещин в прйпороговой области, причем оно может быть болёе значительным, чем в случае крупных трещин.  [c.181]

Аналогичные особенности контактного взаимодействия усталостной трещины в припороговой области были отмечены при усталостных испытаниях никелевого сплава типа нимоник API при комнатной температуре и в вакууме [205]. Степень разрежения составила 2631—5353 Па, частота нагружения — 40 и 25 Гц при асимметрии цикла 0,1 и 0,5. Продукты фреттинга были выявлены в припороговой области в виде сферических и цилиндрических частиц (названных сосисками ) только при испытаниях в вакууме. Размер частиц не превышал 10 мкм в диаметре. Самым важным результатом исследования является тот факт, что указанные частицы наблюдали даже при асимметрии цикла 6,5, когда, согласно данным Элбера, трещина должна быть полностью раскрыта в полуцикле разгрузки образца. Опираясь на представления и модель Сьюреша [198], а также на результаты экспериментов Смита [206], предприняли попытку объяснить механизм формирования частиц при фреттинге в процессе роста трещины комкованием материала. Необходимо отметить, что оси цилиндрических частиц на представленных в статье фрактограммах ориентированы в направлении магистрального направления разрушения, тогда как Канг [205] утверждает, что в основном оси цилиндрических частиц ориентированы перпендикулярно магистральному направлению макроразрушения образца. Ориентировка осей цилиндрических частиц в направлении магистрального разрушения соответствовала частицам, которые были выявлены в изломе вблизи наружной поверхности образца, где напряженное состояние близко к плоско-напряженному. Это согласуется с результатами непосредственного наблюдения процесса роста трещины по боковой поверхности образца в растровом электронном микроскопе [200] наблюдали выход из устья трещины на боковую поверхность образца мелкодисперсного порошка, трактуемого как продукты фреттинга. Аналогичные продукты фреттинга в виде сферических частиц были выявлены Смитом [207] при циклическом сжатии образцов из алюминиевого сплава и стали.  [c.175]

Применение температурно-кинетического метода при изучении анодного растворения при повышенных плотностях тока алюминиевого сплава показало, что при небольшой величине потенциала преобладают ограничения, обусловленные химической поляризацией. При высоких скоростях обработки электрохимический механизм торможения скорости процесса переходит в диффузионный, и все больщую роль начинает играть отвод продуктов реакции из зоны обработки [130]. Наибольшее сопротивление транспортированию вещества при этом оказывает, по-видимому, покрывающая анод фазовая пленка с довольно рыхлой структурой. На основе анализа закономерностей анодного растворения металлов следует подчеркнуть сложность данного процесса, особенно при повышенных плотностях тока, и необходимость его разностороннего исследования в каждом конкретном случае, так как общетеоретические положения не дают практических рекд-мендаций по выбору оптимальных режимов процесса,  [c.37]

АЛА-3 (рис. 3.27) предназначена для аиодировапня баков и крышек стиральных машин Заря-2 на подвесках. Материал деталей — алюминиевый сплав. На позиции ваниы травления, в которой время выдерлски меньше темпа выхода подвесок, установлен механизм укороченной выдержки (0,3 мин). Продолжительность процесса анодирования составляет 40 мин, наполнения пленки  [c.96]

Такие пленки легко удаляют химическим растворением в смеси кислот H2SO4 и НС1 (для медных сплавов) или в щелочном растворе из смеси NaOH и Na l (для алюминиевых сплавов). Для удаления окисной пленки на стали выбор кислоты зависит от легирующих добавок. Для углеродистой низколегированной стали, например, применяют серную кислоту. При удалении окалины (грубого окисного слоя толщиной в сотни микрон, возникающего при термической обработке) процесс растворения является второстепенным, а главный механизм удаления состоит в отрыве окалины от металла давлением пузырьков водорода, образующегося под слоем и в трещинах, при реакции замещения водорода кислоты железом (рис. 5). Побочным вредным процессом в этом случае является наводороживание поверхности, т. е. растворение водорода в ме-  [c.19]


Склонность к ХТ наблюдается при сварке некоторых высоколегированных термоупрочняемых алюминиевых сплавов систем А1 - Мп - Zn и А1 - 2п - М - Си. Природа и механизм образования трещин еще недостаточно исследованы. Их возникновение связывают с выделением хрупких интерметаллидных фаз в процессе старения при охлаждении во время сварки и в послесварочный период. В результате дисперсионного твердения имеет место относительное упрочнение тела зерна по отношению к приграничным зонам. В ходе релаксации сварочных напряжений происходят локальное накопление пластических деформаций на границах зерен, их перенапряжение и замедленное разрушение.  [c.68]

Процесс химического никелирования широко применяют во многих отраслях машиностроения СССР. На ряде предприятий его используют для повышения износостойкости и защиты от коррозии деталей точных приборов и механизмов, предназначенных для эксплуатации как в обычных условиях, так и в условиях тропического климата (например, детали счетноаналитических машин и др.). В приборостроительной промышленности этим способом наносят покрытия на детали, изготовленные из стали, медных и алюминиевых сплавов и имеющие сложную конфигурацию (длинные и узкие каналы, глухие отверстия, резьбу и т. п.). Его применяют в оптической, электротехнической промышленности. Осаждение металлов методом химического восстановления получило большое развитие в США, Англии, Франции, ФРГ, Японии и других странах. В химической, нефтяной и других отраслях промышленности этих стран химическое никелирование используют для защиты крупных деталей сложного профиля, эксплуатирующихся в коррозионноагрессивных средах. Покрытия наносят на детали из различных сталей, чугуна, меди и ее сплавов, алюминиевых, магниевых и титановых сплавов и др., а также из неметаллов. С целью повышения износостойкости никелируют многочисленные детали автомобильной и авиационно-ракетной техники алюминиевые поршни, детали реактивных двигателей, внутреннйе стенки цилиндров компрессоров, насосов, детали очистительно-осушительных систем, бензиновые баки, цистерны для перевозки и баки для хранения различных химических веществ, детали арматуры атомных реакторов, в том числе длиноразмерные трубы, волноводы радиолокационных установок, лопатки компрессоров. Никелируют печатные схемы, что обеспечивает хороший контакт между обеими сторонами панели, так как все отверстия полностью покрываются никель-фосфорным слоем.  [c.307]

Работа Хора и Хайнса совершенно четко показывает, что для создания возможности растрескивания часто необходимо, чтобы защитная пленка была разрушена электрохимическим или механическим путем. Однако навряд ли этот механизм может служить в качестве общей теории развития трещин. Если бы напряжение само по себе могло непрерывно поддерживать разрушенное состояние пленки на конце трещины, то алюминиевый сплав должен был бы быть подвержен коррозионному растрескиванию в отсутствие кислорода, причем катодный процесс заключался бы в выделении водорода. Обычно это не имеет места. Кроме того, некоторые из экспериментов Фармери трудно объяснить на основе теории разрушения пленки. В образце алюминиево-магниевого сплава, находившемся в состоянии склонности к коррозионному растрескиванию, процесс растрескивания был доведен до такого состояния, когда глубина трещины не достигала половины толщины образца, после чего дальнейшее развитие трещины было задержано наложением катодного тока по истечении 30 мин, подача тока была прекращена, но развитие этой трещины не возобновилось спустя 15 час. появились новые трещины, но уже в других местах. Еще в одном опыте глубина трещины достигла примерно одной трети толщины образца, и ее развитие тоже было приостановлено с помощью катодной поляризации поляризация продолжалась 30 мин., после чего подача тока была прервана, а механическая нагрузка на образец была увеличена все же и по истечении 48 час. образец оставался неразрушенным. Если механическое разрушение пленки на конце трещины является решающим фактором для ее развития, то разрушение пленки началось бы после прекращения подачи тока, по крайней мере в том случае, когда механическая нагрузка была увеличена. Если же образование кислоты на аноде является тем фактором, который поддерживает процесс растрескивания, после того как он начался, то полученные результаты легко объясняются. Причины развития процесса растрескивания, если он начался, те же, что и развития питтинга (стр. 117).  [c.633]

Современное машиностроение — обшьрная и многоплановая отрасль промышленности, характерной особенностью которой является огромное разнообразие машин и механизмов, различных по конструкции, видам эксплуатационных нагрузок, рабочим средам, температурным условиям работы и т. д. В соответствии с этим круг металлических материалов, применяемых в машиностроении, весьма широк конструкционные нержавеюш,ие, кислотостойкие, жаропрочные стали, стали для криогенных температур и с особыми физическими свойствами, сплавы на медной, алюминиевой, никелевой и других основах. Однако расширение номенклатуры металлических материалов, узко специализированных применительно к конкретным эксплуатационным условиям, имеет и неблагоприятные последствия снижение степени унификации механизмов по материалам, необходимость разработки различных технологических процессов их производства и соответствующих видов промышленного оборудования, усложнение использования отходов и т. п. В связи с этим, освоение промышленностью новых металлов, сочетающих свойства разных металлических материалов, представляет собой важную народнохозяйственную проблему.  [c.3]

Более эффективное влияние ТЦО на алюминиево-кремниевые сплавы по сравнению с закалкой происходит в результате действия механизма,, обусловленного большим различием коэффициентов линейного расширения твердого раствора, среднее значение которого при 20 —577 °С составляет 28 10 °С [57], и кремния, среднее значение которого при 15— 1000 °С — 6,95-10 °С [200]. Причем следует ожидать максимальных значений напряжений в приграничных с частицами кремния областях твердого раствора и их снижения по мере удаления от них. Таким образом, возникающие в процессе ТЦО структурные напряжения снособствуют протеканию пластической деформации в алюминиевой матрице и, как следствие,— повышению плотности дислокаций. При этом наблюдается некоторая локализация пластической деформации вблизи границы раздела фаз. Признаком этого является повышенная плотность дислокаций в алюминиевой матрице вблизи частиц кремния по сравнению с внутри-объемной плотностью.  [c.75]

Если имеет место шоттковский механизм, то серебро образуется в результате удаления анионов. В этом случае отсутствуют теоретические затруднения для образования внутреннего серебра. Протекающий при этом процесс можно представить себе следующим образом сначала между собой соединяются два вакантных узла с сопровождающими их электронами, образуя пару F-цeнтpoв. По мере дальнейшего добавления электронов протекает рост агрегатов из -центров, вероятно в виде плоского образования в кристаллографической плоскости (111). Плоская форма наиболее вероятна по той же причине, по которой, например, образуются плоскости из СпаА в медных сплавах на алюминиевой основе после дисперсионного старения (при хранении), ибо эта конфигурация дает минимальную энергию деформации.  [c.107]


Смотреть страницы где упоминается термин Механизм процесса КР алюминиевых сплавов : [c.296]    [c.332]    [c.190]    [c.246]    [c.264]    [c.37]    [c.307]    [c.70]   
Смотреть главы в:

Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов  -> Механизм процесса КР алюминиевых сплавов



ПОИСК



W механизм Сплав

Механизм процесса



© 2025 Mash-xxl.info Реклама на сайте