Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия но границам зерен

Явление коррозионного растрескивания латуней также связано с большим различием в химической стойкости атомов цинка и меди в твердом растворе металлического сплава. При наличии в латуни внутренних поверхностей, более богатых атомами цинка, например, но границам зерен, двойникам, плоскостям скольжения (что более вероятно при повышенном содержании цинка в сплаве) в условиях, обеспечивающих возможность протекания коррозии по этим поверхностям в глубину, развивается коррозионное растрескивание. Условия возможности проникновения коррозии  [c.285]


Сплавы алюминия с медью подвергаются коррозионному растрескиванию под напряжением при наличии на их поверхности анодной пленки, а также если в изделиях возникала склонность к межкристаллитной коррозии, например вследствие замедленного охлаждения с температуры закалки или применения искусственного старения, случайного нагрева нри различных технологических операциях или в процессе эксплуатации в интервале опасных температур. Коррозионное растрескивание этих сплавов происходит но границам зерен благодаря возникновению гальванического элемента, состоящего из большого по площади катода (тело зерна) и малого анода (граница зерна) [1,34—36]. Согласно другой точки зрения [22], склонность к коррозионному растрескиванию иод напряжением объясняется способностью самого интерметаллического соединения разрушаться избирательно.  [c.269]

Иногда приводят примеры, которые якобы показывают возможность коррозии по границам зерен, но это не межкристаллитная коррозия в точном смысле этого выражения. Эту коррозию правильнее было бы назвать кристаллитной коррозией , так как преимущественному разрушению подвергается зерно, а не граница зерен. Так как межзеренная граница катодна по отношению к самому зерну, то коррозия концентрируется на области анодного зерна, прилегающей к границе, пока в коице концов зерно не окажется вырезанным и не выпадет из матрицы. Важное отличие этого случая от настоящей межкристаллитной коррозии состоит, очевидно, в том, что разрушение переходит от зерна к зерну и не может распространиться в материал по цепочке межзеренных границ.  [c.130]

Процесс интеркристаллитной коррозии возникает лишь в результате нагрева закаленной аустенитной стали в определенном районе темнератур (500—700° С). Этот нагрев вызывает выделение карбидов но границам зерен.  [c.376]

Металлографическое исследование показало, что межкристаллитная коррозия наступает тогда, когда выделившиеся по границам зерен карбиды образуют сплошную < етку. Выделившиеся, но не образовавшие еш,е сплошной сетки карбиды или коагулированные крупные карбиды по границам зерен не вызывают межкристаллитной коррозии.  [c.490]

Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31].  [c.338]


В. Межкристаллитная коррозия (см. рис. 1, ж) характеризуется избирательным растворением металла по границам зерен, иногда на большую глубину. Она не вызывает существенных потерь массы, но приводит к значительному уменьшению прочности (рис. 2). Склонности к межкристаллитной коррозии подвер-  [c.5]

Созданию высокой химической активности в вершине трещины содействует и механический фактор. Как известно, механические напряжения в вершине трещины очень высоки. Даже при низких значениях интенсивности напряжений материал в вершине трещины находится под действием напряжений, близких к пределу текучести. Это создает благоприятные условия для прохождения в вершине трещины локальных деформаций, в результате чего на кромках ступеней сдвига (в местах выхода дислокаций на поверхность) плотность анодного тока может резко увеличиваться. Оба фактора не только способствуют повышению плотности анодного тока, но и содействуют в этом друг другу. Например, если структура и состав сплава таковы, что в нем имеются выделения по границам зерен, отличающиеся по электрохимическим характеристикам от матрицы, то потенциальная чувствительность к межкристаллитной коррозии может быть реализована путем прохождения в вершине трещины пластических деформаций, разрушения пассивной пленки и активации анодных процессов по границам зерен. Это же положение относится в полной мере и к сегрегациям внутри твердого раствора, когда суще-  [c.57]

Но ускоренные методы пригодны только для групп сталей, которые склонны к коррозии вследствие выделения карбидов хрома по границам зерен. Для стабилизированных хромоникелевых сталей и сталей с о-фазой ускоренные методы не применимы.  [c.146]

Структура металлов, имеющая особенно важное значение в многофазных сплавах, т. е. в сплавах, фазы которых являются электрохимически гетерогенными, определяется не только химическим составом, но и термической обработкой. Например, нарушение режима термообработки коррозионно-стойких сталей является одной из причин межкристаллитной коррозии. Границы зерен в сталях обогащаются примесями или элементами сплава, химически и электрохимически отличными от зерен металла. Увеличение их концентрации по границам зерен является причиной коррозии.  [c.19]

Межкристаллитная коррозия (рис. 9) типична для коррозион-но-стойких сталей, проходит между кристаллами и поражает границы зерен. Склонность к коррозии появляется при неправильной термической обработке сталей, которые теряют прочность и вязкость. В первую очередь этот вид коррозии проявляется в виде растрескивания поверхности, а затем и полного распада. С точки зрения разрушения наиболее опасным местом сварных конструкций из аустенитных сталей является зона основного материала, прилегающая к металлу сварного шва. Так называемая ножевая коррозия напоминает по форме надрез ножом в узкой зоне на границе металла шва и основного g  [c.25]

В морской воде и агрессивных шахтных водах высоколегированные стали подвержены питтинговой коррозии. Однако если стали имеют склонность к межкристаллитной коррозии, питтинговая коррозия постепенно переходит в межкристаллитную, которая распространяется сравнительно быстро. Меж- кристаллитная коррозия, связанная с питтинговыми поражениями по границам зерен, может наблюдаться не только у хромистых сталей, но и у высокопрочных аустенитных хромомарганцевоникелевых сталей, легированных азотом при нагревании в области критических температур. Если сталь склонна к межкристаллитной коррозии в стандартном растворе, то можно ожидать, что она будет склонной к этому виду коррозии и в морской воде.  [c.99]

На определенном расстоянии по обе стороны сварного шва находятся области, нагревающиеся до критических температур. Здесь по границам зерен пересыщенного аустенита выделяются карбиды, богатые хромом. В результате того что устойчивость по границам зерен уменьшается, в агрессивных средах идет межкристаллитная коррозия. Образование карбидов зависит не только от температуры, но и от продолжительности ее воздействия. Влияние этих факторов определяется химическим составом основного материала и его структурой. Для сварки непригодны стали, при нагревании которых в области критических температур по границам зерен образуется карбид хрома. Поэтому для изготовления сварных конструкций широко применяются стали, стабилизованные титаном, ниобием или танталом, а также стали с низким содержанием углерода, при сварке которых не выделяются карбиды. В большинстве случаев их использования межкристаллитная коррозия в зонах, расположенных на определенном расстоянии от сварного шва, не наблюдается.  [c.100]


Алюминиевые бронзы обладают хорошими механическими свойствами и повышенной устойчивостью во многих средах. По устойчивости они превосходят оловянные бронзы. Из них изготавливают детали клапанов, насосов, фильтров и сит для работы в кислых агрессивных средах, а также змеевики нагревательных установок, предназначенных для работ в разбавленных и концентрированных растворах солей при высоких температурах. Недостатком алюминиевых бронз является их чувствительность к местной коррозии по границам зерен и коррозии под напряжением вследствие холодной пластической обработки. Алюминиевые бронзы с 7—12% алюминия наиболее устойчивы и могут усп гпно применяться для изготовления оборудования травильных ванн, например насосов, клапанов, корзин для травления и др. Вальцованный сплав с 80% Си, 10% А1, 4,5% Ni и 1% Мп или Fe корродирует со скоростью менее 0,1 мм/год в 50%-ной серной кислоте при перемешивании и температуре 110°С или в 65%-ной серной кислоте при 85°С и скорости перемещения раствора 3 м/с. Известна также хорошая уС тойчивость алюминиевых бронз к действию слабых органических кислот и щелочей, за исключением аммиака независимо от концентрации и температуры.  [c.122]

Интерметаллиды могут быть анодными (Мд5А18) или катодными (СиАЬ). В первом случае происходит предпочтительное растворение, во втором они не корродируют, но стимулируют коррозию прилегающей обедненной зоны. В любом случае имеет место избирательная коррозия вдоль границ зерен. Степень чувствительности сплава к межкристаллитной коррозии может в заметной степени быть разной и зависеть от микроструктуры (в частности, от количества, размера и распределения второй фазы). В свою очередь микроструктура является результатом его металлургической наследственности и термической обработки. Термическая обработка, способствующая равномерному распаду по зерну, приводит к уменьщ ению тенденции к межкристаллитной коррозии. Важно также отметить, что в определенных условиях сплавы систем А1—Mg—81 и А1—Mg—Си могут быть подвержены межкристаллитной коррозии, но не быть чувствительными к КР [51, 56—58].  [c.165]

Некоторые стали аустенитного класса склонны кмеж-кристаллитной коррозии в газовой среде, т. е. к избирательной коррозии по границам зерен. Межкристаллит-ной коррозии в среде топочных газов, содержащих серу, подвержены стали аустенитного класса с 8—20% никеля. Никель образует с серой химическое соединение (сульфид), которое в свою очередь образует с никелем легкоплавкую эвтектику яикель—сульфид с температурой плавления 624° С. Поэтому следует избегать применения хромоникелевых сталей при высоких температу-  [c.319]

После микротравления труб в 50%-ном подогретом водном растворе соляной кислоты, позволившем полностью снять отложения, было обнаружено, что металл под очагами крррозии поражен различно ориентированными трещинами. Как показал металлографический анализ, трещины распространяются в глубь металла но границам зерен. По краям разрыва обнаружено некоторое обезуглероживание металла. Температура металла в очагах коррозии гораздо выше, чем вне их. Об этом свидетельствует значительное изменение его микроструктуры.  [c.85]

Хромоникелевые стали (в частности, типа Х18Н9) имеют весьма высокие антикоррозионные свойства во многих агрессивных средах. После закалки на аустенит эти стали однородны по структуре, что обеспечивает стойкость также против электрохимической коррозии. Однако в условиях повышенных температур, которые возникают при изготовлении детали или изделия, в этих сталях происходит распад аустеиита с выделением но границам зерен богатых хромом карбидов и обеднением границ зерен хромом.  [c.12]

Наибольшее практическое значение в настоящее время имеет межкристаллитная коррозия металлов в электролитах, рассмотрению методов изучения которой и будет посвящена настоящая глава. Относительно низкая коррозионная стойкость металлов ло границам зерен связывается с повышенной электрохимической неоднородностью в этих районах. Обычно последнее является следствием выделения но границам зерен вторичных фаз, которые могут быть либо эффективными анодами, либо катодами по отношению к близлежащим участкам твердого раствора. Такими фазами, например, при нагреве многих хромистых и хромоникелевых сталей до температуры 450—850° С могут быть хромовожелезные карбиды Сг4(Ре)С, сигма-фаза, обедненный хромом аустенит [109], а при нагреве после закалки до 150° С многих алюминиевых сплавов — металлическое соединение СиАЬ [110]. Разрушение этих материалов имеет наибольшее практическое значение. Однако даже для них еще не разработаны методы определения склонности к межкристаллитной коррозии, полностью удовлетворяющие исследователей и практиков.  [c.96]

Химические методы. 1. В методе кипячения в 65%-ной HNOз (проба Гюи) результаты испытаний оцениваются по периодически проводимому измерению уменьшения веса образца (5 раз после каждого 48-часового испытания). У образцов сталей, склонных к разрушению из-за коррозии по границам зерен происходит уменьшение веса в 10 раз больше, чем у стойких образцов (рис. 1.21). Образующиеся при растворении хро-маты мешают определениям, но применяемая непрерывная дистилляция ННОз устраняет это затруднение [82]. Указанным методом испытывались хромоникелевые и хромоникелевомолибденовые стали, а также стали с низким содержанием углерода. Описываемый ме-год рассматривается как единственно возможный для определения склонности к межкристаллитной коррозии, обусловленной выделением как карбидов, так и о-фазы.  [c.31]

При потенциалах 0,10 в (что означает д.пя нержавеющей стали восстановительную среду) происходит значительная общая коррозия. Даже при потенциалах около 0,15 в как основное вещество, так и обедненная зона находятся в активном состоянии, однако скорость коррозии обедненных границ зерен значительно больше. Поэтому точечное разрушение не только появляется на поверхности, но распространяется и в глубь поврежденных межкристаллитной коррозией границ зерен, так что в конце концов образуются широкие борозды вдо.пь границ. В этом случае разрушение границ происходит значительно быстрее в сравнении с межкристаллитной коррозией при потенциалах, характерных для пассивного состояния. Не исключено, что образование внутренних изъязвлений в глубине разрушенных границ обусловлено омической поляризацией [174, 175]. Скорость коррозии в активном состоянии зависит от разницы в содержании хрома и от других негомогенностей и тесно связана с температурой  [c.69]


При межкристаллитной коррозии глубина поражения металла или сплава бывает особенно велика, в то время как изменение в массе и во внешнем виде практически не происходит. Вследствие разрушения металла но границам зерен (кристаллитов) связь между ними нарушается, что приводит к резкому снижению механических свойств. Межкристаллитной коррозии подвержены многие сплавы — нержавеющие высокохромистые и хромоникелевые стали, меаноалк>-миниевые сплавы и др.  [c.29]

Некоторые из опубликованных фотоснимков расслаивания материала из-за коррозии, показывающих разделение материала на тонкие слои и полное его разрушение, производят большое впечатление и вызывают тревогу, но такие случаи редки. Они обычно относятся к материалу, который либо имеет неправильный химический состав, либо их неправильно термически обработали. Тем не менее, прессованный материал, даже при правильной термической обработке, находясь под воздействием атмосферных условий в течение нескольких лет, иногда начинает расслаиваться, что обусловлено коррозией вдоль границ зерен и слоев, параллельных направлению прессования. Такие случаи были выявлены в опытах Меткафа [43]. Описание расслаивания из-за коррозии легких сплавов при лабораторных испытаниях приводится Фоскюлером [44].  [c.623]

Бейкиш и Робертсон проделали примерно аналогичную работу с медными сплавами. Они вполне правильно акцентируют внимание на различии между чисто кристаллографическим эффектом состояния границ зерен (который имеет место в случае чистой меди) и совместным эффектом структуры и состава (который имеет место в сплавах). При оставлении границ зерен незакрытыми капля смолы помещалась в центр зерна, после чего она размазывалась по направлению к границе с помощью нейлонового наконечника, прикрепленного к микроманипулятору при этом до самих границ зерен не доходили. При выполнении работы учитывалось, что измеряемые потенциалы абсолютного значения не имеют, что ширина зоны, оставляемой незакрытой, больше истинной границы. Представляет интерес тот выявленный ими факт, что в растворе хлорного железа потенциал границ сначала отрицательнее потенциала остальной части зерен, но по истечении 8 час. потенциалы сравниваются и принимают значение потенциала поли-кристаллической меди. Вероятная причина этого указывается на стр. 359. Такие наблюдения согласуются с тем, что при опытах с плоской поверхностью образование бороздок обусловлено сначала коррозией по границам зерен по истечении некоторого времени их дальнейшее углубление прекращается и медь растворяется равномерно, сохраняя определенный угол между поверхностью и границей.  [c.629]

Особыми видами газовой коррозии являются также образование водородной хрупкости и ванадиевая коррозия. В водородной атмосфере кроме обезуглероживания снижение жаропрочности обусловлено абсорбцией водорода, образованием твердого раствора водорода в железе и появлением растрескивания но границам зерен из-за образования Н2О и СН4. Несмотря па очистку стали от ванадия, он нонадает в виде продуктов горения жидкого топлива. Оксиды ванадия катализируют окисление но реакциям (22), (23), а легкоплавкий У2О5, особенно при наличии соединений щелочных металлов, флюсует соединения окалины.  [c.12]

Эти карбиды выделяются по границам зерен и обедняют пограничный хромовой слой, вследствие чего сталь становится склонной к интеркристаллит-ной коррозии в агрессивных средах. При этом чем больше содержание С, тем больше склонность сталей к интер-кристаллитной коррозии при нагреве.  [c.270]

Предлагались и другие гипотезы для объяснения межкристаллитной коррозии, однако механизм, связанный с обеднением хромом, более всего отвечает экспериментальньпл данным, и, по-видимому, соответствует истине. Например, в карбидах, выделившихся на границах зерен после сенсибилизации нержавеющих сталей, как и ожидалось, обнаружено Повышенное содержание хрома. В продуктах коррозии на границе зерна, полученных в условиях, когда исключалось разрушение карбидов, содержание хрома оказалось ниже, чем в целом в сплаве. Так, Шафмейстер[17] подвергал воздействию холодных концентрированных растворов серной кислоты нержавеющую сенсибилизированную сталь, содержащую 18 % Сг, 8,8 % Ni, 0,22 % С. После 10-дневных испытаний в продуктах коррозии сплава на границе зерен он обнаружил только 8,7 % Сг. Содержание N1 и Fe в продуктах коррозии составляло, соответственно, 8,4 и 83,0 %. А это означает, что по границам зерен не происходит обеднения сплава никелем, но увеличивается содержание железа. Исследования сенсибилизированных нержавеющих сталей с помощью сканирующего микроскопа показали обеднение границ зерен хромом и  [c.306]

Необходимо отметить, что указанные факторы — амплитуда деформации, длительность и максимальная температура цикла — являются основными, но не единственными параметрами, определяющими вид разрушения. Не изменяя в целом вид диаграммы, границы областей, характеризующих разрушения различного вида, можно сдвигать в ту или иную сторону для учета воздействия технологических и экшлуатационных факторов (например, шособа и режима выплавки металла, влияния среды, защитных покрытий). Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего при одних и тех же условиях нагружения смещается область величин сре, фо Ф 1 в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или при склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен еледовательно, в этом случае уменьшаются области Л и 5 на рис. 58 (по границам зерен развивалось разрушение при нагружении стали 12Х18Н9Т при 750° С тв=1,5  [c.102]

Межкристаллитной коррозии могут подвергаться некоторые типы нержавеющей стали, имеющие высокое содержание углерода (0,05-3,15 % С). Она может иметь место, если нержавеющая сталь подвергалась термообработке, так что на границах зерен выпали карбиды хрома, а затем материал оказался подвержен воздействию кислого раствора или морской воды. Механизм реакции показан на рис. 105. Выпадение карбидов хрома имеет место только при определеных условиях для аустенитной стали преимущественно при 550-850 С. В этом случае говорят, что сталь сенсибилизирована. В результате выпадения карбида тонкий слой вблизи границы зерна настолько обедняется хромом, что сталь теряет свой нержавеющий характер. Сенсибилизация может оказаться результатом не только термообработки, но и сварки (см. 8.2) (рис. 106). При воздействии коррозивной среды зоны, обедненные хромом, совместно с остальной  [c.115]

Коррозия под напряжением характерна для латуней, и, чем выше содержание в них цинка, тем яснее она выражена. Двухфазные OS + Р- или р + усплавы подвергаются коррозионному" растрескиванию под действием влажного воздуха. Коррозионное растрескивание а-латуней вызывают аммиачные растворы или воздух, содержащий аммиак. Вредное влияние оказывают цаже незначительные примеси аммиака микробиологического происхождения. Коррозионное растрескивание может быть вызвано и другими коррозионными агентами. Этот вид коррозии наблюдается и у нелегированной меди, содержащей 0,1 7оР, когда по границам зерен выделяется фосфид меди с низким пределом текучести. Остальные медные сплавы также чуствитель-ны к коррозии под напряжением, но в меньшей степени, чем латунь. Трещины в а-латуни распространяются по границам зерен, в то время как в р-латунях сначала появляется межкри-сталлитная коррозия, которая через определенное время переходит в транскристаллитную.  [c.117]


Эффекты второго типа связаны со способностью некоторых малых примесей влиять на образование упрочняющих выделений, изменяя кинетику их роста и превращений, а иногда и морфологию. Такие эффекты особенно существенны в сплавах серии 5000, где вероятна последовательность формирования второй фазы [123] (здесь р—интерметаллид Mg5Al8). Явных свидетельств пред-выделения, т. е. возникновения зон Гинье — Престона (ГП) перед образованием р не имеется. Эти сплавы легко получить в виде метастабильных твердых растворов А1 — Mg, особенно при сравнительно низких концентрациях магния (как в случае сплавов 5083 и 5456), поскольку выделение равновесной р-фазы протекает довольно медленно. Фаза р возникает в результате гетерогенного зародышеобразования, особенно вероятного на границах зерен. Фаза р формируется медленно и при этом стремится образовать сплошной слой. Очевидно, что такие р-слои, существенно анодные по отношению к матрице [128], могут вызывать сильную межкри-сталлитную коррозию (не обязательно КР). Как уже отмечалось, для других систем (и это справедливо такхге для рассматриваемых сплавов [2]). восприимчивость к КР иногда, но не всегда, коррелирует с межкристаллитной коррозией. Таким образом, увеличение содержания магния повышает нестабильность сплава (т. е. тенденцию образовывать р-фазу в процессе эксплуатации), поэтому были разработаны многочисленные методы обработки и легирования сплавов серии 5000 с целью их стабилизации и предотвращения формирования зернограничной р-фазы. Например, холодная деформация с последующим высоким отжигом в области а-ьр  [c.83]


Смотреть страницы где упоминается термин Коррозия но границам зерен : [c.168]    [c.326]    [c.329]    [c.21]    [c.106]    [c.344]    [c.132]    [c.20]    [c.95]    [c.105]    [c.169]    [c.225]    [c.278]    [c.346]    [c.310]    [c.365]    [c.271]    [c.276]    [c.48]    [c.58]   
Основы учения о коррозии и защите металлов (1978) -- [ c.101 , c.203 ]



ПОИСК



Границы зерен

Зерно

Стали коррозия по границам зерен

Стали по границам зерен на коррози



© 2025 Mash-xxl.info Реклама на сайте