Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали по границам зерен на коррози

Другой особенностью металлов является их повышенная чувствительность к внешним воздействиям вдоль границ зерен. Например, если на латунный образец поместить небольшое, количество ртути, то она просачивается по границам зерен и через очень короткое время латунь распадается на куски. Подобное же явление происходит и с нержавеющей сталью. При некоторых условиях у обычных типов нержавеющих сталей по границам зерен образуются карбиды. Более того, в некоторых средах разрушение идет вдоль границ зерен, и нержавеющая сталь, обычно считающаяся коррозионно-стойкой, распадается. Между прочим, это явление используется для изготовления порошка из нержавеющей стали. Такая внутрикристаллическая коррозия имеет важное значение в связи с применением жидких металлов в ядерных реакторах. Можно ожидать, что жидкий металл окажется причиной такой коррозии. Этот вопрос нуждается в дальнейшем изучении.  [c.272]


На определенном расстоянии по обе стороны сварного шва находятся области, нагревающиеся до критических температур. Здесь по границам зерен пересыщенного аустенита выделяются карбиды, богатые хромом. В результате того что устойчивость по границам зерен уменьшается, в агрессивных средах идет межкристаллитная коррозия. Образование карбидов зависит не только от температуры, но и от продолжительности ее воздействия. Влияние этих факторов определяется химическим составом основного материала и его структурой. Для сварки непригодны стали, при нагревании которых в области критических температур по границам зерен образуется карбид хрома. Поэтому для изготовления сварных конструкций широко применяются стали, стабилизованные титаном, ниобием или танталом, а также стали с низким содержанием углерода, при сварке которых не выделяются карбиды. В большинстве случаев их использования межкристаллитная коррозия в зонах, расположенных на определенном расстоянии от сварного шва, не наблюдается.  [c.100]

Межкристаллитная коррозия (МКК) определяется как коррозия по границам зерен или как избирательная коррозия фаз, выделяющихся по границам зерен. Испытания на МКК являются контрольными для аустенитных, аустенито-ферритных и аустенито-мартенситных нержавеющих сталей и должны проводиться в соответствии с ГОСТ 6032—75. Испытания проводят на образцах в растворах медного купороса и серной кислоты с добавлением медной стружки или цинковой пыли сернокислого железа и серной кислоты, азотной кислоты, серной кислоты. После кипячения в течение регламентированного времени от 7 до 48 ч производят загиб образцов для определения сетки трещин, являющейся браковочным признаком. Определение глубины проникновения МКК в спорных случаях проводят на поперечном шлифе с помощью микроскопа.  [c.53]

Межкристаллитная коррозия в основном металле близ линии сплавления или ножевая коррозия поражает узкую полоску стали, которая в результате сварочного термического цикла нагревалась до температур более 1250° С. Этому виду коррозии могут подвергаться только стали, стабилизированные титаном или ниобием и танталом. При нагреве таких сталей до температур, превышающих 1200—1250° С, карбиды титана или ниобия-растворяются в аустените. При последующем воздействии критических температур в участках основного металла, нагревавшихся до температуры растворения карбидов, титан и ниобий, остаются в твердом растворе по границам зерен выпадают карбиды хрома и развивается межкристаллитная коррозия. При дуговой и особенно при электроннолучевой сварке, вследствие высокой концентрации сварочного нагрева, участок перегрева в околошовной зоне очень узок, поэтому и коррозионное разрушение имеет сосредоточенный характер. При дуговой сварке обычно поражается полоска основного металла шириной до 1 —1,5 мм.. В случае электроннолучевой сварки она еще уже, а при электрошлако-вой, наоборот, может расшириться до 3—5 мм. При испытании на загиб образцов, подверженных этому роду коррозии, разрушение имеет вид надреза ножом, отсюда название ножевая коррозия .  [c.278]


Как правило, аустенитные стали применяют в закаленном состоянии. Закалку производят после нагрева до 1050-1150 °С с охлаждением металла в воде или на воздухе с интенсивным обдувом (тонкостенные изделия). Закаленные аустенитные стали имеют наивысшие пластичность и вязкость, а также коррозионную стойкость. Из-за выделения карбидов и карбонитридов по границам зерен аустенита при замедленном охлаждении в процессе закалки или при последующем нагреве закаленной стали в процессе сварки либо пайки может снизиться ударная вязкость. Снижение ударной вязкости особенно нежелательно при низких температурах. Выделение карбидов может способствовать развитию меж-кристаллитной коррозии.  [c.128]

В высокохромистых ферритных нержавеющих сталях (после закалки или нормализации с высоких температур) наиболее быстро растворяются в слабоокислительных условиях неравновесные обогащенные железом карбиды хрома, которые выпадают по границам зерен в процессе охлаждения. В дур-алюмине наибольшей скоростью растворения обладает интерметаллид СиАЬ, в то время как обедненный твердый раствор растворяется гораздо медленнее. Возникающие внутренние напряжения во всех случаях будут способствовать активации границ зерен. Внутренние напряжения могут усиливаться вследствие образования продуктов коррозии по границам зерен. Межкристаллитная коррозия гетерогенных сплавов может развиваться и в условиях, когда вся поверхность металла находится в активном состоянии, если имеется большая разница в равновесных потенциалах или поляризуемости структурных составляющих и физически неоднородных участков гетерогенного сплава. Она может медленно развиваться и при пассивнохМ состоянии зер на и границ зерен, если есть значительная разница в их скоростях растворения.  [c.57]

Чувствительность к межкристаллитной коррозии повышается соответствующей термической обработкой (например, для стали закалка с температуры 1150—1200° С и отпуск при 500—750°С). При термообработке хромоникелевых сталей по границам зерен выделяются карбиды хрома, а области вблизи границ обедняются хромом. Для обработки такой стали используют водный раствор, содержащий 11% Си304 и 10%) Н2504. Интенсивность коррозии возрастает за счет образования гальванических микроэлементов области, обедненные хромом, являются анодом по отношению к центральным частям зерна, богатым хромом, и растворяются. Медь, осевшую на частицах, отмывают азотной кислотой. Получаемые порошки нержавеющей стали находят применение в производстве металлокерамических фильтров и конструкционных материалов [35]. В случае двух или более металлов, растворимых один в другом в жидком состоянии и обладающих или полной взаимной нерастворимостью или слабой взаимной растворимостью в твердом состоянии, один металл удаляется из сплава, тогда как другой остается в виде порошка. Этим методом можно получать легированные порошки, если несколько элементов растворимы один в другом и нерастворимы в каком-либо другом элементе.  [c.137]

Межкристаллитная коррозия (МКК) — это локальное коррозионное разрушение по границам зерен металла, приводящее к потере прочности и пластичности. Межзереннае вещество, действующее как анод, контактирует с большой поверхностью самих зерен, являющейся катодом. Коррозия протекает быстро, глубоко проникая в металл и приводя иногда к катастрофическим разрушениям. Нержавеющие стали типа 18-8 или дюраль (4 % Си—А1), подвергнутые неправильной термообработке, склонны к МКК. Примером неэлектрохимического межкристаллитного разрушения может служить коррозия никеля при высокой температуре в се-русодержащей атмосфере. При этом происходит проникновение серы по границам зерен металла — см. [1, рис. 14 на с. 1109].  [c.28]

Склонность аустенитных нержавеющих сталей к межкристал-литной коррозии зависит от содержания в них углерода. Малоуглеродистая сталь (<0,02% С) относительно стойка к коррозии этого типа [151. Азот, обычно присутствующий в промышленных сплавах в количествах, достигающих нескольких сотых процента, не столь сильно способствует разрушениям, как углерод (рис. 18.3) [16]. При высоких температурах (например, при 1050 °С) углерод почти равномерно распределен в сплаве, однако в области температур сенсибилизации (или при несколько более высоких температурах) он быстро диффундирует к границам зерен, где соединяется преимущественно с хромом с образованием карбидов хрома (например, МазСв, в котором М обозначает хром и небольшое количество железа). В результате этого процесса прилегающие к границам зерен участки сплава обедняются хромом. Его содержание может упасть ниже 12 %, которые необходимы для поддержания пассивности. В местах превращений объем сплава меняется, и это изменение объема распространяется от границы зерен на небольшое расстояние в глубь зерна. В результате на протравленной поверхности наблюдается расширение границ зерен. В сплаве, обедненном хромом, образуются активнопассивные элементы с заметной разностью потенциалов. Зерна представляют собой катодные участки большой площади по сравнению с небольшими анодными участками границы зерен. Протекание электрохимических процессов приводит к сильной коррозии вдоль границ зерен и проникновению агрессивной среды в глубь металла.  [c.305]


Предлагались и другие гипотезы для объяснения межкристаллитной коррозии, однако механизм, связанный с обеднением хромом, более всего отвечает экспериментальньпл данным, и, по-видимому, соответствует истине. Например, в карбидах, выделившихся на границах зерен после сенсибилизации нержавеющих сталей, как и ожидалось, обнаружено Повышенное содержание хрома. В продуктах коррозии на границе зерна, полученных в условиях, когда исключалось разрушение карбидов, содержание хрома оказалось ниже, чем в целом в сплаве. Так, Шафмейстер[17] подвергал воздействию холодных концентрированных растворов серной кислоты нержавеющую сенсибилизированную сталь, содержащую 18 % Сг, 8,8 % Ni, 0,22 % С. После 10-дневных испытаний в продуктах коррозии сплава на границе зерен он обнаружил только 8,7 % Сг. Содержание N1 и Fe в продуктах коррозии составляло, соответственно, 8,4 и 83,0 %. А это означает, что по границам зерен не происходит обеднения сплава никелем, но увеличивается содержание железа. Исследования сенсибилизированных нержавеющих сталей с помощью сканирующего микроскопа показали обеднение границ зерен хромом и  [c.306]

Необходимость длительной и безотказной работы различных деталей и изделий в контакте с агрессивной средой предъявляет высокие требования к коррозионной стойкости и долговечности материалов, из которых они изготовлены. В качестве коррозионностойких сталей во многих отраслях промышленности находят применение хромистые и хромоникелевые стали, содержащие не менее 12...13 % хрома. Однако эти стали во многих случаях могут быть подвержены одному из наиболее опасных видов коррозионного поражения - меж -фисталлитной коррозии (МКК), нередко являющейся причиной отказов оборудования и возникновения аварийных ситуаций. Межкристаллит-ная коррозия локализуется по границам зерен без видимых вооруженным глазом изменений внешнего вида, формы и размеров изделий. Сцепление между зер. сслабевает как в поверхностном слое, так и по всему сечению изделия, что может привести к практически полной потере функциональной способности изделия и механической прочности.  [c.83]

Коррозионную стойкость сталей и сплавов испытывали в кипяшей 65-67% азотной кислоте в тачение 50 циклов по 48 ч каждый (метод Гюи) для испытаний нержавеющих аустенитных сталей на стойкость к межкристаллитной коррозии в соответствии с ISO 3651/1 и ASTM А 262-85а). С цепью периодического удаления продуктов кор>-розии после каждого цикла раствор обновляли. Стойкость сталей оценивали по потерям массы к [г/м .ч], средней и максимальной глубине кбррозионного проникновения по границам зерен (соответственно  [c.23]

Шафмайстер, изучая переход стали в раствор при электролитическом травлении границ зерен, установил, что интеркристаллит-ная коррозия у отожженной стали 18/8 вызывается мартенситной областью по границам зерен, образующейся из-за обеднения хромом. Мартенситная зона края зерна имеет положительное значение потенциала, выделенный карбид хром-железо (осадок) — отрицательное значение.  [c.133]

Склонность к коррозии по границам зерен в стали (18% Сг и 8% Ni) путем электролитического травления исследовал также Шафмайстер [79], который сначала выявлял карбиды, а затем структуру. Преимущество этого метода заключается в том, что мельчайшие карбиды по границам зерен выявляются более четко, чем это возможно при использовании специальных методов травления на карбиды без выявления структуры.  [c.146]

Необходимо отметить, что указанные факторы — амплитуда деформации, длительность и максимальная температура цикла — являются основными, но не единственными параметрами, определяющими вид разрушения. Не изменяя в целом вид диаграммы, границы областей, характеризующих разрушения различного вида, можно сдвигать в ту или иную сторону для учета воздействия технологических и экшлуатационных факторов (например, шособа и режима выплавки металла, влияния среды, защитных покрытий). Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего при одних и тех же условиях нагружения смещается область величин сре, фо Ф 1 в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или при склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен еледовательно, в этом случае уменьшаются области Л и 5 на рис. 58 (по границам зерен развивалось разрушение при нагружении стали 12Х18Н9Т при 750° С тв=1,5  [c.102]

Когда содержание Ti или Nb в стали находится на нижнем пределе по отношению к С, сталь ие всегда обеспечивает отсутствие склонности к межкрнсталлитной коррозии, особенно в условиях длительной службы деталей при высоких температурах, С одной стороны, это связано с влиянием азота, всегда присутствующего в стали и образующего нитрнды титана, и, с другой стороны, влиянием высоких температур закалки. При закалке стали типа 18-8 с Ti с очень высоких температур часть карбидов хрома растворяется и ири замедленном охлаждении выделяется по границам зерен, сообщая стали склонность к межкристаллитной коррозии. Поэтому перегрев стали при термической обработке (выше 1100° С) или сварке считается вредным, особенно в тех случаях, когда соотношение между Ti и С находится на нижнем пределе по формуле Ti 5 (С — 0,03%).  [c.146]

Коррозионному растрескиванию подвержены все нержавеющие аустенитные стали 18-8 — как стабилизированные, так и нестаби-лизированные [111,72]. На сталях, склонных к межкристаллитной коррозии, разрушения при коррозионном растрескивании наблюдаются преимущественно по границам зерен. В остальных случаях разрушение имеет транскристаллитный характер - [111,74 111,84]. Л. В. Рябченков [111,86] и Т. П. Хор [111,74] исследовали влияние температуры на продолжительность испытаний до разрушения образца из стали 18-8 и установили зависимость между временем до разрушения образцов т и температурой  [c.142]


Флуктуация напряжений на поверхности металла может иметь место по границам зерен при наличии дислокаций [111,81 111,82]. Энергия деформированного металла больше, чем недеформирован-ного. Это обстоятельство увеличивает свободную энергию реакций, протекающих при осуществлении коррозионного процесса, и в отдельных случаях увеличивает скорость коррозии. Однако скорость коррозии в данном случае неизмеримо меньше скорости распространения трещин при коррозионном растрескивании. По данным X. X. Улига (рис. 111-29), скорость общей коррозии нержавеющей стали в растворе хлористого магния при наличии растягивающих усилий примерно в два раза больше, чем без напряжения. Но напряженный образец разрушился через 4 час, в то время как ненапряженный образец не был разрушен до конца испытаний (24 чйс).  [c.142]

Влияние смачивания на коррозионные свойства жидких металлов рассмотрено Фростом и Тейлером. Фрост считает, что величина межфазового поверхностного натяжения вследствие наличия градиента температуры или концентрации на процессы растворения и переноса массы не влияет. Это положение подтвердилось опытами, которые он проводил. Испытывались низколегированные стали в расплавленном висмуте. При взаимодействии их на этих сталях при температуре 500° С образуется краевой угол, равный приблизительно 120° С однако даже и при небольшом градиенте температуры наблюдается быстрый перенос массы. Способность жидкого металла смачивать твердый оказывает большое влияние на меж-кристаллитную коррозию. Смачивание в этом случае приводит к проникновению жидкого металла в твердый по границам зерен. Равновесие характеризуется уравнением  [c.318]

Коррозионное растрескивание аустенитных стале й на тепловых электростанциях. Аустенитные стали в условиях работы теплоэнергетических установок (котлов, парогенераторов, реакторных установок) могут подвергаться нескольким видам коррозии под напряжением. Так, нержавеющие стали этого класса, нелигированные титаном, ниобием или танталом, склонны к образованию трещин межкристаллитной коррозии. С металлографической точки зрения, этот вид коррозионного разрущения металлов и сплавов характеризуется образованием начальных трещин и ответвлений от основной трещины по границам зерен. При дальнейщем развитии коррозии этого вида, связанном с появлением концентраторов напряжений, также возможно образование транскристаллитных трещин. Кроме того, аустенитные стали, легированные титаном и ниобием и особенно нелегированные ими, в условиях работы теплоэнергетических установок тоже подвергаются межкристаллитной коррозии. Трещины межкристаллитной и кислотной коррозии под напряжением образуются на участках металла с наибольшими напряжениями и обязательно с той стороны, где волокна металла растянуты. Наиболее характерными признаками такой коррозии являются  [c.340]

При действии электролита па углеродистую сталь анодными участками являются зерна феррита, катодными— всевозможные загрязнения и включения в структуру металла токопроводящих веществ, а также расположенные на его поверхности окалина и ржавчина, потенциал которых значительно выше потенциала чистого металла. Если на металле нет защитных пленок, ощределепное значение может приобрести действие микропар, образованных телом зерна и его границами. В этом случае лранпцы зерен могут выполнять роль анода катодом же будут сами зериа. Коррозия еще более усиливается при наличии загрязнений металла, ка к правило, расположенных по границам зерен. Схема коррозионных пар приведена ла рис. 3-1.  [c.51]

Внутренние слои отложений взаимодействуют с защитными окисными пленками на поверхности труб. На границе раздела защитная окисная пленка металла — отложения находится промежуточный слой, содержащий как продукты коррозии металла, так и агрессивные составляющие отложений. Защитный слой окислов имеет сложное строение снаружи располагаются продукты полного окисления — гематит (РегОз), затем слой магнетита или хромистой шпинели (Рез04 или РеСг04) ближе к металлу при высоких температурах располагается слой Бюстита РеО. Вюстит может отсутствовать при относительно низких температурах поверхности металла. Конкретная температура, с которой появляется в окалине вюстит, зависит от химического состава стали. При наличии в пристенной области восстановительной атмосферы под слоем вюстита на границе с металлом образуется PeS. Подокисные слои металла могут обедняться углеродом и хромом. Иногда по границам зерен в поверхностном слое наблюдается избирательная коррозия. Наилучшими защитными свойствами обладает слой магнетита или хромистой шпинели.  [c.11]

Существует несколько видов электрохимической коррозии. Если металл однороден (например, однородный твердый раствор), то наблюдается равномерная коррозия, протекающая примерно с одинаковой скоростью по всей поверхности металла. В неоднородном металле, что является наиболее частым случаем, коррозия носит локальный характер и охватывает только некоторые участки поверхности. Эту местную, или локальную, коррозию в свою очередь подразделяют на точечную, пятнистую и с язвами. Очаги пятнистой и точечной коррозии являются концентраторами напряжений. Наиболее опасна так называемая интеркристаллит-ная коррозия, распространяющаяся по границам зерен вследствие более низкого их электрохимического потенциала. Коррозия без заметных внешних признаков быстро развивается по границам зерен, вглубь, резко снижая при этом механические свойства. Сталь, пораженная интеркристаллитной коррозией.  [c.291]

В нержавеющей стали типа 304 (18-8) ниобий применяется с целью уменьшения межкрнсталлитной коррозии. Он связывает углерод в карбид, препятствуя тем самым выпадению его по границам зерен. Сопротивление разрыву и ползучести ниобийсодержащей стали 18-8, как правило, выше, чем у той же стали, не содержащей ниобия. В сложных сплавах на основе железа, содержащих ниобий, повышается их жаропрочность и пластичность в горячем состоянии. Кроме того, он сообщает этим материалам устойчивость против теплового удара.  [c.463]

Межкристаллитная коррозия - это преимущественное разрушение металла вдоль границ зерен. При незначительных общих коррозионных потерях разрушение проникает на большую глубину и сопровождается снижением прочности и пластичности материала, что в конечном счете приводит к выходу из строя всей конструкции. Межкристаллитной коррозии подвержены многие сплавы на основе Fe (в т.ч. ферритные, аустенитные, ау-стенитно-ферритные и др. стали), М, А/ и другие материалы, имеющие, как правило, неоднородную структуру. Межкристаллитная коррозия - электрохимический процесс, обусловленный тем, что твердый раствор может расслаиваться с образованием по границам зерен фаз, обогащенных каким-либо компонентом материала (так называемые избыточные фазы), а участки, непосредственно прилегающие к границам зерен, оказываются обедненными этим компонентом (обедненные зоны). Под действием той или иной агрессив-  [c.161]

Образование карбидов хрома при нагреве в холоднодеформи-рованном материале происходит более равномерно, чем в неде-формированной стали, и не только по границам зерен, но и по плоскостям деформации. В результате этого холоднодеформирован-ная сталь 18-8 приобретает меньшую склонность к межкристаллит-ной коррозии, чем недеформированная сталь, однако полного иммунитета против этого вида коррозии сталь не приобретает.  [c.314]


В СССР сталь типа 18-8 с ниобием известна как сталь марки Х18Н12Б (X18H1IB), а также с другим соотношением хрома и никеля, применяемая для работы при высоких температурах (см. табл. 119, 120). Ниобий как сильный карбидообразующий элемент связывает углерод в стойкие карбиды, тем самым предотвращая образование карбидов хрома по границам зерен и, следовательно, появление склонности к межкристаллитной коррозии. Ниобий в то же время является очень сильным ферритообразующим элементом. Не связанный в карбиды ниобий оказывает сильное влияние на увеличение ферритной области. Поэтому хромоникелевые стали типа 18-8 при введении в них ниобия приобретают аустенито-ферритную структуру. Чтобы избежать появления ферритной фазы в хромоникелевых сталях, рекомендуется вводить несколько повышенное содержание никеля (10—12%).  [c.343]

В работе [756] проведен анализ кривых склонностей сталей типа 18-8 и 18-12 к межкристаллитной коррозии (Роллассона) в зависимости от их химического состава. Установлено, что образование карбидов, богатых содержанием хрома, по границам зерен связано с диффузионной способно- поо стью хрома и в основном определяется энергией активации, которая равна 72 ООО кал моль, т. е. близкой к энергии активации диффузии хрома в у-твердом растворе. Как известно, межкристаллит-ная коррозия возникает тогда, когда содержание хрома в стали становится ниже 15% (см. рис. 279 и 282). Поэтому линии  [c.529]

На рис. 338, а показана электронная микрофотография стали 0Х23Н28М2Т, имеющей склонность к межкристаллитной коррозии. По границам зерен аустенита хорошо видны непрерывные выделения второй фазы. После стабилизируюш,его отжига выделения второй фазы в аустените хорошо видны в виде скоагулированных частиц различной формы (рис. 338, б).  [c.606]

Межкристаллитная коррозия (МКК) — один из наиболее опасных и распространенных видов местной коррозии МКК проявляется преимущественно в разрушении сталей и спла ВОВ по границам зерен, что приводит к резкому падению прочности и пластичности и может вызвать преждевремен 5юе разрушение конструкции Коррозия этого вида наблю дается на хромистых и хромоникелевых сталях, сплавах на основе никеля, меди, алюминия и др Причиной развития МКК является химическая гетерогенность между пригра ничными зонами и объемом зерен  [c.266]


Смотреть страницы где упоминается термин Стали по границам зерен на коррози : [c.305]    [c.329]    [c.75]    [c.592]    [c.41]    [c.388]    [c.37]    [c.146]    [c.58]    [c.40]    [c.163]    [c.166]    [c.414]    [c.246]    [c.61]    [c.318]    [c.20]    [c.172]    [c.529]    [c.543]    [c.573]   
Коррозия и защита от коррозии (1966) -- [ c.31 ]



ПОИСК



Границы зерен

Зерно

Зерно стали

Коррозия но границам зерен



© 2025 Mash-xxl.info Реклама на сайте