Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зависимость смазки

Скорость деформирования должна приниматься в зависимости от наличия оборудования ка данном производстве. Изменяя какой-либо из параметров, таких как температура штамповки радиус вытяжного ребра матрицы е -ч радиус закругления пуансона зазор между пуансоном и матрицей 2 толщина материала 3 ввд смазки скорость штамповки усилие прижима качество обработанной поверхности вытяжного ребра свойства материала (пластические свойства и сопротивление деформированию)- определяют прежде всего его влияние, а также оптимальное значение построением кривых в зависимости от предельного коэффициента вытяжки.  [c.29]


Изменение динамической вязкости т] смазки в зависимости от температуры выражается формулой  [c.292]

Табл. 5.2. Скоростной параметр в зависимости эт типа подшипника и вида смазки Табл. 5.2. Скоростной параметр в зависимости эт <a href="/info/725939">типа подшипника</a> и вида смазки
В этот момент все неровности трущихся поверхностей закрыты смазкой, но еще не перекрыты с избытком. При дальнейшем увеличении v график изменения f строят в зависимости от безразмерной характеристики режима работы  [c.307]

Коэффициент трения у подшипников с периодическим подводом смазки колеблется в зависимости от условий смазки и режима работы от значений, соответствующих жидкостному трению, до величин, соответствующих полусухому трению.  [c.372]

Зависимость (19.14) не учитывает таких специфических факторов работы зубчатых передач, как гидродинамические явления, происходящие в слое смазки между контактирующими поверхностями, наличие динамических нагрузок и касательных сил трения, неравномерность нагрузки и т. д. Поэтому при использовании формулы Герца для расчета зубьев необходимо вводить некоторые коэффициенты.  [c.292]

Опорами и направляющими называют устройства, обеспечивающие вращение или поступательное перемещение подвижных частей механизмов. В зависимости от вида трения опоры и направляющие бывают с трением скольжения и трением качения. Кроме того, существуют опоры с упругими элементами, с газовой смазкой, ртутные и магнитные подвесы.  [c.426]

В зависимости от сочетания материа.яов, характера смазки и типа механизма [р 10 н- 200 даН/см , а для приборов [р1 г  [c.430]

Лабораторные исследования [84] показали, что для возникновения фреттинг-коррозии при трении стали о сталь требуется кислород, а не влага. Разрушение во влажном воздухе меньше, чем в сухом ещ,е меньшие разрушения наблюдаются в атмосфере азота. С понижением температуры коррозия усиливалась. Таким образом, становится очевидным, что механизм фреттинг-коррозии не электрохимический. Разрушение увеличивается с возрастанием нагрузки вследствие интенсивного питтингообразования на контактирующих поверхностях, так как продукты коррозии, например а-РеаОз, занимают больший объем (в случае железа — в 2,2 раза), чем металл, из которого образуется данный оксид. Так как при колебательном скольжении оксиды не могут удаляться с поверхности, их накопление ведет к локальному увеличению напряжения, а это ускоряет разрушение металла в тех местах, где скапливаются оксиды. С увеличением скольжения фреттинг-коррозия также возрастает, особенно при отсутствии смазки на. трущихся поверхностях. Увеличение частоты при одном и том же числе циклов снижает разрушение, но в атмосфере азота этого эффекта не наблюдается. На рис. 7.19 представлены графики зависимости фреттинг-коррозии от разных факторов. Заметим, что скорость коррозии в начальный период испытаний больше, чем при установившемся режиме.  [c.165]


В заключение рассмотрим уравнение (7.19). Из него следует, что коэффициент трения определяющий значение угла трения ф,, оказывает большое влияние на к.п.д. Эта зависимость наглядно показана на рис. 7.14 (при 7 = 30°) для разных видов трения и смазки / — трение без смазочного материала т = 5..40% // — граничная смазка 1 = 50.. 70% III — гидродинамическая и гидростатическая смазка q = 90...97% IV — трение качения г = 98...99%.  [c.242]

Трение в подшипниках скольжения. Потери на трение оцениваются коэффициентом трения [. На рис. 3.141 показана диаграмма изменения [ в зависимости от характеристики режима работы подшипника ро)/р, где р—динамическая вязкость смазки ш — угловая скорость вала р — среднее давление на опорную поверхность. Диаграмма имеет три характерных участка. Участок /о — 1 характеризуется примерно пос-  [c.408]

В качестве жидкой смазки используют нефтяные масла при температуре до 120° С и синтетические масла при более высоких температурах. В зависимости от условий работы применяют различные способы подачи жидкой смазки. При малых скоростях смазка поступает при окунании тел качения в масляную ванну. При горизонтальном расположении оси подшипников заливка масла в корпус производится до уровня, соответствующего положению центра тела качения, находящегося в нижней части подшипника. Часто смазку подают разбрызгиванием из общей масляной ванны погруженным в нее на 10. .. 15 мм зубчатым колесом. При значительных скоростях применяется смазка масляным туманом, получающимся в результате разбрызгивания масла зубчатыми колесами, или распыления масла специальными распылителями. Туман проникает в подшипники и обеспечивает их смазку.  [c.324]

Если осевая нагрузка действует постоянно или имеют место очень большие температурные перепады, особенно в сторону повышения температуры, то /г = О, т. е. подшипник использовать нельзя. В зависимости от качества и интенсивности подачи смазки, а также от конструкции узла = 0,02-4-0,2 (табл. 6).  [c.400]

Смазка цепных передач. Рациональный выбор вида и способа смазки повышает долговечность и надежность цепных передач, снижает число отказов из-за износа шарниров цепи и зубьев звездочек. Способ смазки можно выбрать по табл. 12 в зависимости от скорости цепи.  [c.583]

Антифрикционный ковкий чугун ЧМ1,3 применяется для трущихся и опорных частей ног шасси, демпферов, цилиндров, втулок, букс, колец, опор, подшипников и других деталей, работающих со смазкой при статической и динамической нагрузках. В литом виде чугун является белым, после отжига - ковким. Отжиг проводят при температуре 1000 - 1050°С в течение 3 - 15 ч (в зависимости от толщины отливки). В результате отжига получается структура перлита, феррита (до 20%) и графита отжига.  [c.66]

Пластичные смазки (вазелины, солидолы, консталины) используют для подшипников с окружной скоростью поверхности вала до 10 м/с. Корпус подшипникового узла заполняют смазкой в зависимости от скорости подшипника до 30. .. 60% его свободного объема. Эти смазки экономичны,- способны длительно (до года) работать без замены, лишь с редким периодическим пополнением, хорошо изолируют подшипник и допускают применение простейших уплотнений.  [c.535]

Жидкостные смазки (минеральные масла и др.) применяют для подшипников при окружных скоростях вала свыше 10 м/с. Жидкие смазки обладают значительно меньшим внутренним сопротивлением и потерями на трение, более стабильны и способны работать как при высоких, так и при низких температурах, позволяют применять циркуляционную систему подачи смазки, ее охлаждение, фильтрацию, способны проникать в узкие зазоры, обеспечивают хороший отвод теплоты и удаление продуктов износа, допускают смену смазки без разборки подшипниковых узлов. Однако жидкие смазки требуют более сложных уплотнений и регулярного наблюдения за подачей, менее экономичны. К зависимости от условий работы жидкую смазку можно подавать в подшипник различными способами с помощью масляной ванны в корпусе подшипника (уровень смазки в ванне не должен быть выше центра нижнего тела качения), разбрызгиванием из масляной ванны посредством одного из быстроходных колес или специальных крыльчаток.  [c.535]


В зависимости от наличия между сопрягаемыми поверхностями слоя смазки трение подразделяется на два вида трение без смазочного материала и трение в условиях смазки.  [c.49]

Рис. 1.2. Зависимость коэффициента трения (а) и интенсивности изнашивания в) некоторых композиций от температуры при трении по стали 45 без смазки (/ = 3 МПа, V = 1 м/с) Рис. 1.2. Зависимость <a href="/info/128">коэффициента трения</a> (а) и <a href="/info/33873">интенсивности изнашивания</a> в) некоторых композиций от температуры при трении по стали 45 без смазки (/ = 3 МПа, V = 1 м/с)
Рис. 1.5. Зависимость скорости изнашивания (а) и коэффициента трения (в) от контактного давления для различных композиционных материалов при трении без смазки по стали 45 при скорости скольжения 1 м/с Рис. 1.5. Зависимость <a href="/info/305733">скорости изнашивания</a> (а) и <a href="/info/128">коэффициента трения</a> (в) от <a href="/info/45916">контактного давления</a> для различных композиционных материалов при трении без смазки по стали 45 при скорости скольжения 1 м/с
Для проверочного прямого расчета подшипника в качестве исходных данных задаются его геометрические размеры d. А, Rz, I, L, Q температурновязкостная зависимость смазки х(0. т. е. сорт смазки режим нагрузки Р, ш. Цель расчета — установить режим трения в подшипнике путем сравнения толщины смазочного слоя кшп и йкр. По исходным данным определяют коэффициент нагруженности g и соответствующий ему относительный эксцентриситет X для нескольких предполагаемых значений средних температур смазочного слоя t,n. При полученных значениях % определяют коэффициенты потерь на трение f l и расхода смазки q. Условие теплового равновесия Ар — =Aq- -Ao позволяет определить искомое значение %, а вместе с ним остальные характеристики /imm, /7"ф, 9-  [c.58]

Прижатие осуществляют пружиной (см. рис. 11.6) или шариковым нажимным устройством (см. рис. 11,5). Диски изготовляют из стали и закаливают до высокой твердости HR 50.. . 60). Вариатор работает в масле. Обильная смазка значительно уменыпает износ и делаег работу вариатора устойчивой, не зависимой от случайных факторов, влияющих па трение. Снижение коэффициента трения при смазке в этпх вариаторах компенсируют увеличением числа контактов. Для умеиьи1ения скольжения (потерь) дискам придают коническую форму (конусность ГЗО. . , 3 "00 ). При этом получают точечный первоначал ,-ный контакт, переходящий в небольшое пятно под действием нагрузки. Тонкие стальные диски позволяют получить компактную конструкцию при значительной мощности.  [c.215]

В зависимости от характера связи молекул н природы радикалов, входящих в состав молекул, силиконы могут быть получены в виде смол, каучукоподобпых веществ, масел и жидкостей. На основе этих соединений ироизводятся жаростойкие и жаропрочные лаки, жидкие смазки, силиконовые каучуки и слоистые яластикн.  [c.405]

По условиям эксплуатации зубчатых передач, полный боковой зазор jn должен обеспечивать нормальную смазку зацепления, а также компенсировать теп./ювые деформации и погрешности изготовления и сборки передач и может быть выражен следующей зависимостью /n = /nminp + . где /nininp — часть бокового зазора, необходимого для компенсации тепловых деформаций и нормальной смазки зацепления к — часть бокового зазора, учитывающего влияние на боковой зазор суммарной погрешности изготовления и монтажа передачи.  [c.204]

Для смазки червячных передач приме яются нефтяные машинные масла повышенной вязкости. Вязко ть масла рекомендуется выбирать в зависимости от скорости скол. жения по табл. 1.13 [36].  [c.23]

В расчетах цепных передач, в частности в учете условий эксплуатации, связанных с величиной пути прения, удобно испол]. зовать простейшую степенную зависимость между давлением р и путем грспия p "S = , где С в данных oi раничеипых условиях может рассматриваться как постоянная величина. Показатель т зависит от характера трения при нормальной эксплуатации передач с хорошей смазкой т около 3 (в условиях скудной смазки т колеблется от 1 до 2).  [c.256]

Рис. Т4. Изменение коэффициента трения в зависимости от вида смазки (диаграмма Герси —Штрибека) Рис. Т4. <a href="/info/652136">Изменение коэффициента трения</a> в зависимости от <a href="/info/291819">вида смазки</a> (<a href="/info/386410">диаграмма Герси</a> —Штрибека)
При выборе смазочного материала необходимо учитывать условия эксплуатации смазываемых поверхностей (тепловые, кинематические и силовые условия в контакте). К ним относятся давление, скорость качения и скольжения, температура, материалы поверхностей, среда, в которой работает узел трения. Для прямозубых цилиндрических и конических передач смазочный материал и способ подвода смазки выбирают в зависимости от типа передачи и окружной скорости. Пластичные смазки применяют чаще всего в открытых передачах при окружной скорости меньше 4 м/с, а также в условиях, где применение жидких смазочных материалов невозможно. Для промышленных закрытых передач с окружной скоростью до 12—15 м/с применяют обычно смазку окунанием колес в масляную ванну на глубину при мерно 0,75 от высоты зуба. Объем масляной ванны рассчитывают в за висимости от передаваемой мощности (примерно на 1 кВт 0,25—0,75 л) При окружной скорости свыше 15 м/с для снижения потерь на преодо ление сопротивлений рекомендуют применять струйную циркуляционную смазку. При этом необходимо учитывать, что вязкость масла должна несколько понижаться с увеличением окружной скорости.  [c.742]


Для червячных передач наиболее распространена смазка окунанием червяка или червячного колеса в масляную ванну смазочный материал рекомендуется выбирать в зависимости от скорости скольжения в зацеплении R условий работы червячной пары по табл. 4. Для быстро-кодных передач допустимо применение масел с антизадирнымн присадками, в качестве которых используют растительные и животные жиры.  [c.746]

Количество подаваемой смазки и способ подачи определяют в зависимости от режима работы подшипника качения. Применение жидких масел предпочтительнее, так как они легче проникают к поверхностям трения. Однако в труднодоступных местах, а также в целях удлинения сроков возобновления смазки в конструкциях опорных узлов предусматривается использование пластичных смазочных материалов (мази и пасты) 1-13, 1-ЛЗ, ЦИАТИМ-201, 203, 221, 22I , ВНИИНП-242 и др., характеристики которых представлены в табл. 3. Ко еистент-ные смазки в узел обычно набивают на V3 свободного пространства корпуса. Предельная температура использования смазок при работе узла должна быть на 20—30° С ниже температуры каплепадения смазки.  [c.747]

Значение приведенного коэффициента трения кроме скорости скольжения зависит также от материалов червяка и червячного колеса, шероховатости активных поверхностей, качества смазки. Ориентировочные значения приведенного угла трения ф (для червячных пар сталь — оловянная бронза) в зависимости от скорости скольжения приведены в табл. 8.3 (меньшие значения для шлифованных червяков для колес из безоловян-ных бронз значения увеличивают примерно на 40%).  [c.171]

Рассмотрим прибор, реализующий принцип Гопкинсона. Он состоит из цилиндрического длинного стержня А определенного диаметра, подвешенного в горизонтальном положении на четырех нитях и способного совершать колебания в вертикальной плоскости. К одному концу стержня А прижат цилиндрический стержень В, называемый хронометром, к другому концу стержня прикладывается импульсивная нагрузка (давление при ударе или взрыве). Хронометр изготовлен из того же материала, что и стержень Л, имеет одинаковый с ним диаметр. Один торец хронометра и концевое сечение стержня А, к которому он прижат, притерты хронометр удерживается магнитным притяжением или нанесением тонкого слоя смазки на притертые поверхности. Такой прибор использовался Гоп-кинсоном при изучении удара снаряда в преграду. С помощью баллистического маятника замеряется количество движения хронометра, затем, используя приведенные зависимости, можно определить напряжение и другие параметры. Описанное устройство, называемое мерным стержнем Гопкинсона, имеет два существенных недостатка 1) используя его, можно определить только продолжительность импульса Т и значение и нельзя выяснить вид кривой о (/) 2) растягивающее усилие, необходимое для нарушения контакта лгежду стержнем и хронометром, мешает использовать прибор для измерений импульсов малой амплитуды.  [c.20]

Определение основных размеров маслопроводов, систем водяного охлаждения, разного рода сопловых аппаратов и насадков, а также расчет водоструйных насосов, карбюраторов и т. д. производятся с использованием основных законов и методов гидравлики уравнения Бернулли, уравнения равномерного движения жидкости, зависимости для учета местных сопротивлений и формул, служащих для расчета истечения жидкостей из отверстий и насадков. Приведенный здесь далеко не полный перечень практических задач, с которыми приходится сталкиваться инже-нерам-механикам различных специальностей, свидетельствует а большой роли гидравлики в машиностроительной промышленности и ее тесной связи со многими дисциплинами механического цикла (насосы и гидравлические турбины, гидравлические прессы и аккумуляторы, гидропривод в станкостроении, приборы для измерения давлений, автомобили и тракторы, тормозное дело, гидравлическая смазка, расчет некоторых элементов самолетов и гидросамолетов, расчет некоторых элементов двигателей и т. д.).  [c.4]

Трнботехнические характеристики материалов существенно зависят от температуры окружающей среды. На рис. 1,2 приведены температурные зависимости коэффициента трения и интенсивности изнашивания некоторых композиций при трении по стальному закаленному контртелу из стали 45 без смазки при давлении 3 МПа и скорости скольжения 1 м/с.  [c.28]


Смотреть страницы где упоминается термин Зависимость смазки : [c.251]    [c.275]    [c.180]    [c.310]    [c.250]    [c.10]    [c.199]    [c.337]    [c.422]    [c.575]    [c.578]    [c.748]    [c.406]    [c.258]    [c.138]    [c.36]    [c.73]   
Проектирование цепных задач Издание 2 (1982) -- [ c.67 , c.99 , c.117 ]



ПОИСК



Выбор смазки в зависимости от условий эксплуатации

Вязкость смазок 875 — Единицы измерения — Сравнение 892 Зависимость от температуры

Зависимость способа смазки

Зависимость шероховатости в процессе обработки от вида смазки и скорости протягивания

Оценка реальных температур в переходных зонах трения при частично зла стогидродинамической и граничной смазке в зависимости от нагрузки и скорости скольжения

Цепи тяговые — Классификация и назначение 147 —148 — Общие расчетные зависимости и положения 162—165 Смазк



© 2025 Mash-xxl.info Реклама на сайте