Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выделение непрерывное

Выше были составлены условия выделения непрерывных составляющих— высокочастотных и низкочастотных — (VI 1.5), (VI 1.7) и (VII.10). На основе этих соотношений можно записать условия выделения дискретных составляющих.  [c.263]

Дискретные составляющие. После выделения непрерывных составляющих в уравнении (VII.3) остается дискретная часть, соответствующая средней части замещающей структурной схемы рис. VII.4,  [c.307]

Результаты проведенных исследований показывают, что обычно можно различить три типа процессов выделения непрерывное, прерывистое и низкотемпературное выделения. Для определенности положим, что концентрация растворенных атомов в метаста-бильной ос-фазе (с ) меньше, чем в выделениях (ср), и больше, чем в равновесной а-фазе (с ). При непрерывном выделении процесс происходит одновременно во всей системе, хотя скорость его может заметно меняться от одного участка к другому. При этом зарождаются изолированные кристаллы р-фазы, которые растут до тех пор, пока из окружающей матрицы не удаляется весь избыток  [c.291]


Однако для обычных систем, состоящих из большого числа частиц, наиболее вероятное направление процесса практически совпадает с абсолютно неизбежным. Поясним это на следующем примере. Пусть имеется равновесный газ. Выделим в нем определенный объем и посмотрим, возможно ли в этом объеме самопроизвольное увеличение давления. Из-за теплового движения чис ]о молекул в объеме непрерывно флуктуирует около среднего значения JV. Одновременно флуктуируют и температура, и давление, и внутренняя энергия, и т, д. Теория показывает, что относительная величина этих флуктуаций обратно пропорциональна корню квадратному из числа молекул в выделенном объеме, поэтому Др/р=1/ //У,  [c.28]

Полимеризация состоит в соединении однородных (или разнородных) мономеров с последующим образованием нового высокомолекулярного вещества — полимера (без выделения каких-либо побочных продуктов). Полимеризация — это непрерывный (цепной) или ступенчатый процесс. При сополимеризации полиме-ризуются два или более разнородных ненасыщенных мономера.  [c.339]

При работе вихревой трубы на сравнительно больших ц необходимо учитывать офаниченные возможности вводимой с газом первичной кинетической энергии. Воспользуемся теоремой живых сил для выделенного контрольного объема Q (см. рис. 4.9). Предположим, что внутри П компоненты тензора напряжения и вектора скорости — непрерывные дифференцируемые функции  [c.203]

Прочность и твердость сплава с увеличением продолжительности старения, как правило, вначале возрастают, достигают максимума, а затем снижаются (рис. 13.8). Чем выше температура старения, тем скорее достигается этот максимум. Дальнейшее снижение прочностных свойств связано с перестариванием. Последнее вызвано коагуляцией образовавшихся выделений, которая приводит к укрупнению частиц фаз и уменьшению их числа в единице объема. Другой процесс при перестаривании — переход метастабильных фаз в стабильные и замена когерентных границ раздела некогерентными. При достаточно низких температурах старения процесс перестаривания не достигается. Упрочнение при этом развивается непрерывно с затуханием во времени.  [c.499]

Главный вектор и главный момент сил инерции, условно приложенных к ускоряемому твердому телу, следует определять по приведенным выше формулам, в соответствии с видом движения твердого тела (поступательное движение, вращение вокруг неподвижной оси, плоское движение). Если с помощью готовых формул главный вектор и главный момент вычислить нельзя, то в случае непрерывного распределения масс надо вычислить силы инерции для выделенного элемента и затем распространить суммирование по всему твердому телу, вычислив определенный интеграл в соответствующих пределах.  [c.342]


Необходимо отметить, что весь процесс выделения радия является открытым он сопровождается непрерывным выделением радона, который с помощью вентиляционных систем выбрасывается в атмосферу. Вместе с радоном из процесса удаляются и у-активные продукты его распада РаВ и РаС. Вследствие этого происходит сдвиг равновесия у-активных продуктов распада радона по отношению к Ра . Поэтому расчет защиты от у-излучения нельзя производить по удельному содержанию радия в производственных продуктах. Доля равновесности настолько мала (проценты и доли процентов), что для всего процесса получения радия фактически отпадает необходимость в  [c.219]

Используя непрерывность t M, v) и тот факт, что при равновесии среды в равновесии находится произвольно выделенная ее часть, легко доказать, что  [c.17]

Приведенные ниже фундаментальные принципы и. возможно, ряд других, пока еще неизвестных нам принципов, соединяясь в определенные сочетания, образуют все многообразие наблюдаемых в природе явлений и эффектов. Динамичность, непрерывные взаимные перетекания форм, их многоплановость и иерархичность делают анализ объектов и явлений и выделение в них чистых принципов чрезвычайно сложной задачей. Для осуществления подобного анализа необходима разработка строгого метода, аналогий.  [c.33]

Доказано, что в результате образования непрерывных и ограниченных твердых растворов термически стабильных соединений повышается прочность межатомной связи этих фаз. В результате образования гетерогенных структур с мелкодисперсным выделением избыточных фаз из пересыщенных твердых растворов создаются дополнительные условия для упрочнения сплавов. Эти факторы, повышающие жаропрочность металлов, объясняют то, что на диаграммах состав - жаропрочность при определенных интервалах температур наблюдаются максимальные значения жаропрочности. Эти максимальные значения в металлических системах расположены вблизи границы предельного насыщения.  [c.47]

При естественной радиоактивности элементов происходит испускание а- и /3-частиц, сопровождающееся выделением у-лучей а-частицы - это ядра атома гелия /3-частицы - это электроны, из которых состоят электронные оболочки атомов у-лучи - это распространяющиеся в пространстве электромагнитные колебания и отличающиеся от видимого света и рентгеновских лучей лишь значительно меньшей длиной волны и частотой колебания волн. На рис. 184 представлена шкала электромагнитных волн. Она представляет собой непрерывно заполненную градацию от бесконечно длинных электромагнитных волн, соответствующих электрическому обычному току, до волн, длина которых измеряется тысячными долями  [c.378]

Жидкость представляет собой материальную систему, поэтому основной закон механики может быть приложен к любой выделенной из нее массе так как жидкость рассматривается как непрерывная среда, то уравнение импульсов должно быть записано в интегральной форме  [c.77]

При фазовых переходах второго рода происходит непрерывное изменение энтальпии, выделения скрытой теплоты не происходит, а теплоемкость испытывает скачок, сопровождающийся резким максимумом. При фазовых переходах второго рода теплоемкость низкотемпературной фазы, как правило, больше теплоемкости высокотемпературной фазы.  [c.198]

Для всей совокупности отрицательных и положительных значений у уравнение (2.2.1) нелинейно, так как при проходе х == у через значение / = 0, а изменяется скачком от до — о и обратно. Поэтому для изображения соответствующих движений на фазовой плоскости необходимо отдельно построить фазовые траектории для I/> О и для г/<0, а затем сшить их в точках г/ = 0 для получения непрерывных фазовых траекторий на всей фазовой плоскости. В самом деле, система изучаемого типа при наличии инерционных и упругих сил, т. е. с резервуарами кинетической и потенциальной энергий, может совершать лишь непрерывные движения, допускает лишь непрерывные изменения координаты и скорости, а, следовательно, ее фазовый портрет обладает только непрерывными фазовыми траекториями. Разрывы непрерывности в значениях координаты или скорости и наличие конечных скачкообразных изменений этих величин означали бы скачкообразное изменение потенциальной или кинетической энергий, что соответствовало бы физически бессмысленному мгновенному выделению или поглощению бесконечной мощности.  [c.48]


Изложим идею общего метода выделения особенностей при расчете кусочно-непрерывных и кусочно-гладких решений для задачи (6.1), (6.2). Предположим, что на рассматриваемом промежутке времени не меняется структура решения, т. е. разрывы не возникают, не исчезают и не взаимодействуют между собой. Пусть х=щ 1) —уравнения левой и правой  [c.146]

Метод выделения разрывов с некоторыми дополнениями можно применять и в тех случаях, когда происходит взаимодействие разрывов (линии разрыва пересекаются). Пусть, например, две соседние линии разрыва л =ф -.1 ) и х=ф/1( ) пересекаются в точке ( , х ). Для того чтобы определить новую структуру решения, возникающую при взаимодействии разрывов, и получить начальные условия для продолжения счета при t>t , следует воспользоваться известным решением задачи о распаде произвольного разрыва. При этом в соответствии с новой структурой решения следует заново разбить расчетную область на области непрерывности, построить новую расчетную сетку и внести соответствующие изменения в подпрограммы для расчета границ частичных областей.  [c.149]

Рассмотренные случаи фазовых переходов химически чистого вещества относятся к фазовым переходам так называемого первого рода, когда переход из одной фазы в другую осуществляется с выделением (поглощением) теплоты и изменением объема фаз. Однако в ряде случаев эти особенности могут и не проявляться, например, в случае перехода металла из нормального состояния в сверхпроводящее при критической температуре. Такие фазовые превращения носят наименования фазовых переходов второго рода. В этом случае никакого скачка в изменении состояния тела не происходит. Состояние системы изменяется непрерывно, и в точках фазового перехода состояния фаз совпадают. Теория фазовых переходов второго рода выходит за рамки данного учебника и составляет содержание специальных курсов.  [c.96]

Уравнение сплошности, или непрерывности, является преобразованным выражением уравнения баланса массы для выделенного элемента среды  [c.275]

Для удобства интегрирования выполним следующее построение. Разобьем стержень по длине на п участков, на каждом из которых значение крутящего момента постоянное или непрерывное, и присвоим этим участкам номера 1, 2,. .., п, а приложенные в точках Ui, a-i,. .., внешние моменты обозначим Mi. Здесь а — координата начала i-ro участка. Пусть на каждом из выделенных участков внутренние моменты постоянны. На первом участке согласно формулам (13.9) и (13.17)  [c.302]

Гидромеханическое давление. Поверхностные силы, отнесенные к единице площади, называют напряжениями. В сплошной среде поверхностные силы распределяются непрерывно. Поэтому напряжения также действуют во всех точках выделенного объема среды и можно говорить о его напряженном состоянии.  [c.9]

Испарение (кипение) и конденсация, плавление твердых тел и отвердевание расплавов — процессы теплообмена, отличительной чертой которых является выделение скрытой теплоты фазового перехода на поверхности раздела. Отвод теплоты от этой поверхности или подвод к ней осуществляется через соприкасающиеся фазы посредством теплопроводности, конвекции и, возможно, излучения. Поскольку физические свойства фаз (например, воды и пара) различны и скачкообразно изменяются при переходе через межфазную границу, то математическую формулировку процессов переноса составляют отдельно для каждой непрерывной фазы (см. пп. 1.1.2 и 1.1.3), после чего описывают механическое и тепловое взаимодействие между ними.  [c.55]

У сплава Кепё 41 отжиг-гомогенизация при 1175 °С приводит к растворению выделений М С и порождает склонность к последующему быстрому выделению непрерывной зернограничной пленки Mjs g. В результате можно получить плохую пластичность и растрескивание, особенно при сварке, поэтому такого отжига избегают. Гомогенизация при более низких температурах (1070—1080 °С) дает равномерную мелкозернистую структуру, образовавшуюся в процессе деформационной обработки и содержащую достаточно мелкие и хорошо распределенные выделения М С. Склонность к растрескиванию уменьшается, а пластичность становится выше, если задержать образование выделений  [c.166]

Выше точки 5 сплав не насыщен углеродом. Ниже точки 5 сплав не может сохранять данную концентрацию углерода в ])астворе, происходит выделение ггзбыточного углерода в виде высокоуглеро дистой фазы —цементита. Этот процесс продолжается непрерывно при охлаждении и вызывает обеднение а-твердого раствора углеродом до 0,01%. Выделяющийся из феррита цементит называется третичным цементитом (в отличие от первичного цементита, выделяющегося из жидкости, и вторичного цементита, выделяющегося из аустенита).  [c.173]

Выдавливание (или экструзия) отличается от других способов переработки термопластов непрерывностью, высокой производительностью процесса и возможностью получения на одном и том же оборудовании большого многообразия деталей. Выдавливание осуществляют на специальных червячных машинах, Перерабатываемый материал в виде порошка или граиул из бункера 1 (рис. 8,9, а) попадает п рабочий цилиндр 3, где захватывается вращающимся червяком 2. Червяк продвигает материал, перемешивает и уплотняет его. В результате передачи топло1ы от нагревательного =аде-мента 4 и выделения теплоты при грении частиц материала друг  [c.432]

Межкристаллитная коррозия дюралюминия (около 4—5% Си 0,5—1,75% Mg, по 0,5% Si, Мп и Fe, ост. AI), согласно работам А. И. Голубева, связана с разрушением образующегося при распаде твердого раствора (в виде более или менее непрерывной цепочки на границах зерен) интерметаллического соединения uAla в тех случаях, когда процесс коррозии сопровождается выделением водорода. В этих случаях на включениях uAla и зернах твердого раствора не образуется кроющая пленка продуктов коррозии, которая обычно (при кислородной деполяризации) препятствует коррозии включений uAla, а следовательно, и развитию межкристаллитной коррозии. Первоначальными очагами выделения водорода и возникновения межкристаллитной коррозии являются, по данным С. Е. Павлова и С. М. Амбарцумяна, межкристаллитные микропоры на поверхности сплава. Поэтому в качестве одного из наиболее эффективных путей борьбы с межкристаллитной коррозией алюминиевых сплавов, содержащих медь, рекомендуется уплотнение структуры металла.  [c.420]


Существует характерная степень расширения в вихревой трубе (или относительная доля охлажденного потока) (рис. 4.11), при которой кинетическая энергия вынужденного вихря становится больше исходной. На режимах вращения вынужденного вихря отстает от закона вращения твердого тела — со = onst. Избыточная кинетическая энергия свободного вихря расходуется на трение о стенки (работа внешних поверхностных сил) и на работу внутренних поверхностных сил. При турбулентном течении пульсационное движение непрерывно извлекает энергию из ос-редненного движения. Эта чдсть энергии обеспечивает работу переноса турбулентных молей в поле радиального фадиента статического давления [121, 122]. Если допустить, что под действием турбулентности перемещаются среднестатистические турбулентные моли с массой dm, совершающие элементарные циклы парокомпрессионных холодильных машин, то можно найти работу, затраченную на их реализацию. Объем турбулентного моля и путь его перемещения невелики по сравнению с контрольным объемом П, поэтому изменение температуры при изобарных процессах теплообмена моля с окружающими его частицами незначительно. Это позволяет, не внося существенной погрешности, заменить цикл Брайтона циклом Карно. Тогда работа по охлаждению выделенного контрольного объема П равна сумме элементарных работ турбулентных молей  [c.206]

При начальной температуре воды 85...90°С (в зависимости от тщательности предварительной дегазации воды) на выходной поверхности образца всегда появляются видимые мельчайшие пузырьки воздуха. С повышением температуры и принижением ее к 100°С число и размеры пузырьков увеличиваются. Они медленно растут, достигают в максимальных случаях диаметра — 0,6 мм, отрываются и сносятся потоком. При приближении начальной температуры воды к 100° С происходит постепенный переход от выделения газопаровых пузырьков к паровым. Он состоит в том, что число центров образования и частота отрыва пузырьков возрастают, а их максимальные размеры уменьшаются до диаметра меньше 0,1 мм. При повышении температуры от 100 до 102 °С мельчайшие паровые пузырьки выбегают сплошными цепочками и лопаются на поверхности жидкостной пленки, образуя на ней мельчайшую рябь и туман из микрокапель. При дальнейшем повышении начальной температуры практически из каждой поры идут сплошные паровые микроструи, интенсивность которых непрерывно возрастает. Вся поверхность образца равномерно усеяна мельчайшими белыми источниками паровых микроструй. Пленка жидкости на ней набухает, становится рыхлой и белеет. Появляется шум. В дальнейшем интенсивность истечения паровых микроструй еще более возрастает, шум увеличивается. На пленке образуются бесформенные белые скопления размером около 5 мм, быстро сбегающие вниз или отрывающиеся от ее поверхности в виде бесформенных вначале комков. Такой механизм по мере увеличения его интенсивности наблюдается без качественных изменений до предельных исследованных начальных температур воды 180 °С, что соответствует возрастанию массового расходного паросодержания вытекающего двухфазного потока от О до 0,15.  [c.79]

Скорость химической реакции (измеряемая, скажем, ч[ слом прореагировавших в единицу времени молекул) зависит от температуры газовой смеси, в которой она происходит, уве/ нчиваясь вместе с ней. Во многих случаях эта зависиг.юсть очень сильная ). Скорость реакции может при этом оказаться при обычных температурах настоль о малой, что реакция практически вовсе не идет, несмотря на то, что состоянию термодинамического (химического) равновесия соответствовала бы газовал смесь, компоненты которой прореагировали друг с другом. При достаточном же повышении температуры реакция протекает со значительной скоростью. Если реакция эндотермична, то для ее протекания необходим непрерывный подвод тепла извне если ограничиться одним только начальным повышением температуры смеси, то прореагирует лишь незначительное количество вещества, вслед за чем температура газа настолько понизится, что реакция снова прекратится. Совсем иначе будет обстоять дело при сильно экзотермической реакции, сопровождающейся значительным выделением тепла. Здесь достаточно повысить температуру хотя бы в одном каком-нибудь месте смеси начавшаяся в этом месте реакция в результате выделения тепла сама будет производить нагревание окружающего газа и, таким образом, реакция, раз начавшись, будет сама собой распространяться по газу. В таких случаях говорят о медленном горении газовой смеси или о дефлаграции ").  [c.662]

Такой прием может быть применен не только в случае отдельных тел, но н в случае непрерывных систем (упругих, жи.т-кпх II газообразных тел). Пусть, например, требуется определить силы взаимодействия частиц в некоторой точке С натянутой проволоки или стержня (рис. 3). Для этого, сосредоточив свое внимание на отрезке ЛС, выделим его из всего куска АВ и отметим силу Тс, с которой часть СВ действует на рассматриваемый отрезок АС. При этом в наше рассуждение войдет сила Тс, которая представит натяжение проволоки или стержня в точке С. Этот прием выделения сил взаимодепстви.т между частицами непрерывной среды — внутренних сил — называют методом сечений.  [c.17]

Идеей наиболее распространенных методов нейтронной спектроскопии является выделение нейтроногв заданной энергии из непрерывного спектра. Это выделение может быть либо пространственным, когда в данном направлении летят моноэнергети-ческие нейтроны (метод механического монохроматора, дифракция нейтронов от кристалла), либо временным, когда в данном направлении одновременно вылетают нейтроны всех энергий, но в зависимости от величины энергии они приходят в заданную точку пространства в разное время (с большей энергией, т. е. более быстрые, раньше). Такое временное выделение называется методом времени пролета. В области низких энергий (примерно до 10- -100 кэв) этот метод имеет два варианта метод механического селектора, когда для обеспечения одновременности вылета нейтронов используются механические прерыватели пучков нейтронов — затворы, и метод мигающего ускорителя, при котором короткие импульсы нейтронов получаются за счет импульсной бомбардировки мишени заряженными частицами или (во вторичном процессе) у Квантами.  [c.329]

В 2, П. 5 было показано, что кроме процесса деления тяжелых ядер может существовать еще один способ освобождения ядерной энергии — синтез легких ядер. Природа энергии Солнца и звезд подтверждает и практическую осуществимость реакций синтеза. Как известно, солнечная энергия освобождается в результате двух кольцевых процессов, называемых протоннопротонным и углеродно-азотным циклами, которые сводятся к последовательному преобразованию протонов в ядра гелия с выделением большого количества энергии. Продолжительность углеродно-азотного цикла составляет несколько десятков миллионов лет, а протонно-протонного — даже около 15 млрд. лет. Тем не менее из-за колоссального количества участвующих в циклах ядер Солнце непрерывно излучает огромную энергию.  [c.478]

Математические модели на базе конечно-разностной аппроксимации исходных уравнений предусматривают замену процессов в непрерывной среде дискретной моделью, которая дает достаточно подробную и отвечающую практическим требованиям картину распределения поля внутри тела в функции координат и времени. Применение данного численного метода позволяет свести оператор Лапласа У к оператору конечных разностей, а исходные уравнения - к совокупности обыкновенных дифференциальных уравнений, записанных для каждого злементарного объема выделенного в каждом г-м теле [5].  [c.121]


Рассмотрим структурную схему ЛДИС, показанную на рис. 11.12. Источником излучения является лазер 1, как правило, непрерывного действия. Излучение лазера в расщепителе пучка 2 делится на два луча, один из которых при помощи объектива 3 направляется на исследуемый объект 4, например на поток жидкости с рассеивающими частицами. Рассеянный свет собирается приемным объективом 5, проходит узел совмещения пучка 6 и направляется в блок выделения сдвига ДСЧ. Туда же направляется и второй луч, который (для выравнивания оптического пути) проходит линию задержки 7. В блоке 8 происходит сравнение частоты рассеянного света (Орас с,частотой зондирующего луча лазера. Выделенный сигнал, содержащий информацию о параметрах исследуемого потока, обрабатывается в блоке 9.  [c.230]

Шесть независимых компонент a j. симметричного тензора напряжений, как уже отмечалось, предполагаютея непрерывными функциями координат произвольной точки тела, включая и точки его поверхности. Следовательно, функции которые удовлетворяют уравнениям равновесия (2.26), должны также удовлетворять условиям равновесия элемента, выделенного в окрестности любой точки поверхности тела.  [c.36]

С физической точки зрения непрерывность функции g u(0 при t > Ti, конечно, очевидна. Выделенность точек in — "ti + n является следствием примененного выше способа разложения передаточной функции и никак не связана с процессом, протекающим в теплообменнике.  [c.195]


Смотреть страницы где упоминается термин Выделение непрерывное : [c.265]    [c.106]    [c.68]    [c.108]    [c.33]    [c.37]    [c.272]    [c.37]    [c.100]    [c.67]    [c.143]    [c.71]    [c.226]    [c.134]   
Физическое металловедение Вып II (1968) -- [ c.292 , c.293 ]



ПОИСК



Выделение

Выделение водорода из стали при непрерывном охлаждении

Непрерывное выделение в сплавах

Непрерывное выделение внутри зерен

Непрерывное выделение на дислокациях

Непрерывное выделение скорость роста частиц

Электролизеры для выделения жидкого алюминия непрерывными самообжигающимися анодами



© 2025 Mash-xxl.info Реклама на сайте