Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия, коррозия магниевые

Признак коррозии магниевых сплавов. Признаком коррозии магниевых сплавов служит вздутие слоя лакокрасочного покрытия или появления на деталях рыхлого влажного осадка светло-серого цвета, под которым наблюдается разрушение металла.  [c.161]

Если проанализировать данные, полученные в морских атмосферах (табл. 18), то при сохранении общей закономерности, наблюдаемой в промышленной атмосфере, выявляются некоторые особенности, характерные, очевидно, лишь для морских атмосфер. Магниевый сплав МЛ5 и в морских атмосферах является анодом, однако степень усиления коррозии, а также влияние катода становятся несколько иным. Во-первых, нет заметной разницы во влиянии покрытия стали в контакте с оцинкованной и с кадмированной сталью коррозия МЛ5 увеличивалась в 10—15 раз. Во-вторых, обнаружено, что контакт магниевого сплава с алюминиевым (В95), который в промышленной атмосфере не сильно увеличивал коррозию, приводил в морских атмосферах к заметному увеличению скорости коррозии магниевого сплава (в 6 раз — у Черного моря и в 13 раз — у Баренцева).  [c.122]


Картеры редукторов изготавливают из литейного магниевого сплава МЛ5 с пределом прочности не менее 220 МПа. Этот сплав склонен к межкристаллитной коррозии, поэтому все картеры имеют антикоррозионные покрытия.  [c.666]

Широко применяемая на практике катодная защита магниевыми протекторами резервуаров (с эмалевыми покрытиями) с горячей водой представляет собой экономичную систему защиты от коррозии (рис. 21.1).  [c.402]

Во избежание коррозии зону контакта магниевых сплавов со сталью с анодным покрытием изолируют прокладками из инертных материалов.  [c.84]

Несмотря на разность потенциалов цинк и кадмий являются равноценными по защитному действию от контактной коррозии даже в случае контакта с магниевыми сплавами. Коррозионная стойкость кадмиевых и цинковых покрытий приведена в табл, 8 [15].  [c.86]

Детали из магниевых сплавов при хранении и транспортировке надо защищать от коррозии оксидированием или смазкой. Изделия, работающие в атмосферных условиях, следует защищать от коррозии нанесением неорганических пленок н лакокрасочными покрытиями, а изделия, работающие в маслах —только неорганическими пленками. При 250° С лучшие защитные свойства обеспечивают фосфатные или анодные пленки. Места контактов обычно защищают грунтами, клеями и смазками. Стальные болты, шпильки и шайбы цинкуют или кадмируют. При клепке изделий из магниевых сплавов надо применять заклепки из сплава АЛГ-5 или, как исключение, из других алюминиевых сплавов, анодированных в серной кислоте с наполнением анодной пленки.  [c.130]

Магниевые покрытия могут подвергаться коррозии под действием загрязнений, которые попадают на ТВЭЛ во время работы первого контура. Окисные пленки, образующиеся на поверхности магниевого сплава, надлежащей защиты его от коррозии не обеспечивают, особенно если на них попадают частицы металлов. В связи  [c.332]

Меры борьбы с коррозией в зимнее время. При обнаружении коррозии на деталях из магниевых сплавов в зимнее время, когда нет необходимой температуры для сушки покрытия деталей непосредственно на самолете и невозможно снять деталь с самолета, пораженные участки зачищаются и покрываются консерва-ционной смазкой до наступления теплого времени.  [c.162]

Фретинг-эффект, Особое значение в усталостной прочности титановых сплавов имеет фретинг-эффект, или контактная коррозия, в местах сопряжения. Наличие контактного трения при циклическом нагружении у всех металлов приводит к заметному снижению усталостной прочности, особенно в коррозионных средах. Титановые сплавы в этом отношении мало отличаются от сталей, близких к ним по прочности [761. Возникающее контактное трение (в местах заделок, прессовых посадок, креплений и т. п.) резко снижает усталостную прочность, действуя подобно концентратору напряжений. Степень снижения усталостной прочности в основном зависит от сопряженного материала, вызывающего фретинг-эффект, удельного давления в месте сопряжения и окружающей среды. Удельное давление [761 оказывает сильное влияние только при его низких значениях. В прочных креплениях или плотных посадках при удельных давлениях более 3—5 кгс/мм усталостная прочность мало изменяется. Так, по данным работы [76], прессовая посадка втулки с удельным давлением 5 кгс/мм снижает усталостную прочность технически чистого титана с 32 до 11,2 кгс/мм . Дальнейшее увеличение удельного давления посадки до 20 кгс/мм снизило предел усталости до 10,3 кгс/мм . В среднем предел усталости при наличии фретинг-эффекта ((т /) у титановых сплавов на воздухе при контактировании с однородным сплавом составляет 20—40% от исходного предела усталости, т. е. (tI i = (0,2- -0,4)(Т 1. При контактировании с более мягкими материалами (медные, алюминиевые или магниевые сплавы) это соотношение повышается и достигает ali = 0,6(T i. Повышения значения до (O,5-hO,6)0 i можно добиться анодированием поверхности или покрытием пленкой полимеров, т. е. благодаря улучшению условий трения.  [c.154]


Для защиты от коррозии изделия из магниевых сплавов подвергают оксидированию с последующим нанесением лакокрасочных покрытий. Хорошие результаты получены при использовании эпоксидных пленок, пер-хлорвиниловых и силиконовых эмалей.  [c.378]

Анодное оксидирование создает более высокое сопротивление коррозии, чем химическое. Анодное оксидирование чаще всего производят в хромовой и серной кислотах (магниевые сплавы оксидируют химически в растворах хромпика и азотной кислоты). Лучшие результаты защиты от коррозии дает покрытие оксидированных деталей лаками или красками.  [c.39]

Применение цинковых или кадмиевых прокладок, покрытие цинком или кадмием медных сплавов при контакте их со сталью, а также цинкование или кадмирование стальных деталей при контакте с алюминиевыми сплавами, по-существу, также основано на принципе электрохимической защиты. В обоих случаях в систему медь — железо и железо — алюминий включают третий анод (цинк или кадмий), смещающий потенциал к таким значениям, при которых коррозия контактирующих анодов уменьшается или оказывается равной нулю . Этим методом широко пользуются в технике, что было иллюстрировано выше на конкретных примерах защиты магниевых и алюминиевых сплавов, а также судостроительных конструкций. В частности сообщается, что металлизация судостроительных сталей цинком обеспечивает надежную их эксплуатацию в контакте с алюминиевыми сплавами в течение длительного времени (5—8 лет).  [c.198]

Коррозия под напряжением оцинкованных образцов. После подготовки поверхности образцов из магниевого сплава на них наносилось цинковое покрытие в стандартной цианистой ванне затем проводилось пассивирование в растворе серной кислоты и  [c.189]

Стандарт устанавливает методы ускоренных испытаний магния и магниевых сплавов без защитных покрытий на общую коррозию для получения сравнительных данных о коррозионной стойкости сплавов  [c.637]

Окраска металлических и неметаллических поверхностей с целью создания токопроводящего слоя Создание. электрического контакта с одновременной защитой от коррозии металлических соединений из магниевых, алюминиевых, титановых сплавов, сталей, луженой латуни, в которых хотя бы одна деталь изготовлена из магниевых сплавов. Токопроводящая Покрытие неподвижных обмоток электрических машин и аппаратов. Отделка различных электроизоляционных деталей  [c.164]

Магниевые сплавы, обладающие высокой удельной прочностью, инертны по отношению к водороду. Возможна их защита от атмосферной коррозии с помощью оксидных и лакокрасочных покрытий.  [c.415]

Серьезной проблемой являются контакты, включающие магниевые сплавы. Лабораторные эксперименты, а также результаты естественных испытаний, изложенные выше, показывают, что магниевые сплавы должны подвергаться усиленной коррозии в агрессивных атмосферах, в контакте с большинством металлов. Только алюминий, цинк и олово, защищенные хорошими органическими покрытиями, не вызывают усиленной коррозии магниевых сплавов. Правда, высказываются сомнения, что при такой высокой разности потенциалов и значительных коррозионных токах обычные органические покрытия вряд ли способны пода-130  [c.130]

Оксидное покрытие на магниевых сплавах. Магниевые сплавы плохо противостоят коррозии в любых условиях. Оксидирование значительно повышает запщтные свойства магниевых сплавов.  [c.681]

Покрытия, коррозия латунные 608 магниевые 586, 587 медные 586, 587, 684 медь-никелевые 608, 684 медь-оловянные (спекулум) 684 никелевые 586, 587, 608, 684 оловянные 608 свинцовые 586, 608 фторопластовые 783, 785 хром-никелевые 608 хромовые 608 цинковые 586, 587, 600, 608 Поляризационные кривые железа (схема) 76 карбонильного, содержащего 0,27% С 89  [c.829]

Современная система покрытия для магниевых сплавов состоит минимум из двух слоев — грунтовочного и покровного. Грунтовочный слой обеспечивает надежную адгезию п обладает пассивирующими свойствами на случай проникнове ия влаги. С этой целью применяют грунты, содержащие пассивирующие хроматные пигменты (цинковый, стронциевый кроны). Применение грунтов, содержащих другие пигменты, не только не предохраняет от коррозии, но- и ускоряет ее. Связующее, применяемое для изготовления грунта, должно обладать высокой щелочиостойкостью, минимальной влагопроницаемо-стью и хорошей адгезией. Покровный слой должен обладать высокой водостойкостью и механической прочностью. Этим требованиям удовлетворяют перхлорвиниловые, полиуретановые и некоторые другие материалы.  [c.400]


Покрытие обладает высокой твердостью, эластичностью, маслобензостойкостыо, атмосферостойкостыо. Устойчиво к периодическому действию воды, постоянному действию бензина, керосина. Выдерживает действие температур -4-260°. Обладает хорошей адгезией. Приготовляется на месте потребления путем смешивания 100 вес. ч. лака и 2,75 вес. ч. алюминиевой пудры ПАК-4. Применяется для защиты от коррозии магниевых, алюминиевых и стальных изделий Применяются для окраски внутренней поверхности тары для хранения и транспортировки бензина различных марок, содержащих до 40% ароматических углеводородов и минеральных масел. Для получения ровных покрытий эти материалы наносят при подогреве до 30—40° Изготовляются на смеси крезолформаль-дегидной и поливинилбутиральной смол. Наносятся без грунта методом распылений в четыре слоя. Стойки к горячей воде и пару, что позволяет производить промывку тары при смене нефтепродуктов. Бензостойкие покрытия наносятся  [c.179]

Для определения защитных свойств покрытий на магниевых сплавах применяют ускоренные коррозионные испытания в солевом тумане и в камере тропического климата. Следует отметить, что нет единого мнения о продолжительности ускоренных испытаний для выявления того, достаточно ли надежно защищает данное покрытие сплав от коррозии. Некоторые спецификации требуют, чтобы защищенная деталь из магниевого сплава выдержала 50 ч испытаний в солевом тумане 20%-ного раствора Na l [175]. Образцы осматривают через 4, 8, 12, 16, 20, 24, 30, 36, 42 и 50 ч.  [c.65]

Из табл. 9 видно, что все обычно применяемые металлы вызывают сильную коррозию магниевого сплава в электролитах с большой концентрацией С К. Кадмиевое или цинковое покрытие катодных металлов, например стали, в 10 раз снижает гальваническую коррозию. Уменьшение электропроводности, например замена 3 /о раствора Na l водопроводной водой, дает еще большее снижение скорости коррозии. При таких условиях, когда продукты коррозии не удаляются непрерывно, или при высокой плотности катодного тока, когда окружающая среда может стать сильно щелочной, как магний, так и соприкасающийся с ним металл, окислы которого амфотерны (например, алюминий), могут подвергаться сильной коррозии.  [c.149]

Однако при эксплуатации окрашенных изделий под слоем лакокрасочного покрытия не бывает только ионов хромата или только агрессивных ионов. Обычно в результате диффузии под пленку покрытия вместе с водой проникают агрессивные ионы — хлориды, сульфаты и др. В этом случае происходит конкуренция между пассивирующими и депассивирующими ионами. На рис. 78 показано изменение потенциала и коррозии магниевого сплава в водных растворах N301 различной концентрации с добавками раствора  [c.98]

Из-за малой устойчивости против коррозии изделия из магниевых сплавов оксидируют. Затем на оксидированную поверхносгь [шносят лакокрасочные покрытия.  [c.342]

Магниевые сплавы, в состав которых входят алюминий, медь, цинк и другие элементы, обладают хорошей жидкотекучестыо и применяются для изготовления литьем корпусов, крышек, фланцев и т. д. Детали из этих сплавов должны иметь зашит-ные покрытия от коррозии. Основные марки . МЛЗ, МЛ5, МЛ6, MAI, МАЗ, MAS.  [c.164]

К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6).  [c.188]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]


Судостроение, а позднее и сооружение портов являются одними из старейших областей применения катодной защиты от коррозии (см. раздел 1.3). Для судов и сооружений, располагаемых в прибрежном шельфе, пока применяют преимущественно протекторную защиту, тогда как для портовых сооружений и мостовых перегружателей ввиду потребности в большом защитном токе предпочитают применять станции катодной защиты. Характерные проблемы коррозии для сооружений в прибрежном шельфе встретились уже в середине 1950-х гг. в Мексиканском заливе. Однако скорость коррозии здесь была меньшей по сравнению с наблюдаемой в Северном море (см. табл. 17.2). В допол-нение к этому на передний план все более выступают проблемы усталостного коррозионного растрескивания [13]. В отличие от свайных причалов н судов, на сооружениях в прибрежном шельфе в большинстве случаев не применяют никаких защитных покрытий или используют только временные покрытия. Защита от коррозии обеспечивается по катодной схеме. Значение токоотдачи (в ампер-часах) протекторов из алюминиевых, магниевых и цинковых сплавов согласно данным табл. 7.2—7.4 относятся как 3,1 1,4 1. Напротив, цена этих протекторов (в марках за 1 кг) относится как 1,3 2,8 1, так что удельные затраты в марках ФРГ на 1 А-ч находятся между собой в соотношении 1 2,4 4,7 и наиболее выгодными оказываются алюминиевые протекторы. Многолетние наблюдения за протекторами трех типов в Мексиканском заливе показали, что затраты на них относятся между собой как 1 3,5 2 [13]. Таким образом, магниевые протекторы для использования в прибрежном шельфе неэкономичны. Защита цинковыми протекторами обходится дороже защиты алюминиевыми протекторами.  [c.421]

Алюминиевые материалы в воде можно предохранить от питтинга ( помощью катодной защиты, если поддерживать электродный потен циал ниже потенциала питтинговой коррозии в данной систем материал - среда. Однако катодное выделение водорода ведет t повышению pH, и при чрезмерном его повышении алюминий може-подвергнуться коррозии. Такой перезащиты следует избегать, следз за тем, чтобы электродный потенциал не опускался ниж< определенной критической величины в почве и пресной воде - эк -1,2В (по отношению к медно-сульфатному электроду). На практике алюминий может быть защищен с помощью гальванически жертвенных анодов, например цинковых или цинкалюминиевы> анодов в морской воде магниевых анодов для конструкций в пресной или солоноватой воде, а также для неокрашенных поверхностей пол землей цинковых - для окрашенных подземных конструкций. Катодная защита может быть достигнута также путем плакирования менее благородным металлом, чем основа. Для нелегированногс алюминия это может быть, например покрытие из A Zn .  [c.128]

К недостаткам сплава относится склонность к образованию трещин при горячей прокатке. Сплав упрочняется в процессе искусственного старения при 160—170 °С (Т5). Предварительной закалкой служит охлаждение на воздухе от температур прессования. В связи с малой устойчивостью к коррозии изделия из магниевых сплавов оксидируются. На оксидированную поверхность наносят лакокрасочные покрытия.  [c.406]

Медное покрытие является катодным по отношению к стали, алюминиевым, магниевым и цинковым сплавам. Покрытие применяется в качестве технологического подслоя для уменьшения пористости и повышения сцепления других покрытий. Для защиты от коррозии как еамостоятельное покрытие не рекомендуется из-за низкой коррозионной стойкости.  [c.900]

Недостаток магниевых сплавов — более низкая коррозионная стойкость по сравнению с алюминиевыми сплавами. Особенно усиленно развивается коррозия на поверхности деталей из магниевых сплавов, если в отливки попадают хлориды магния. Поэтому шихтовые материалы, пораженные коррозией, покрытые окислами и маслом, должны тщательно очищаться. Однако при обеспечении надлежащей технологии производства магниевых сплавов, а также защиты от коррозии детали могут длительное время работать в атмосферных условиях. Изделия из магниевых сплавов коррозионно-устойчивы в растворах фторатов, хроматов, минеральных масел, топлива, щелочах, жидком и газообразном кислороде.  [c.187]

Основное назначение ПИНС группы 3 — консервация топливной системы самолетов и вертолетов (без расконсервации), наружных поверхностей авиационных двигателей после полета, запасных частей, точных и особо точных изделий, замков легко--вых автомобилей, насосов, компрессоров, приборов и т. п. Перспективно использование ингибированных масел для защиты от коррозии тонкого листа сельскохозяйственной техники алюминиевых и магниевых сплавов, дополнительной защиты термостойких органосиликатных покрытий [129, 133]. Как правило, защитные пленки ПИНС-РК отличаются от пленок рабоче-кон-сервационных и консервационных масел несколько большим уровнем адгезионно-когезионных сил (примерно, в два-три раза, т. е. 2—5 Па) и более высоким уровнем защитных свойств. Это объясняется тем, что в состав жидкой основы ПИНС вводят загущающие присадки — 0,1—5,0% (масс.), а общее содержание  [c.180]

При выборе покрытия для катодного металла который предполагается законтактировать с магниевым сплавом, предпочтение следует отдать цинку. При контактировании алюминиевых сплавов и трехслойного покрытия по железу с оцинкованной сталью последняя оказывается анодом. По степени увеличения коррозии оцинкованной стали на первом месте стоит трехслойное покрытие по железу (железо-медь-никель-хром), на втором — анодированный сплав Д16 и на последнем — сплав АМц.  [c.120]

При необходимости контакта магниевых сплавов с алюминиевыми вредное влияние контакта устраняется посредством анодирования алюминиевых сплавов в серной кислоте и покрытия их цинкхроматным грунтом, например АЛГ-1. Магниевые детали при этом оксидируют химическим или электрохимическим способом и покрывают цинкхроматным грунтом. Для уменьшения контактной коррозии можно алюминиевые детали также оцинковать, поскольку контакт магния с цинком является наименее опасным. Встречаются, однако, указания, что названные выше предосторожности надо применять лишь тогда, когда магниевые сплавы контактируют с алюминиевыми сплавами, содержащими медь. Во всех остальных случаях достаточно наружные поверхности покрыть двумя слоями цинкхроматного грунта и слоем эмали, т. е. применить такие же средства защиты, какие приняты для защиты при контакте магниевых сплавов.  [c.139]

Никель - алюминий 5 А1 60-80HR Коррозионно-стойкое покрытие -защита от фретинг-коррозии эрозион-но-стойкое покрьггие - защита от эрозии при кавитации в прокачиваемой агрессивной среде с низкими или повышенными температурами корковое покрьггие - восстановление изношенных деталей из всех марок сталей, никелевых, кобальтовых, алюминиевых и магниевых сплавов подслой газотермического покрьггия  [c.607]

Никель - алюминий - молибден 5А1 60-80HR Коррозионно-стойкое покрьггие -защита от фретинг-коррозии корковое покрытие - восстановление изношенных деталей из всех марок сталей, никелевых, кобальтовых, алюминиевых и магниевых сплавов подслой газотермического покрытия  [c.607]


Смотреть страницы где упоминается термин Покрытия, коррозия магниевые : [c.402]    [c.64]    [c.351]    [c.196]    [c.169]    [c.310]    [c.93]    [c.180]    [c.387]    [c.177]    [c.115]    [c.190]   
Коррозия и защита от коррозии (1966) -- [ c.586 , c.587 ]



ПОИСК



Коррозия покрытий

Магниевые коррозия



© 2025 Mash-xxl.info Реклама на сайте